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Abstract
Nucleotide excision repair (NER) is a major pathway to deal with bulky adducts induced by various environmental
toxins in all cellular organisms. The two sub-pathways of NER, global genome repair (GGR) and transcription-
coupled repair (TCR), differ in the damage recognition modes. In this review, we describe the molecular mechanism
of NER in mammalian cells, especially the details of damage recognition steps in both sub-pathways. We also
introduce new sequencing methods for genome-wide mapping of NER, as well as recent advances about NER in
chromatin by these methods. Finally, the roles of NER factors in repairing oxidative damages and resolving R-loops
are discussed.
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Introduction
As the carrier of genetic information, DNA is the target of many
endogenous and exogenous genetic toxic agents [1]. The former
contain metabolic products such as reactive oxygen species (ROS)
and aldehydes [2]; while the latter have a long list including ultra-
violet (UV) in the sunlight [3], polycyclic aromatic hydrocarbons
from air pollutants [4], aflatoxin from contaminated food [5], che-
motherapeutic drugs like cisplatin [6], and natural products such as
aristolochic acids [7] and illudin S [8].

These agents cause various types of DNA base modifications and
adducts, which will affect base pairing and interfere with DNA re-
plication and transcription [9], and finally threaten genomic stabi-
lity, resulting in cancer and aging [10–12]. To maintain genomic
integrity, DNA repair pathways, mainly base excision repair (BER)
and nucleotide excision repair (NER), are evolved to deal with these
damages.

The BER pathway utilizes specific glycosylases to recognize and
excise the corresponding base modifications, generating apurinic/
apyrimidinic (AP) sites which are further processed by APE1 and
other BER factors [13–15]. However, there are only 11 glycosylases
identified from the human genome [16], and each glycosylase can
only recognize a couple of lesions sharing similar structures [17].
Thus, a limited range of damages can be repaired by the BER
pathway, while an unpredictable number of structurally hetero-
geneous base modifications and adducts are left unrepaired.
Therefore, a piece of versatile repair machinery is strongly required,

and NER is such a pathway. To cope with such a diversity of lesions,
NER aims for common features of base modifications and adducts
instead of unique structures, which is discussed below.

NER exists in all three domains of life [18], albeit there are two
pieces of evolutionarily unrelated machinery: bacterial NER and
eukaryotic NER. Intriguingly, NER in bacteria and eukaryotes uti-
lizes the same strategy to recognize various lesions, but the core
factors are completely different between the two domains [19]. The
bacterial type of NER has been identified in certain species of Ar-
chaea in vitro, which is likely due to horizontal gene transfer [20].
In Archaea, some proteins homologous to eukaryotic NER factors
were also found [21], but a functional eukaryotic type of NER has
not been demonstrated yet [22]. In this review, we will focus on
NER in eukaryote, especially in mammalian cells.

Defects of NER factors in humans can cause several inherited
diseases with far different phenotypes, including xeroderma pig-
mentosum (XP), Cockayne syndrome (CS), and ultraviolet sensitive
syndrome (UVSS) [23]. Patients with XP are identified by an ex-
tremely high chance of skin cancer [24], while CS patients suffer
from severe growth retardation, progeria, and photosensitivity but
without an increased risk of skin cancer [25]. In contrast, patients of
UVSS only have a higher sensitivity to UV in sunlight but have
neither developmental abnormality nor elevated possibility of skin
cancer [26–28].

The concept of NER was first raised in the 1960s to describe the
“dark repair” of UV damage in E. coli [29], in contrast to “light
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repair” operated by photolyases [30,31]. The basic mode of
NER, namely “dual incisions”, was revealed in the 1980s for
bacteria [32–34], and in the 1990s for mammalian cells [35–37],
both through in vitro reconstituted reactions. In recent years, this
mode was finally demonstrated in both eukaryotic and prokaryotic
cells [34,38–40]. Dr. Aziz Sancar is one of the main contributors in
this field and was awarded the Nobel Prize in Chemistry in 2015
[41]. Although the mechanism of dual incision reaction was de-
scribed in considerable details, it is still elusive how repair factors
seek and recognize damage efficiently across the genome.

In this review, we will summarize the basic mechanism of NER,
and introduce recent advances of the above question by various
approaches including biochemistry, cell biology, structure biology,
and genomics. We will also discuss the roles of NER factors in
repairing some non-classical substrates.

