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Abstract

Gastrulation is the process in which the three germ layers are formed that contribute to the 

formation of all major tissues in the developing embryo. We here review mouse genetic models 

in which defective gastrulation leads to mesoderm insufficiencies in the embryo. Depending on 

severity of the abnormalities, the outcomes range from incompatible with embryonic survival to 

structural birth defects, such as heart defects, spina bifida, or caudal dysgenesis. The combined 

evidence from the mutant models supports the notion that these congenital anomalies can 

originate from perturbations of mesoderm specification, epithelial–mesenchymal transition, and 

mesodermal cell migration. Knowledge about the molecular pathways involved may help to 

improve strategies for the prevention of major structural birth defects.
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Introduction

The most frequent neural tube defect in humans is spina bifida, the failure of the neural 

tube to close in regions of the trunk. Mutant mouse strains have been used extensively as 

experimental animal models for human neural tube defects. In contrast to humans, however, 

the fraction of mouse mutants that exhibit spina bifida is small (Harris and Juriloff, 2007). 

Among some 200 mutant strains, Harris and Juriloff identified ~5% with only spina bifida, 

and ~20% that can have spina bifida and exencephaly, or both (Harris and Juriloff, 2007). 

We noticed that in some mutant models with neural tube defects, the closure defect was 

preceded by abnormalities in mesoderm development that, in severe cases, manifested as 

ectopic accumulation of cells in the primitive streak. Examples are mutants for FGF receptor 

1 (Fgfr1−/−) (Deng et al., 1994; Yamaguchi et al., 1994; Guo and Li, 2007) and mutants 
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for Protein tyrosine phosphatase 11 (Shp2−/−) (Saxton et al., 1997), as well as chimeras 

of Fgfr1−/− (Ciruna et al., 1997) or Shp2−/− (Saxton and Pawson, 1999) mutant with wild-

type cells. Because we observed related phenotypes in embryos from diabetic pregnancies 

(Salbaum et al., manuscript submitted), we sought to identify additional mouse mutants with 

similar gastrulation defects. Of those mutants that survive long enough, many exhibit neural 

tube defects, implicating abnormal gastrulation as a cause of neural tube defects (NTDs) in 

the mouse. Other malformations common to these mutants include heart defects and caudal 

growth defects. The evidence from these mutants implicates particular pathogenic cellular 

and molecular pathways and highlights the importance of gastrulation processes for the 

pathogenesis and potential prevention of neural tube and other structural birth defects.

Gastrulation

Gastrulation in vertebrate embryos leads to the generation of the three primary germ layers 

ectoderm, mesoderm, and endoderm. It is a process that is highly dynamic as well as 

complex in terms of space, time, cellularity, and the interplay of molecular factors. In 

the mouse, gastrulation begins with the induction of the primitive streak in the posterior 

region of the embryo (Tam and Gad, 2004), which also coincides with final determination 

of the anterior–posterior axis and initial establishment of the body plan. Induction and 

localization of the primitive streak are influenced by signals from the anterior visceral 

endoderm (Ramkumar and Anderson, 2011). The primitive streak begins to extend in an 

anterior direction, culminating with the formation of the node, which then retreats together 

with the primitive streak toward the caudal pole of the embryo. During gastrulation, epiblast 

cells move toward the organizing center, i.e., either the primitive streak or the node, where 

they ingress. With ingression comes fate specification; the classical view was that mesoderm 

fate was the result, yet, in the mouse it is now accepted that a large part of the definitive 

endoderm is also derived from gastrulating cells (Lickert et al., 2002). When and where 

cells ingress into the organizing center affects their fate: movement into the early primitive 

streak results in heart mesoderm, prechordal mesoderm, and cranial mesoderm; subsequent 

ingression creates lateral plate mesoderm and paraxial mesoderm, whereas ingression in the 

node results in formation of the axial mesoderm of the notochord (Tam et al., 1997). Similar 

temporal dependencies exist for region-specific endodermal fate (Zorn and Wells, 2009).

In the mouse, cells move individually toward and into the primitive streak (Williams et 

al., 2012). Cells lose contact with the basal lamina as they reach the primitive streak. As 

they ingress, cells undergo epithelial–mesenchymal transition (EMT) (Chuai et al., 2012). 

Altered adhesion properties together with cytoskeletal rearrangements facilitate movement 

through and eventually out of the primitive streak (Ichikawa et al., 2013). As node and 

primitive streak recede toward the posterior end of the embryo, they leave behind a germ 

layer organization that consists of (i) an ectodermal layer set to enter neurulation along 

the midline of the embryo, (ii) axial mesoderm in the form of the notochord underlying 

the midline, and wings of paraxial and lateral mesoderm, and (iii) a layer of definitive 

endoderm. In this manner, gastrulation sets the stage for the next big step in development: 

formation of the central nervous system through neurulation.

Herion et al. Page 2

Birth Defects Res A Clin Mol Teratol. Author manuscript; available in PMC 2023 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mutants with Perturbed Gastrulation

The common feature of the mutants we review here is the appearance of ectopic cell 

accumulations in the primitive streak that protrude from the streak as a bulge (Fig. 1). The 

identity of the accumulated cells, in the vast majority of cases, has been determined to be 

mesodermal, although they are often covered with a layer of epithelial cells. Tables 1 and 

2 shows that such primitive streak abnormalities during gastrulation are associated with 

manifestation of spina bifida, heart defects, and caudal growth defects at later stages of 

development. The collection of mutants that display the ectopic cell accumulations allows 

us to identify the disrupted molecular pathways that cause defects in the formation of 

mesoderm, epithelial to mesenchymal transition (EMT), and cell migration.

WNT-ß-CATENIN SIGNAL TRANSDUCTION PATHWAY—The appearance of the 

primitive streak is marked by expression of Nodal and Wnt3 in the posterior region of the 

embryo. The restricted localization is due to inhibitory signaling from the anterior visceral 

endoderm (Perea-Gomez et al., 2002; Ben-Haim et al., 2006; Egea et al., 2008; Stuckey et 

al., 2011). Ablation of Nodal activity is associated with loss of primitive streak formation, 

although some cells with expression of mesodermal markers have been observed in these 

mutants (Conlon et al., 1994; Robertson, 2014). Similarly, loss of Wnt3 results in absence 

of the primitive streak (Liu et al., 1999) and of Nodal expression. The requirement of the 

canonical Wnt/ß-catenin signaling pathway for primitive streak formation is also highlighted 

by absence of the primitive streak in ß-catenin null mutants (Huelsken et al., 2000), and in 

mutants with combined disruption of Lrp5 and Lrp6 (Kelly et al., 2004). Thus, the Wnt3 and 

Nodal signal transduction pathways are critically involved in the early stages of gastrulation, 

in formation of the primitive streak.

Furthermore, Wnt3 null mutants lack expression of T/Brachyury, a marker for nascent 

mesoderm in the primitive streak (Liu et al., 1999), suggesting that the induction of 

mesodermal cell fate is dependent on Wnt3. This was shown by epiblast-specific knockout 

of Wnt3, through the use of the epiblast-specific Sox2-cre transgene. In this way, the 

contribution of signaling from the posterior visceral endoderm, which is also a site of Wnt3 
expression (Rivera-Perez and Magnuson, 2005), can be distinguished from signaling in 

epiblast cells, the precursors for the embryo proper. Embryos which lack Wnt3 specifically 

in the epiblast were reported to phenocopy the Wnt3 null mutants at E6.5 and to lack 

mesodermal derivatives (Barrow et al., 2007). Intriguingly, they display accumulation of 

cells that bulge into the amniotic cavity; beyond being of epiblast origin, the identity of 

these cells has not been established. Such ectopic cell accumulations were also found by 

another laboratory (Tortelote et al., 2013), which demonstrated that the cells did not express 

T/Brachyury, and thus were unlikely to be of mesodermal nature. In contrast to the earlier 

report, however, these authors detected T-expressing cells in what appeared to be shortened 

primitive streaks in epiblast-deleted Wnt3 mutant embryos at E7.5, calling into question 

whether induction of mesoderm requires epiblast-derived Wnt3, or is simply delayed in 

these mutants. Yet, the inability to complete gastrulation, and the consequent lethality of 

these embryos by E9.5, indicate that potentially remaining extraembryonic sources for 

Wnt3 are not sufficient to maintain proper mesoderm formation. This is underscored by the 
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absence, in these Wnt3 mutants (Tortelote et al., 2013), of expression of Axin2, a direct 

target and known inhibitor of Wnt signaling (Jho et al., 2002).

In canopus mutants, the Axin2 protein is altered near the N-terminus, resulting in increased 

protein stability (Qian et al., 2011). This would be predicted to result in greater inhibition 

of Wnt signaling (Zeng et al., 1997; Yamamoto et al., 1999; Huang et al., 2009). Consistent 

with this expectation, activity of the TOPGAL reporter, which responds to Wnt wignaling 

(Maretto et al., 2003), was reduced at E7.25, and expression of Tbx6, a marker of nascent 

mesoderm, was reduced by E7.5. Yet, the mutants exhibited close to normal numbers of 

somites, indicating that presomitic mesoderm was formed. Intriguingly, Axin2canp mutants 

displayed ectopic protrusions from the midline of the neural plate. Mesodermal identity 

of these cells was established by expression of mesodermal markers T and Meox1. 

Pharmacological stabilization of Axins was associated with increased phosphorylation of 

Lrp6 in the posterior region of the embryo (Qian et al., 2011).

Intriguingly, cell accumulations in the primitive streak are also found in embryos with 

homozygous disruption of Lrp6 in the presence of a single functional allele for Lrp5 in 

heterozygous configuration (Lrp5+/−;Lrp6−/−) (Kelly et al., 2004). T expression was present 

in some accumulated cells, but Tbx6 was absent, as were somites, indicating that paraxial 

mesoderm, which is derived from the posterior primitive streak, is nevertheless deficient 

in these embryos; in some mutant embryos, the posterior region remained undifferentiated. 

Embryos that are only deficient in Lrp6 (Lrp6−/−) exhibit heart defects (Song et al., 2010), 

posterior mesoderm is reduced or absent (Pinson et al., 2000), and the neural tube fails 

to close anteriorly (Bryja et al., 2009) or posteriorly (Pinson et al., 2000). When the 

ringelschwanz Lrp6 allele was combined with a Lrp6 null allele, offspring displayed spina 

bifida (Kokubu et al., 2004); combination of the crooked tail Lrp6 allele with the null allele 

yielded exencephaly with incomplete penetrance (Carter et al., 2005). It was recently shown 

that Lrp6 can also affect noncanonical pathways during neurulation (Gray et al., 2013) in 

addition to its role in canonical Wnt signaling.