Molecular Mechanism of Eukaryotic Nucleotide
Excision Repair
NER removes damaged nucleotides by dual incisions bracketing the
lesion and releasing a short (22–30 nucleotides in mammalian cells)
single-stranded DNA fragment containing the damage
[34,37,39,42,43]. Repair synthesis and ligation are then performed
to recover intact double-strand DNA [44–47]. In brief, NER can be
divided into 3 major steps: (1) damage recognition, including initial
recognition and damage verification; (2) dual incisions and release
of excision products; and (3) gap filling, which means repair
synthesis and DNA ligation (Figure 1). In contrast to BER which
identifies the specific structures of modified bases, NER recognizes
damage-induced double-strand distortions or RNA polymerase II
stalled by lesions. The former mechanism deals with damage across
the whole genome thus named Global Genome Repair (GGR), while
the latter mode only repairs damage on the template strands of
transcribed regions, which is called Transcription-Coupled Repair
(TCR) [48–50].

GGR was successfully reconstituted in vitro with 6 purified factors
(XPC, TFIIH, XPA, RPA, XPF, and XPG) [35,36], whereas TCR has

not been reconstructed till now. Among these 6 factors, XPC is only
involved in GGR, and the other 5 factors are necessary for both sub-
pathways [51–53]. In addition, the DDB complex is required for
GGR initiation in vivo [54,55], while CSB, CSA and UVSSA are
needed for TCR [26,28,56,57], as summarized in Table 1.

Damage recognition by GGR
The efficiency of GGR is dependent on the extent of double-strand
distortion. For instance, UV can induce two major lesions, i.e.,
pyrimidine-pyrimidone (6–4) photoproducts [(6–4) PPs] and cy-
clobutane pyrimidine dimers (CPDs), the former of which causes
stronger distortion and is efficiently repaired by GGR [58], while the
latter has less impact on DNA structure and is a poor substrate for
GGR [59]. Nonetheless, both damages could be excised in vitro by
the 6-factor system. In this reaction, the lesion is recognized by the
cooperation of XPC (usually in the form of XPC-TFIIH), XPA, and
RPA. Although either of the three factors is unable to discriminate
damages from normal DNA independently, loading of one factor
could facilitate binding of other factors, and eventually achieve
specific damage recognition [19,60,61].

Notably, another GGR-specific factor, the DDB complex, was not
required in vitro, and the addition of purified DDB did not improve
repair efficiency [62]. The DDB complex, composed of DNA da-
mage-binding protein 2 (DDB2/XPE) and DNA damage-binding
protein 1 (DDB1), forms a complex with the ubiquitin E3 ligase
Cul4A-RBX1 (CRL4DDB2) [63,64]. Although DDB is dispensable for in
vitro repair [35,36], it plays important physiological roles as defects
in DDB2/XPE gene strongly impede the repair of CPD in vivo, and
can also cause xeroderma pigmentosum [65–67]. Therefore, DDB is
thought to be involved in the repair of lesions with less distortion (e.
g., CPDs) in chromatin [67,68]. However, the exact roles of DDB are
more complex and not completely clear. Firstly, DDB2/XPE protein
has the highest affinity and selectivity to both (6–4) PP and CPD
among all GGR factors [69,70]. Local UV irradiation revealed that
DDB was recruited to damaged sites ahead of XPC [71]. Further-
more, structure studies suggested the binding of DDB kink the

Table 1. Human nucleotide excision repair factors

Stage Factor Component(s) Enzymatic activity/function Related disease(s)

Initial damage recognition
for TCR

CSA CSA Ubiquitin E3 ligase (in complex with
DDB1, CUL4A & RBX1)

CS or UVSS

CSB CSB Translocase activity CS or UVSS

UVSSA UVSSA Deubiquitinase (in complex with USP7) UVSS

Initial damage recognition
for GGR

DDB DDB1, DDB2/XPE Damage recognition in chromatin, ubiquitin
E3 ligase (in complex with CUL4A & RBX1)

XP

XPC XPC, HR23b, CETN2 Damaged DNA binding XP

Damage verification and
PIC assembly

XPA XPA Damaged DNA binding XP

RPA p70, p32, p14 ssDNA binding –

TFIIH p89/XPB, p62, p52, p44,
p34, p8, p80/XPD, Cdk7*,
Cyclin H*, MAT1*

3′ to 5′ (XPB) and 5′ to 3′ (XPD)
helicases

XP or XP-CS

Dual incisions XPF XPF, ERCC1 Structure-specific endonuclease for 5′ incision XP or XP-CS

XPG XPG Structure-specific endonuclease for 3′ incision XP or XP-CS

* indicates the Cdk-activating kinase complex (CAK) of TFIIH which is not essential for NER. Blue, TCR specific factors; yellow, GGR specific factors; green, common

factors for both sub-pathways. CS, Cockayne syndrome; UVSS, Ultraviolet-sensitive syndrome; XP, Xeroderma pigmentosum; XP-CS, Xeroderma pigmentosum-
Cockayne syndrome complex (the combination of XP and CS).
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double-stranded DNA and promote the binding of XPC [72]. It was
recently reported that DDB can bind to nucleosomal lesions and
shift the DNA to expose the lesions facing the nucleosome core [73].
Thus, DDB can help recruit XPC to damage sites, especially those
with minor distortion or hard to access. However, it was reported
that DDB prefers lesions located in linkers and nucleosome-free
regions rather than nucleosome core regions in vivo [74]. Con-

sistently, a recently published study indicated that DDB can be re-
cruited to linker regions after UV irradiation to stimulate the
displacement of linker histones and relax heterochromatin com-
paction, and finally facilitate repair in heterochromatin domains
[75]. Moreover, upon binding to damage, the CRL4DDB2 ubiquitin
ligase can ubiquitinate surrounding proteins including DDB2 itself,
XPC [55], and histones [67], which is thought to promote damage

Figure 1. Mechanistic model of nucleotide excision repair In GGR, lesions are first recognized by DDB complex, then XPC, TFIIH, XPA and RPA,
XPG, XPF are sequentially recruited while DDB and XPC are released before the dual incisions step. In TCR, blocked Pol II serves as the damage
sensor to recruit CSB, CSA and UVSSA, which corporately recruit TFIIH. The details happened between TFIIH loading and dual incisions are unclear.
Nonetheless, for both sub-pathways, XPG and XPF make the 3′ and 5′ incisions, respectively, to generate ~26 nt-long ssDNA fragments containing
damage which are released in complex with TFIIH and XPG. The resulted gaps are sealed by DNA polymerases and ligases to recover intact dsDNA.
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handover [54] and decompaction of damaged nucleosomes [76].
Therefore, DDB can stimulate GGR in both direct and indirect ways.

Unlike the in vitro system, XPC is supposed to be the first factor
following the recruitment of DDB. XPC itself can bind to DNA and
scan for damages both in vitro and in vivo [77], albeit it cannot
efficiently distinguish lesions with weaker DNA distortion from
undamaged DNA [78]. Structure studies of Rad4 (yeast homolog of
XPC) complex and damaged DNA indicated that it binds to the
opposite strand of the lesion and the double-stranded DNA at 3′
downstream to the lesion (Figure 1) [58,78,79]. Notably, (6–4) PPs
that strongly affect DNA structure can be successfully repaired in
vivo without DDB though with an apparent delay [80].

Once loaded onto damage sites, XPC can recruit the scaffold factor
TFIIH through their interaction [81–83]. TFIIH is a multi-subunit
factor involved in both transcription initiation and NER [84–87].
NER requires the TFIIH core complex which consists of 7 subunits,
including two DNA helicases (XPB and XPD) and other structural
peptides [88], while transcription initiation needs an extra 3-subunit
CAK module [89]. As discussed above, initial damage recognition is
not a strict process, such that XPC can bind to undamaged DNA or
minor base modifications which should not be excised by NER.
Therefore, the suitability of NER substrates is verified before dual
incisions through cooperative binding and kinetic proofreading,
both of which are mediated by TFIIH [90–92]. The loading of TFIIH,
together with DDB2 ubiquitination, can stimulate the dissociation of
DDB2 and stabilize the binding of XPC [54]. The helicase activity of
TFIIH subunits can separate DNA double strands, allowing the
binding of XPA and RPA [93]. The structure of the TFIIH-XPA-DNA
complex revealed that TFIIH adopt different conformation in tran-
scription and repair, and the binding of XPA can promote and sta-
bilize the conformation change of TFIIH and stimulate the helicase
activity of TFIIH on undamaged DNA [94,95]. On the other hand,
the presence of bulky adducts (e.g., cisplatin-damage), but not
minor modifications (e.g., AP sites), can reduce helicase activity of
TFIIH, and the inhibition is further enhanced by XPA [90]. There-
fore, TFIIH is trapped by appropriate bulky adducts with the help of
XPA, achieving specific damage verification.

In the in vitro reaction, XPC-TFIIH, XPA, and RPA can form a
stable complex with damaged DNA, called pre-incision complex 1
(PIC1). Then XPG endonuclease is recruited to damage through its
interaction with TFIIH, while XPC leaves the complex, forming pre-
incision complex 2 (PIC2). This process is driven by the ATP hy-
drolysis activity of TFIIH, while XPG can stimulate the helicase
activity of TFIIH in the absence of damage. The other endonuclease
XPF is finally recruited to assemble pre-incision complex 3 (PIC3)
[96,97]. Although XPF has a strong interaction with XPA [98], the
loading of XPF also depends on the recruitment (but not the inci-
sion) of XPG [99].