In mutants deficient for Tcf3, a known transcriptional effector of Wnt signaling, several 

mesodermal defects were found (Merrill et al., 2004): in severely affected embryos, the 

anterior region was truncated, and somites and heart were absent at E8.5, while they were 

present in more mildly affected embryos. In addition, duplicated primitive streaks, and 

supernumerary nodes and notochords, or split notochords were found. Because anterior 

visceral endoderm (AVE) markers are expressed normally in mutant embryos, the axis 

duplications are likely not due to AVE abnormalities (Merrill et al., 2004). Thus, Tcf3−/− 

embryos form excess axial mesoderm, as evidenced by an expanded expression of T/
Brachyury.

The T/Brachyury gene is a direct target of Wnt signaling (Yamaguchi et al., 1999; Arnold et 

al., 2000). Deletion of the T gene leads to defective primitive streaks, defective notochords 

and failure of axis elongation (Wilkinson et al., 1990). In chimeras with wild-type cells, 

T/T cells accumulate preferentially in the posterior primitive streak, the site of strongest T 
expression. Because the accumulated T/T cells adhere to one another rather than mix with 

wild-type cells, the authors conclude that the defect is one of adhesion (Wilson et al., 1995), 
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and that it occurs in cell-autonomous manner during epithelial to mesenchymal transition. In 

some of the chimeric embryos, open neural tubes were found in the cephalic region, as well 

as delayed closure of posterior neural folds (Wilson et al., 1993; Wilson and Beddington, 

1997). The authors attribute these defects to the failure of T/T cells to exit from the midline, 

forming a “wedge” that inhibits posterior neuropore closure (Wilson et al., 1995). In human 

families affected by neural tube defects, biased transmission of a variant T allele has been 

reported (Morrison et al., 1996; Shields et al., 2000; Jensen et al., 2004), but this was 

not confirmed in all populations (Papapetrou et al., 1999; Trembath et al., 1999; Speer et 

al., 2002). The T gene was also identified in a single nucleotide polymorphism screen for 

candidate NTD susceptibility risk genes (Pangilinan et al., 2012).

The T protein has been shown to interact with the paired-like homeodomain transcription 

factor Mixl1 (Pereira et al., 2011). In Mixl1−/− mutant embryos, development stops at E9.0, 

head folds are abnormally formed, heart tube and gut are missing, and paraxial mesoderm 

is underdeveloped (Hart et al., 2002). Instead of the notochord and node, mutant embryos 

accumulate T-expressing tissue that protrudes from the ventral side of the trunk of the 

embryo, like a branched embryonic axis, or forms a thick tail bud at the caudal end. The 

expanded domains of T expression in Mixl1-deficient embryos suggest that Mixl1 normally 

represses T (Hart et al., 2002).

Taken together, these experimental models provide ample evidence to implicate defective 

Wnt signaling and its targets in ectopic cell accumulation in the primitive streak. What 

is less well understood is whether this involves increased or decreased output from the 

canonical ß-catenin pathway. The possibility exists that, as highlighted by the Axin2canp 

mutants (Qian et al., 2011), activity may be modulated differently at early and late stages 

of mesoderm development. There is also indication from the Tcf3−/− mutants that some 

Tcf3 functions may be independent of ß-catenin activation (Merrill et al., 2004). In addition, 

participation of elements of canonical Wnt signaling in the noncanonical Wnt pathway has 

been observed, such as in genetic interactions between Lrp6 and Wnt5a (Bryja et al., 2009; 

Andersson et al., 2010) and in Lrp6cd mutants (Gray et al., 2013). The variable phenotypes 

of the Wnt signaling mutants reviewed here also suggest that early and late descendants 

from the primitive streak respond differently to changes in the levels of Wnt signaling.

MESP1 AND 2, EOMESODERMIN, AND CRIPTO—An indication of differential 

requirements in subpopulation of mesodermal derivatives comes from findings in embryos 

with ablation of Mesp1 and Mesp2. Mesp1-deficiency results in embryos with defective 

heart formation, characterized by the presence of two heart tubes (Saga et al., 1999). Mesp1 
is normally expressed in nascent mesoderm in the primitive streak, and in null mutants, 

migration of mesodermal cardiac precursors is delayed, but axial mesoderm formation was 

unaffected. Because this could potentially be due to compensatory upregulation of the 

neighboring Mesp2 gene, double knockout mutants were constructed (Mesp1−/−;Mesp2−/−) 

(Kitajima et al., 2000). These embryos lacked heart and somite formation but exhibited 

expression of mesodermal markers, and displayed accumulation of mesodermal cells in the 

primitive streak. Notably, although some axial mesodermal cells were detected, by virtue of 

T expression, rostral extension of the axis did not proceed. Chimera analysis showed that the 

inability of double mutant cells to contribute mesoderm to the heart was cell-autonomous, 
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and that defects in paraxial mesoderm, i.e. somite formation, were non–cell-autonomous. 