Damage recognition by TCR
RNA polymerase II (Pol II) is efficiently blocked by bulky adducts
and serves as a damage sensor to initiate TCR [9,100]. Thus, in
comparison with GGR, TCR can only deal with lesions on the
template strands of transcribed regions, but it repairs various sub-
strates with similar efficiency despite their different impacts on
DNA structure [101], for Pol II indirectly detects bulky lesions by
their transcription-blocking feature.

Although TCR was first identified in mouse cells more than
35 years ago [102], it has not been reconstituted in vitro till now.

Thus, the molecular details of this mechanism are not as clear as
GGR. The initial clue came from human genetics that CS was con-
nected with defects in TCR [103,104], and two genes responsible for
CS, i.e., CSA [105] and CSB [104], were identified as essential fac-
tors of TCR. In 2012, the third factor of TCR, namely UVSSA, was
characterized through the study of UVSS [26–28]. Indeed, new TCR
players have still been reported even during the last two years [106].
Therefore, the mechanism of TCR is still a hot topic in the DNA
repair field.

When an elongating Pol II encounters a lesion and stalls at that
site, CSB, a member of the SWI2/SNF2 ATPase family of chromatin
remodelers [107], is the first repair factor to be recruited [108–110].
Actually, CSB is required for normal transcription even without
bulky adducts [111]. It was reported that Rad26, the yeast ortholog
of CSB, can act as an elongation factor to help Pol II to overcome
nucleosome barriers in vitro [112]. The structure of the Pol II-Rad26
complex revealed that Rad26 binds to DNA upstream of Pol II, and
the binding sites of Rad26 overlap with that of the transcription
elongation factor Spt4-Spt5 [113,114]. Therefore, it was speculated
that when Pol II temporally stalls during elongation, Spt4-Spt5
should be replaced by CSB/Rad26 which can “push” Pol II to
overcome “small” barriers. If it is a “large” obstacle like CPD that
cannot be bypassed, a stable complex of Pol II-CSB/Rad26-DNA
damage will be formed to recruit downstream repair factors, i.e.,
CSA and UVSSA [111,115,116].

Similar to DDB2, CSA forms a complex with the ubiquitin E3
ligase DDB1-Cul4A-RBX1 (CRL4CSA) which mediates UV-induced
ubiquitination of TCR factors including Pol II, CSB, CSA, and
UVSSA, resulting in the instability of this complex [64]. Paused Pol
II, CSB, and CSA together recruit UVSSA which is in complex with
the deubiquitinase USP7 [56]. CRL4CSA and UVSSA-USP7 can co-
operatively balance the stability of CSB, as the depletion of UVSSA
reduces CSB protein level following UV irradiation. Deficiency of
UVSSA will lead to an earlier release of Pol II from damaged sites
[117]. However, CSB overexpression cannot rescue the UV hy-
persensitivity caused by UVSSA mutation, indicating other roles of
UVSSA in TCR [28]. It was reported that UVSSA can directly interact
with the p62 subunit of TFIIH and is essential for the recruitment of
TFIIH [56,81]. Cramer et al. [118] reported the structures of human
TCR damage recognition complexes (including Pol II, CSB, CRL4CSA,
UVSSA, etc.). In the basic complex, CSB binds to upstream DNA;
UVSSA localizes to downstream DNA; CSA sets between them as a
bridge. Moreover, their results confirmed that stalled Pol II can in-
duce the replacement of DSIF (Spt4-Spt5) by CSB which “pulls”
DNA and facilitates Pol II to move forward. CSA can stimulate the
ATPase activity of CSB and help CSB push Pol II. The activity center
of CRL4CSA contacts Pol II (near K1268, see below) and CSB in two
different conformations, while in vitro experiments also confirmed
that CRL4CSA can ubiquitinate Pol II K1268 and CSB.

Despite their essential roles in TCR, mutations in CSB, CSA, or
UVSSA genes can cause two different diseases, i.e., CS or UVSS,
respectively, in most cases. However, a few cases of UVSS were
reported to be due to defects in CSB [119] and CSA [57,120], re-
spectively. Although there are several hypotheses about the re-
lationship between genetic defects and phenotypes, the exact
underlying mechanism is unclear.