The authors suggest that reduced expression of Fgf4 in the mutants could be responsible for 

the inability of the accumulated mesoderm to exit from the primitive streak (Kitajima et al., 

2000).

Upstream of Mesp1 in the formation of cardiac mesoderm is the T-box transcription factor 

Eomesodermin (Eomes) (Costello et al., 2011). Eomes (also known as Tbr2) can bind to 

T-box sites in the Mesp1 locus; absence of expression of Mesp1 in Eomes−/− mutants 

at E7.0 indicates that Eomes normally activates Mesp1 transcription. Eomes also acts in 

trophectoderm (Russ et al., 2000) and in extraembryonic mesoderm formation (Wardle 

and Papaioannou, 2008), and it is required in visceral endoderm for correct positioning 

of the primitive streak (Nowotschin et al., 2013). Embryos with epiblast-specific ablation 

of Eomes, by virtue of Sox2-cre-mediated recombination (Arnold et al., 2008), display 

a thickened primitive streak with accumulation of mesenchymal cells. T expression is 

increased in the posterior region of the mutant embryo, indicating that these mutants are 

able to generate mesodermal cells, but they get stuck at the primitive streak. E-cadherin 

expression is maintained in mesodermal cells, despite expression of Snail, which normally 

downregulates E-cadherin (Cano et al., 2000). Interestingly, explants from Eomes-deficient 

embryos are able to downregulate E-cadherin and migrate in culture, demonstrating that, in 

the mutant embryo, they are not receiving the signals for proper migration behavior.

Teratoma-derived growth factor (Cripto), a member of the EGF-CFC family, serves as a 

ligand and co-receptor in Nodal signaling (Ding et al., 1998), and as recently discovered, 

for Wnt signaling, through binding to Lrp5 and Lrp6 (Nagaoka et al., 2013). Before 

gastrulation, Cripto expression is found in the epiblast. During gastrulation, Cripto is 

strongly expressed in the primitive streak, the node, axial mesendoderm and migrating 

mesoderm. Mutants with epiblast-specific ablation of Cripto accumulate mesenchymal cells 

in the primitive streak (Jin and Ding, 2013). Although these cells appear to have undergone 

EMT, their differentiation seems impaired, as evidenced by the absence of Tbx6, Mixl1 
and Mesp1 expression. Interestingly, mesodermal Fgfr1 expression was reduced in epiblast-

deleted Cripto mutants, suggesting that Fgf signaling could be affected in these embryos (Jin 

and Ding, 2013).

FGF SIGNAL TRANSDUCTION PATHWAY—Fibroblast growth factor signaling has 

been implicated in cell migration out of the primitive streak since it was found that embryos 

with targeted disruption of the Fgf receptor 1 gene (Fgfr1) exhibited cell accumulations 

in the primitive streak (Deng et al., 1994; Yamaguchi et al., 1994). These accumulations 

included epiblast and mesodermal cells and were also protruding from the midline in the 

anterior neural folds of one mutant embryo (Yamaguchi et al., 1994). Expression of T was 

found in both cell types in the protrusion and was generally expanded in Fgfr1 mutants, 

indicating that, although disorganized, mesoderm was formed. However, the accumulation 

of mutant cells in the primitive streak suggested migration defects that impaired movement 

of mutant paraxial mesoderm out of the streak (Deng et al., 1994). In chimeras of Fgfr1−/− 

mutant with wild-type cells, depending on the extent of contribution from the mutant cells, 

embryos exhibited failure to close the anterior neural tube, abnormal heart development, 

posterior truncations, and posterior neural tube duplications (Ciruna et al., 1997). Mutant 
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cells preferentially accumulated in the primitive streak, but were underrepresented in the 

mesodermal wings, confirming the impaired capacity for migration. Mutant cells contributed 

to the posterior mesenchyme, but were also found in embryonic ectoderm, suggesting a 

possible failure to undergo epithelial to mesenchymal transition. This might explain the 

appearance of secondary neural tubes in many of these chimeras at later stages. The 

successful colonization of limb bud and lateral mesoderm was interpreted as a possible 

differential requirement for Fgf signaling in different mesoderm derivatives (Ciruna et al., 

1997). Notably, those mutant cells that ingressed at the streak maintained expression of 

E-cadherin (Ciruna and Rossant, 2001), which would be expected to alter their adhesive 

properties. Furthermore, loss of Fgfr1 resulted in reduced expression of T/Brachyury, 

indicating that the output from the Wnt signaling pathway in the primitive streak is 

modulated by Fgf signaling.

Both Fgf8 and Fgf4 are expressed in the primitive streak during gastrulation. Fgf4 is 

required in the postimplantation embryo even before formation of the primitive streak 

(Feldman et al., 1995). Embryos deficient for Fgf8 displayed thicker primitive streaks, with 

protrusion of a “mass of cells” of apparently mesenchymal character (Sun et al., 1999). 

Mesodermal derivatives, however, such as somites and heart, and endodermal derivatives 

like the gut, were missing by E8.5. While the epithelial layer covering the bulge of cells in 

the primitive streak exhibited T expression, the cells interior to the bulge did not express 

T; Lim1 expression indicated that these cells were nascent mesodermal cells. Intriguingly, 

Fgf4 was not expressed in the Fgf8 mutant embryos, suggesting that Fgf4 expression 

could be dependent on Fgf8, and potentially implicating Fgf4 in the failure of cells to 

exit the primitive streak. Ectopic cell accumulations in the primitive streak at E7.5 were 

also obtained with another Fgf8 mutant allele (Guo and Li, 2007), and less pronounced in 

embryos with specific ablation of the Fgf8b splice form. Only the latter embryos displayed 

Fgf4 expression, and generally less severe phenotypes at E8.5, indicating that the residual 

expression of the Fgf8a splice form, possibly together with Fgf4, ameliorated some of the 

mesoderm migration deficiencies (Guo and Li, 2007).

Defective mesoderm migration was also observed in embryos with an ENU-induced 

mutation in the gene encoding UDP-glucose dehydrogenase (Ugdh), that is hypothesized 

to disrupt the structure or function of the enzyme involved in the synthesis of 

glucosaminoglycans and proteoglycans. In embryos homozygous for the lazy mesoderm 
mutant allele (Ugdhlzme/lzme) (Garcia-Garcia and Anderson, 2003), a bulge of mesenchymal 

cells was found contiguous with the mesodermal wings, indicating failure of cell migration 

away from the streak region. Tbx6, a marker of nascent mesoderm (Chapman et al., 1996), 

was not expressed, similar to the findings in Fgf8-deficient mutants (Sun et al., 1999). 

Because the defects are similar in Fgf8 and Ugdhlzme/lzme mutant embryos, and expression 

of Wnt3 and Nodal is detected in Ugdhlzme/lzme mutants, the authors hypothesize that the 

Ugdhlzme mutation does not affect Nodal or Wnt signaling, but interferes specifically with 

Fgf signaling; this would likely be downstream of ligand, because Fgf8 expression can be 

detected in Ugdhlzme/lzme mutant embryos (Garcia-Garcia and Anderson, 2003). In these 

mutants, products of Ugdh activity, such as heparan sulfate and chondroitin sulfate, could 

not be found in embryonic tissues, confirming that the mutation is associated with defects in 

glycosaminoglycan synthesis, which thus is required for Fgf signaling.
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Ptpn11 (also known as Shp2) is a SH2-domain containing tyrosine phosphatase that acts 

downstream of Fgf receptor stimulation. Null mutants for Ptpn11 (Shp2−/−) have defects 

in node, somitogenesis and axis elongation, and they form ectopic notochord material 

(Saxton et al., 1997). In chimeras of Shp2−/− and wild-type cells, mutant cells accumulate 

in the posterior region of the embryo (Saxton and Pawson, 1999). The accumulated mutant 

cells are mostly of neuroectoderm identity, and form secondary neural tubes. Mutant cells 

populated the mesodermal wings to a lesser extent than wild-type cells did, indicating that 

the presence of Ptpn11 is required for migration of mesodermal cells away from the streak. 

Consistent with a role downstream of Fgf signaling, Shp2−/− mutant cells were unable to 

respond to FGF in a chemotaxis assay, when their response to PDGF was normal (Saxton 

and Pawson, 1999). Intriguingly, the dominantly inherited Noonan Syndrome, which is 

characterized by short stature and heart defects, is associated with mutations in the Ptpn11 
gene that increase signaling activity (Tartaglia et al., 2001).

It was recently reported for osteoblasts (Lammi and Aarnisalo, 2008) that Fgf8 signaling 

induces expression of genes in the nuclear receptor NR4A family, one of which encodes the 

nuclear receptor transcription factor Nor1. Nor1-deficient mutants exhibit reduced growth 

and accumulation of cells in the primitive streak that were deemed to be mesoderm 

(DeYoung et al., 2003). T expression appeared normal in Nor1-deficient embryos, but 

Tbx6 expression was substantially reduced. Although anterior mesoderm was not produced 

in Nor1−/− mutant embryos, the expression of Lim1 indicated that lateral movement of 

mesoderm can occur. Intriguingly, modulation of Nor1 expression in monocytes affected 

cell adhesion properties (Zhao et al., 2010), providing a possible explanation for the cell 

migration defects in the absence of Nor1.

Snail is a transcription factor affected by Fgf signaling in the primitive streak (Ciruna and 

Rossant, 2001). Embryos devoid of Snail expression die by E8.5 (Carver et al., 2001) but 

are able to form mesoderm, as evidenced by expression of T/Brachyury and Lim1. But the 

cells that had egressed from the primitive streak displayed epithelial morphology, suggesting 

a failure in epithelial–mesenchymal transition. Concomitantly, E-cadherin expression was 

maintained, at the protein and transcriptional level. Epiblast-restricted conditional ablation 

of Snail (Murray and Gridley, 2006) caused accumulation of cells in the primitive streak 

region; the cells were specified as mesoderm, as indicated by Tbx6 expression. Ectopic 

expression of E-cadherin was also present. Because Fgfr1 mutant embryos lack Snail 
expression (Ciruna and Rossant, 2001), these results provide the link between Fgf signaling 

and the regulation of cell adhesion and migration.