Besides the dedicated TCR factors mentioned above, Pol II can be
regarded as another critical damage recognition factor of TCR. It has
long been known that RPB1, the catalytic subunit of Pol II, is ubi-
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quitinated following UV irradiation [121–124]. Even so, the UV-in-
duced ubiquitination site of RPB1 was just identified recently
[125,126]. Two groups simultaneously reported that K1268 of RPB1
is the main UV-induced ubiquitinated residue, and the K1268 ubi-
quitination is important for transcription recovery and cell survival
after UV treatment [125,126]. However, the roles of K1268 ubiquiti-
nation are, to some extent, controversial in two studies. On one hand,
Svejstrup and colleagues reported that K1268 ubiquitination mainly
regulates the pool of Pol II through UV-induced proteolysis, which is
important for DNA damage response and cell survival [126]. On the
other hand, Ogi and colleagues found that loss of K1268 ubiquiti-
nation impairs the recruitment of TFIIH, thus strongly inhibits TCR
[125]. Further studies are required to unveil the roles of K1268 ubi-
quitination in TCR and transcriptional response to UV damage.

Recently, a general elongation factor Elof1 emerged from in-
dependent screens for damage-sensitivity factors [127]. Elof1 is a
conserved small protein (~10 kDa) that exists in the Pol II elon-
gation complex [128,129]. The structure of Pol II elongation com-
plexes revealed that Elf1 (yeast orthologue of Elof1) binds to
downstream of Pol II on the DNA and plays a role in elongating
through nucleosomes [130]. Two back-to-back studies reported that
loss of Elof1 greatly impedes the recruitment of UVSSA to damage
sites and abrogates TCR [106,131]. The simulated structure sug-
gested that Elof1 binding site on Pol II is close to K1268, and ex-
perimental evidence indicated that Elof1 is involved in UV-induced
Pol II ubiquitination at K1268. This may explain the mechanistic
role of Elof1 in TCR.

Unlike GGR whose mechanism has been well studied, what hap-
pens after TFIIH loading remains elusive in TCR. Common NER
factors, i.e., XPA, RPA, XPG, and XPF, should also be recruited to
perform dual incisions. However, whether they are recruited in the
same way as in GGR or not is unknown. Furthermore, the fate of
TCR-specific factors including Pol II, CSB, CSA, and UVSSA is an
open question. Although in vitro experiments indicated that paused
Pol II would not inhibit dual incision reaction by GGR [116], it was
supposed that Pol II stalling at damage sites should either be back-
tracked or removed during TCR [123,132]. Evidence from recent
sequencing-based studies suggested that stalled Pol II should dis-
sociate from damage sites, since nascent transcriptions mainly re-
start from transcription starting sites after UV irradiation [133–136].

Dual incisions and release of excision products
In vitro studies indicated that after the assemble of PIC3, two
structure-specific endonucleases, XPG and XPF, sequentially carry
out incisions on the damaged strand at 4–7 nucleotides downstream
and 16–21 nucleotides upstream to the lesion, respectively [37,99].
The primary excised oligomers are released in complex with TFIIH,
and then slowly degraded to shorter fragments 15-20-nt in length
which are bound by RPA [137]. However, it was not clear whether
in vivo repair has the same excision pattern, especially in TCR that
cannot be reconstructed in vitro. This question was resolved by the
detection of in vivo excised oligomers from UV-irradiated human
cells [101]. Analyses of in vivo excision products suggested that
both nucleases make incisions at the same positions as in vitro
reaction, generating excision products of the same length and
bound by the same proteins, i.e., TFIIH and XPG. The in vivo de-
gradation rate of primary products is faster than in vitro, while the
15–20-nt long degraded products are also bound by RPA, and fur-
ther degraded to fragments that are too short to be detected [101].

However, the nucleases responsible for this degradation process are
not clear. More importantly, excision products from XP-C cells
which have only TCR show identical properties with those from CS-
B cells that have only GGR, indicating that dual incisions and re-
lease of excision products are the same for both GGR and TCR in
vivo [101]. In addition to human cells and UV damage, the in vivo
excision products were identified in different species including le-
mur cells [138], mice [139–141], Drosophila [142], Arabidopsis
[39,143,144], and yeast [145], and for various damage types such as
cisplatin [139–141,146] and BPDE [147], suggesting that “dual in-
cisions” is a universal mechanism for eukaryotes.

Repair synthesis and ligation
In most cases, the excision gaps are directly filled by DNA poly-
merase ε in proliferating cells or polymerase δ/κ in non-proliferating
cells in the presence of proliferating cell nuclear antigen (PCNA)
[40,45,148]. The size of repair patches is about 30 nt [149,150],
consistent with the length of excised fragments. However, a small
portion of excision gaps are enlarged by exonuclease I (Exo I) to
generate a long stretch of ssDNA which is occupied by RPA and
serves as the initial signal for ATR-mediated DNA damage response
[151–153]. In dividing cells, the final nick is mainly sealed by DNA
ligase I [40,45], while the XRCC1-ligase3 complex performs ligation
in non-dividing cells. Although the gap-filling process is not es-
sential for dual incisions, inhibition of repair synthesis and ligation
can hinder the degradation of RPA-bound fragments and reduce the
repair rate of UV damages [154].