REGULATORS OF CELL MIGRATION AND ADHESION—Mitogen-activated protein 

kinase kinase kinase kinase 4 (Map4k4, also known as Nik) is a serine-threonine kinase 

that binds to SH3 domains of the SH2/SH3 adapter of NCK1 and activates the JNK 

pathway. Map4k4-deficient (Nik−/−) mutant embryos are truncated posteriorly and fail to 

form somites or a hindgut (Xue et al., 2001). At E8.5, protrusions of cells were found in 

the posterior primitive streak. These cells expressed Tbx6, indicating that mesoderm was 

formed, and Lim1 expression showed that epithelial–mesenchymal transition was achieved; 

however, the nascent mesoderm failed to migrate away from the primitive streak. In chimeric 

embryos with moderate contribution from Nik−/− mutant cells, migration of mesodermal 
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cells appeared normal, demonstrating a non–cell-autonomous rescue of the migration defect. 

Wild type cells in this assay possibly provided factors that stimulated migration by mutant 

cells. Because Fgf4 expression was normal in mutant embryos, the cellular defect is likely 

independent or downstream of Fgf signaling (Xue et al., 2001). Phosphorylated p38 was not 

detected in primitive streak or the accumulated mesodermal cells in Nik−/− mutant embryos 

(Zohn et al., 2006), suggesting that Map4k4 can stimulate activation of p38, which is also 

known as Mapk14.

Another protein required for p38/Mapk14 activation is p38-interacting protein (p38IP, also 

known as Supt20). A gene trap allele for p38IP (p38IPRRK) deletes the C-terminal domain, 

which interacts with p38α (Zohn et al., 2006); the ENU-induced droopy eye mutation 

also removes this domain. Consequently, activation of p38 by phosphorylation is absent 

in p38IPRRK/RRK mutants. At gastrulation, the mutant embryos exhibit a cell mass in the 

primitive streak. These cells express Tbx6 and Lim1, indicating that mesoderm is specified. 

However, activated/phosphorylated p38 was absent, and E-cadherin protein remained 

expressed in the accumulated cells, possibly affecting their cell adhesion properties. On the 

other hand, E-cadherin transcripts were absent from the accumulated mesoderm, presumably 

due to the expression of Snail. The presence of Snail expression indicates that the failure of 

mesoderm migration in these mutants is independent of Fgf signaling, and rather involves 

processes regulated by Map kinase signaling. Of interest, at later stages, mutants carrying 

p38IP mutant alleles displayed neural tube defects, manifesting as exencephaly with both 

alleles, and as spina bifida in a fraction of droopy eye mutants (Zohn et al., 2006). Both 

mutants also suffer posterior truncations.

The reorganization of the cellular actin cytoskeleton during cell migration requires the 

activity of proteins in the Wiskott-Aldrich syndrome protein family (WASP/WAVE) 

(Yamazaki et al., 2003; Yan et al., 2003). Wave1 is not detectable in Nap1khlo/khlo mutants, 

which carry an ENU-induced mutation in the gene encoding Nap1, the NCK-associated 

protein (Rakeman and Anderson, 2006). The Nap1khlo/khlo mutant embryos display cell 

accumulations at the primitive streak that were identified as mesenchymal. Although E-

cadherin expression was reduced in these cells, they did not efficiently migrate away from 

the primitive streak. Cells isolated from Nap1khlo/khlo mutants had smaller lamellopodia and 

did not display the polarization needed for migration. The migration of cells forming the 

anterior visceral endoderm was also impaired in mutant embryos (Rakeman and Anderson, 

2006).

The small GTPase Rac1 belongs to the family of Rho-GTPases that act in reorganization 

of the cytoskeleton during cell migration. Rac1-deficient embryos at E7.5 display abnormal 

folding of ectoderm, and cell death in areas where newly formed mesoderm would be 

expected (Sugihara et al., 1998). Mutant epiblast cells in culture migrated at slower speed, 

lacked lamellopodia and died within 2 days, likely due to altered cell adhesion. When 

Rac1 was specifically ablated in epiblast cells (Migeotte et al., 2011), the greatest effect 

was on migration of mesoderm: mutant embryos accumulated a bulge of mesoderm in 

the primitive streak, as evidenced by expression of T/Brachyury. Wnt and Fgf signaling 

appeared normal in mutant embryos at E7.5, and E-cadherin was decreased in the 

accumulated cells, indicating that epithelial–mesenchymal transition had occurred. In 
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contrast to Nap1khlo/khlo mutants, in which the WAVE complex was absent, it was detectable 

in Rac1 epiblast-deleted embryos (Migeotte et al., 2011). Yet, cells from these mutants did 

not migrate in explant cultures. Intriguingly, the presence of one deletion allele for Pten in 

Rac1−/C;Sox2Cre;Pten+/− mutant embryos rescued cell death, but the compound mutants still 

exhibited cell accumulations, demonstrating that these are not caused by cell death.

Phosphatase and tensin homolog deleted from chromosome 10 (Pten) is a phosphatase that 

removes a phosphate group from phosphatidylinositol triphosphate (PIP3) and regulates cell 

proliferation and survival (Stambolic et al., 1998). Embryos lacking Pten have improperly 

specified anterior–posterior body axes, due to defects in migration of cells normally destined 

to form the anterior visceral endoderm (Bloomekatz et al., 2012). Epiblast-specific ablation 

of Pten produces accumulation of cells in the mesodermal wings, with protrusion into 

the amniotic cavity. Thus, Pten is also required for migration of mesodermal cells in the 

primitive streak (Bloomekatz et al., 2012). The authors propose that in the absence of Pten, 

PIP3 accumulates, and because PIP3 activates the WAVE complex, the excess WAVE activity 

may account for the migration defects in Pten−/− mutant cells.

Talin is a cytoskeletal protein that provides the links between cytoplasmic domains of cell 

adhesion molecules at the plasma membrane, particularly integrins, to the actin cytoskeleton 

and the actomyosin contractile complex. Mutant embryos homozygous for a disrupted Talin 
gene (Monkley et al., 2000) exhibit a mass of mesodermal cells that accumulate in the 

primitive streak, likely due to migration failure. Expression of T/Brachyury was reduced 

in mutant embryos, indicating that only a small amount of axial mesoderm was produced. 

Mutant blastocysts displayed altered cell adhesion in culture, so it is possible that both cell 

adhesion and migration are affected by loss of functional Talin.

Summary

We here reviewed 28 mouse models that exhibit ectopic cell accumulation in the primitive 

streak. In 2 models, T/T chimeras and Wnt3 mutants, the identity of the accumulated cells 

was not positively defined, although there was a clear absence of mesodermal markers in 

embryos with epiblast-specific deletion of Wnt3. In mutants with epiblast-specific ablation 

of Snail1, the accumulated cells, while expressing mesodermal markers, retained epithelial 

morphology, indicating that epithelial–mesenchymal transition was defective, similar to 

findings in Fgfr1Δtmk/Δtmk;Rosa26LacZ/+ chimeras (Ciruna et al., 1997). In 22 models, the 

cells in the protrusions were determined to be mesoderm. These evidences show that in 

the majority of cases, ingression of some precursors into the streak and their specification 

toward mesoderm had occurred. Where it has been investigated, there was no evidence 

of excess cell proliferation, consistent with the interpretation that the mesodermal cells 

accumulated because they got stuck at the streak due to a failure to migrate away from 

the streak (Ciruna et al., 1997). In most of the models, the accumulating cell bulges were 

covered by a layer of epithelial cells, indicating that migration of epiblast cells toward 

the streak was not perturbed to the same degree. Theoretically, in analogy to vehicular 

traffic, it is also possible that the accumulation of cells in the primitive streak could be 

the result of an increased rate of movement toward and cell ingression into the streak, 

causing accumulations because the rate of exit is not increased. The deficient contribution of 
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primitive streak mesoderm to various mesodermal derivatives, however, would argue against 

this possibility.

Altered cell adhesion was implicated in many models, owing to the retention of E-cadherin 

expression in the accumulated cells, such as for example in the conditional mutants for Snail 

and Eomesodermin (Murray and Gridley, 2006; Arnold et al., 2008) and the p38IPRRK/RRK 

mutants (Zohn et al., 2006). Yet, defective migration was observed even in the absence 

of E-cadherin protein (Rakeman and Anderson, 2006; Migeotte et al., 2011), implicating 

additional pathways in the cellular defects. Basal lamina components present within the 

cell accumulations, such as found in the mutants with epiblast-specific ablation of Rac1 

(Migeotte et al., 2011), could also impede cell migration. How extracellular matrix is 

degraded as cells ingress into the streak is currently unknown (Chuai and Weijer, 2009).

Cell migration also requires reorganization of the cytoskeleton. Consistent with this, cell 

accumulations were found in mutants for regulators of cytoskeletal rearrangements, such 

as Rac1 and Nap1. However, in mutants for these molecules, additional defects in cell 

migration were present in nonmesodermal tissues, such as the AVE (Migeotte et al., 2010), 

which is also affected in null mutants for Cripto, Pten, and Fgf8. In this regard, the 

presence of both mesodermal and epithelial cells contributing to the cell accumulations 

in Talin-deficient and some Fgfr1-deficient embryos point toward more general failures in 

cell migration that are not restricted to mesodermal precursors or derivatives. In 4 models 

(Wnt3−/−, Lrp5−/−;Lrp6−/−, Eomes−/−, and Cripto−/− mutants), mesoderm was not specified, 

with the primitive streak being absent as well in 3 of these (Wnt3−/−, Lrp5−/−;Lrp6−/−, 

Eomes−/−).

The variable size, anterior–posterior location within the primitive streak, appearance in 

time (Bloomekatz et al., 2012), and incomplete penetrance of the cell accumulations/bulges 

implicates interactions of multiple factors that are involved in (i) the positioning of the 

primitive streak, (ii) specification of mesoderm, (iii) epithelial–mesenchymal transition 

during gastrulation, and (iv) cell migration and cell adhesion/communication. The major 

molecular pathways involved are the canonical Wnt pathway and Fgf signaling, with 

additional input coming from MAP kinase and Akt pathways, as well as ECM/cell 

adhesion molecule signaling. Although these pathways are active in many cell types in the 

embryo, epithelial–mesenchymal transition and cell migration at the primitive streak stage of 

embryogenesis appear to be particularly sensitive to perturbation.