Genome-wide Maps of Nucleotide Excision Repair
In eukaryotic cells, genomic DNA is packaged with histones. Thus,
NER is performed in chromatin rather than on naked DNA [155].
Meanwhile, complicated events occurring in chromatin, including
transcription and DNA replication, also have impacts on NER
(Figure 2A). In order to investigate how chromatin environment
affects NER, many efforts have been made to acquire genome-wide
maps of NER and unveil the correlations between NER and chro-
matin compaction, transcription, etc.

Methodology for mapping nucleotide excision repair
There are two strategies to profile NER across the whole genome
(Figure 2B). The first one is achieved by assessing the genome-wide
distribution of bulky adducts (the substrates of NER) in a time
course and calculating the rate of disappearance at different loci
throughout the genome. Accordingly, a couple of methods were
developed in recent years to map adducts at base resolution. One
type of these methods, including CPD-seq [156], Adduct-seq [157],
and Circle-damage-seq [158], took advantage of T4 Endonuclease V
to cut the damaged DNA strand at CPD sites and captured these
DNA ends for sequencing. Other methods such as Damage-seq
[146,159] and cisplatin-seq [160] utilized specific antibodies [for
CPD, (6–4) PP, cisplatin adducts, etc.] or a damage-binding protein
(engineered HMGB1 for cisplatin adducts) to capture DNA strands
containing lesions, respectively, and then detected the exact posi-
tions by high-fidelity DNA polymerases which can be blocked by the
lesions. However, it is not a good choice to measure repair by
comparing damage distribution in a time course, especially when
only a small portion of damage is repaired, e.g., at early time points
or in cells partially deficient in repair, since it would be inaccurate to
determine a small value by subtracting a big number from another

811Nucleotide excision repair

Zhang et al. Acta Biochim Biophys Sin 2022



big number.
The second strategy is directly profiling NER by isolating and

sequencing in vivo excision products. The method, named XR-seq
(eXcision-Repair sequencing), captured primary excision products
by co-immunoprecipitation with anti-TFIIH (XPB or p62) or anti-

XPG antibodies, and then added adaptors to both ends of excision
products. Afterwards ligation products were purified by im-
munoprecipitation with damage-specific antibodies, and the lesions
were directly reversed by photolyases (for UV-induced damages) or
chemical treatment (for cisplatin-adduct) to enable PCR-amplifica-

Figure 2. Nucleotide excision repair in chromatin environment (A) Chromatin factors that may affect NER, including histone modifications,
transcription, transcription factor binding, nucleosome positioning and genome accessibility. TF is short for transcription factor. (B) The metho-
dology to map NER across the genome. The indirect strategy measures genomic profiles of damage at different time points and acquires the
pattern of accumulated repair during this time course by comparing damage profiles. The direct strategy (XR-seq) maps NER by capturing and
sequencing excised oligonucleotides and obtains the snapshot of repair at a specific time point.
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tion and sequencing [146,161,162]. Comparing with indirect assays
that assess repair by subtraction, XR-seq possesses much higher
sensitivity and provides snapshots of repair instead of cumulative
changes of damage. XR-seq can detect repair from 1 min to 48 h
after UV irradiation [163], and profile GGR and TCR in TCR-defi-
cient and GGR-deficient cells, respectively [162]. Notably, the gen-
ome-wide distribution of damage is also valuable for the exploration
of repair, as the repair events captured by XR-seq are determined by
both relative repair capacity and local damage density, and the
cumulative repair maps are complementary to the snapshots.

Patterns of nucleotide excision repair throughout the
genome
The repair maps by XR-seq revealed intriguing patterns of TCR and
GGR. In XPC mutant cells that have only TCR, repair of both UV-
induced damages occurs exclusively on the template strands of
transcribed regions. Clear repair signals on the coding strands at the
upstream regions of TSSs and on both strands around enhancers
suggested that the bidirectional transcription by Pol II in mamma-
lian cells is also able to trigger TCR [162]. In contrast, rDNA regions
transcribed by Pol I showed no preferential repair of templates
strands, indicating that Pol I cannot cause TCR [164].

In addition to TCR, GGR is also promoted by transcription. In CSB
mutant cells that lack TCR, elevated repairs on both strands around
active TSSs were observed, probably due to the relaxed chromatin
within these regions [162]. Furthermore, GGR is also related to
other factors including histone modifications, DNase I hypersensi-
tive sites (DHSs), super-enhancers, nucleosome occupation and
transcription factor binding [163,165–168]. In general, “open” re-
gions with active transcription and high accessibility are more ac-
cessible for the repair factors and thus repaired faster.