Perturbations of the gastrulation process, as represented by the models reviewed here, are 

associated with major developmental defects that are incompatible with survival beyond 

midgestation in many cases (Table 2). Among the 24 models with mesodermal cell 

accumulations, defects in heart development were noted in 12 models, ranging in severity 

from absence of formation of a heart tube altogether to failures of fusion of the cardiac 

anlagen causing cardia bifida, to left–right asymmetry and other heart defects. In the 

majority of models, there was an insufficient contribution of cardiac mesoderm, highlighting 

the impact of impaired mesoderm migration on heart development. In 12 out of the 24 

models, axial extension was defective (concurrent with heart defects in 7 models), resulting 

in a spectrum of caudal truncations and reductions. It remains to be determined to what 
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extent the position of the cell bulge along the anterior–posterior axis restricts the generation 

of posterior mesoderm as the node regresses, or whether there are additional defects in cell 

proliferation in the posterior region.

As with the other structural anomalies, considerable variation in severity was evident for 

defects affecting the neural tube, which were present in 10 out of 24 models with presence 

of mesodermal cell accumulations in the primitive streak at earlier stages. In Fgf8 null 

mutants, no neural tube is formed, whereas duplicated neural tubes were found in chimeras 

with Fgfr1 mutant and Eomes mutant cells. In Tcf3−/− null mutants, neural tubes and 

notochords were duplicated. Open neural tubes were present in Eomes−/− chimeras, in some 

Talinhyg/hyg, Nap1khlo/khlo and conditional Rac1 mutants; closure defects were also observed 

in the posterior of the Axincanp/canp mutant, and as exencephaly in p38IPRRK/RRK mutants. 

Chimeras with T/T mutant cells also had defects in closure of the posterior neuropore and, 

occasionally, of the neural tube in the cephalic region (Wilson et al., 1993). In this regard, it 

is noteworthy that the authors envision the cell accumulations in the primitive streak to form 

a “wedge” that prevents closure more caudally (Wilson et al., 1995). In the case of spina 

bifida, multiple scenarios can be envisioned: (i) the cell accumulations could physically 

hinder neural tube closure, due to widening of the neural plate, or (ii) impaired mesoderm 

migration may not provide sufficient support for elevation of the neural folds, leaving the 

tube open. Cardiac defects and caudal growth defects have also been interpreted to result 

from insufficient contribution of mesodermal cells into the target organ, heart, axial or 

paraxial mesoderm, and caudal development.

The embryonic lethality of many of the mutants reviewed here precludes an assessment 

whether these neural tube closure defects could have contributed to spina bifida, 

exencephaly or anencephaly at later stages. Similarly, the severe heart defects are 

incompatible with survival beyond midgestation. However, it is important to note that many 

of the alleles are null or loss-of-function alleles and recessive, revealing their deleterious 

effects only when all wild-type alleles are absent. In humans, embryonic lethal alleles in 

homozygous configuration likely go undetected, as candidate gene screens are typically 

performed with samples collected after birth. Even less severe mutations, such as in the 

canopus (Axin2), kahlo (Nap1), droopy eye (p38IP), and lazy mesoderm (Ugdh) alleles, 

typically produce defects only in homozygotes. On the other hand, the reduction of Lrp5 
gene dosage in the Lrp5+/−;Lrp6−/− mutants provides evidence that protein expression levels 

can also be important. Further support for quantitative effects comes from the observation 

that some Pten+/− mutants display open neural tubes (Cully et al., 2004). Of interest, a 

mutation in the Pten gene (in heterozygous configuration) has been identified in a patient 

with macrocephaly and VATER association (Reardon et al., 2001), which also originates 

during gastrulation and includes mesoderm deficiencies (Stevenson and Hunter, 2013).

Heart defects, neural tube defects, and caudal growth defects are characteristic structural 

birth defects in human pregnancies complicated by maternal diabetes. Association of 

VATER/VACTERL, a spectrum of vertebral, anorectal, cardiac, tracheo-esophageal, renal 

and limb (VACTERL) defects, with maternal diabetes has also been reported (Loffredo et 

al., 2001). This comparison to mouse mutant phenotypes suggests that impaired mesoderm 

formation and migration could be the unifying etiology for the human neural tube, heart, 
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and caudal anomalies in offspring from diabetic pregnancies. What is currently unclear 

is whether in such pregnancies the same molecular mechanisms are perturbed that were 

manipulated in the mouse mutants reviewed here. The combined evidence suggests that 

the cellular and molecular pathways involved in mesoderm development, and especially 

mesoderm migration, could be attractive targets for interventions aimed at preventing 

structural birth defects that originate from defective gastrulation.
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FIGURE 1. 
Generation of mesoderm in the primitive streak through epithelial-mesenchymal transition 

and cell migration. Epiblast cells are organized in a columnar epithelium (blue). With onset 

of expression of T/Brachyury (red) and as cells approach the primitive streak, epiblast cells 

undergo epithelial–mesenchymal transition (EMT) and ingress through the primitive streak 

(white arrows), ultimately migrating away anteriorly (not pictured) and laterally (black 

arrows) into the mesodermal wings between the epithelium and the endoderm (green). 

Abnormalities in the process are evidenced by cell accumulation in the primitive streak, 

morphologically obvious as a protrusion into the amniotic cavity (brown line). Mutations 

involved in this phenotype (question mark) and the outcomes from cell accumulation at the 

primitive streak are the focus of this review.
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