However, in the TSS surrounding regions where damages are
repaired faster in general, the impaired repair was observed at
specific loci. For instance, time-course XR-seq identified a valley at
early time points at downstream region (less than 1kb from TSSs)
which turned to be a peak at late time points [165]. The location of
the valley and peak coincided with the H3K4me3 peak, which is
thought to reflect the first nucleosome downstream of TSSs [169].
Damage-seq verified that the repressed repair at early time points
resulted in the accumulation of damage at these loci, which caused
the late repair peak [165]. Hindered repair was also observed at
transcription factor binding sites in the upstream regions of TSSs,
which is related to increased mutation frequencies in cancer gen-
omes [167,168]. This phenomenon was attributed to transcription
factor binding which inhibited the access of repair factors. The
heterogeneity of repair was generally more obvious at early time
points, e.g. repair hotspots were identified at super-enhancers as
early as 1 min, and disappeared with time, likely due to the change
of damage distribution (as described above) and UV-induced al-
teration of chromatin compaction [163].

An interesting question is the contributions of TCR and GGR in
the repair of different damages, e.g., UV-induced (6–4) PP and CPD.
In mutant cell lines which have only one sub-pathway of NER, both
lesions have similar repair patterns. In repair-proficient cells, (6–4)
PP repair showed virtually no strand bias, like that in TCR-deficient
cells, indicating that this lesion is mainly eliminated by GGR [162].
On the other hand, CPDs on template strands are preferentially
repaired, although repair signals on the non-template strands can
also be detected [162]. As discussed above, (6–4) PP induces

stronger double-strand distortion than CPD, thus is more readily to
be eliminated by GGR. The strand difference of CPD repair de-
creases over time, due to the disappearance of damages on template
strands [159]. Surprisingly, at a very early time point (12 min), no
asymmetric repair of CPD on two strands was observed in NHF1
human fibroblasts and HeLa cells, implying a delay of TCR after UV
[163, and our unpublished data]. This phenomenon could only be
detected by direct measurement of repair (e.g., XR-seq), and the
underlying mechanism is unknown.

XR-seq was also used to detect the repair of cisplatin-induced
damage in mice [139–141]. Repair maps at different time points of
one day revealed the impact of circadian rhythm in two ways. Firstly,
the template strands of circadian-controlled genes are preferably
repaired when they are being actively transcribed, which is driven by
TCR. In contrast, the repair of non-template of all genes and inter-
genic regions peaks at Zeitgeber time ZT08 when the expression of
XPA gene is upregulated by circadian rhythm, indicating the influ-
ence of circadian on GGR [139,140]. Moreover, repair in different
organs (kidney, liver, lung, and spleen) of mice are shown to be
related to tissue-specific transcription patterns and epigenomic pro-
files [141]. Therefore, NER in living animals is much more compli-
cated and regulated by many factors not existing in cultured cells.

The Roles of NER Proteins other than Bulky Adducts
Repair
It is well known that TFIIH is an essential factor for transcription
initiation [170], while RPA is involved in many DNA-related events
like replication [171]. The rest of NER factors also possess other
functions, since they are not restricted to specific lesions. The re-
cognition factors identify damage by the double-strand distortion or
blocked Pol II, no matter they are proper substrates of NER or not.
The nucleases, XPF and XPG, just recognize DNA with flap-struc-
ture and cut at the single strand-double strand junctions [172].
Therefore, they can operate on DNA with similar property or
structure, and perform other functions. Indeed, XPF is also an es-
sential factor in the Fanconi Anemia pathway for the repair of inter-
strand crosslink damage [173]. Here we will discuss the roles of
NER factors in the repair of oxidative damage, and the important
physiological functions of the NER nucleases in resolving R-loops.

NER proteins and oxidative DNA damage
In general, oxidative damage is eliminated by BER in mammalian
cells [174]. However, some “bulky” oxidative lesions, e.g., 8,5′-
cyclo-2′-deoxyadenosine and 8,5′-cyclo-2′-deoxyguanosine, are
thought to be repaired by NER [175]. In addition, further oxidation
products of the most common oxidative lesion 7,8-dihydro-8-oxo-2′-
deoxyguanosine (8-oxo-dG), i.e., spiroiminodihydantoin and gua-
nidinohydantoin, were found to be excised by both BER and NER in
vitro by cell extracts that have both BER and NER systems, while 8-
oxo-dG was preferred to be repaired by BER under the same con-
dition [175,176]. Although NER excision products cannot be de-
tected under that condition, both 8-oxo-dG and its repair
intermediate abasic sites can be recognized by in vitro reconstituted
NER system [177], albeit they are efficiently removed by OGG1 and
APE1 via BER pathway in vivo [178]. Whether NER can repair these
lesions in the absence of BER in vivo is unclear.

Besides the potential involvement of the whole NER pathway,
individual repair factors may participate in the repair of oxidative
damage in collaboration with BER pathway, as reviewed by Kumar
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et al. [16]. Among NER factors, XPA, XPG, CSA, CSB, UVSSA, XPC,
and DDB were all reported to stimulate the repair of oxidative da-
mage like 8-oxo-dG in different studies [175,179–181]. However,
the conclusions are to some extent conflicting. For instance, XPC
was reported to be able to stimulate the activity of OGG1 directly
[182]. However, genetic experiments indicated that XPC and XPA
are involved in the same 8-oxo-dG repair pathway which may be
different from that of CSB and OGG1 [181]. The roles of XPG and
XPA in oxidative damage repair are also discordant [177,183,184].
Meanwhile, Guo et al. [185] identified transcription-coupled repair
of 8-oxo-dG in a CSB-dependent manner, and the recruitment of
CSB to oxidative damage sites was also verified by other studies
[181,186,187]. However, as 8-oxo-dG is unable to block Pol II [188],
the underlying mechanism is unknown. Finally, a recent study re-
ported the role of DDB in BER [189]. The existence of nucleosomes
can greatly inhibit the activity of DNA glycosylates, while DDB was
shown to play a role in repairing nucleosomal oxidative damages,
just as it did in NER [189]. Further work is needed to clarify the
functions and underlying mechanisms of NER factors in the repair
of oxidative damage.

The roles of NER nucleases in resolving R-loops
R-loop is a specific 3-strand structure consisting of a DNA-RNA
hybrid and displaced single-stranded DNA [190]. It can be physio-
logically formed during transcription and is involved in multiple
cellular processes, including transcription regulation and termina-
tion [191], class switch recombination of immunoglobulin genes
[192,193], etc. However, R-loop can also be induced accidentally
and cause genome instability. The flap structure of R-loop makes it a
potential substrate of the two NER endonucleases XPG and XPF
[194]. It was reported that the absence of the RNA/DNA helicases
Aquarius causes the accumulation of R-loops which are further di-
gested by XPG and XPF to generate DSBs. This process depends on
the TCR factor CSB and common NER factors TFIIH and XPA, thus is
thought to be a TCR-like reaction [194]. However, since R-loops are
behind the elongating RNA polymerases, how they can trigger a
TCR-like reaction is unclear.

Another study reported that R-loops can stimulate high-fidelity
DSB repair by a Rad52 and XPG-dependent mechanism [195]. DSBs
in actively transcribing regions can induce R-loops which help re-
cruit Rad52 to facilitate the high-fidelity homologous recombination
repair (HR) and suppress the error-prone non-homologous end-
joining (NHEJ). In this process, XPG but not XPF is recruited by
Rad52 to resolve R-loops and initiate homologous recombination
repair. This study revealed the role of XPG in DSB repair via its
activity on R-loops.

A more recent study revealed another mechanism for XPG and
XPF to be enrolled in resolving R-loops [196]. When R-loops are
induced by RNA polymerase stalling, e.g., in the case of transcrip-
tion-blocking damage, the splicing factor XAB2 can interact with
XPG and XPF-ERCC1 independent of other NER factors to stimulate
the processing of R-loops and play a role in maintaining genome
integrity. These studies suggested that the NER nucleases, espe-
cially XPG, are involved in R-loop processing in multiple ways.

Conclusions and Perspectives
Although the basic mechanism of NER was unveiled more than
20 years ago, the molecular details of TCR, as well as that of the
initial damage recognition by DDB in GGR, remained unclear for a

long time due to the lack of the in vitro system. Significant progress
has been made in the past few years based on the advancement of
methodologies in structural biology, in vivo imaging, genomics,
high-throughput screen, etc. However, there are still a couple of
remaining questions: (1) Does DDB play other roles in GGR in ad-
dition to its reported functions? How do different functions of DDB
coordinate in response to UV? (2) How do local chromatin com-
paction and histone modifications change following UV irradiation
across the genome? How do they affect GGR? (3) What determines
the phenotype of TCR-deficient patients, i.e., CS or UVSS? And why
do patients possessing some TFIIH, XPF and XPG mutations have
CS-like phenotypes? (4) What are the endogenous substrates of
NER? Are they related to CS, especially neuro-associated pheno-
types? (5) How is a lesion transferred from damage recognition
factors to the pre-incision complex during TCR? What is the fate of
damage-blocked Pol II and associated TCR factors? (6) Does NER
serve as a backup of BER in oxidative damage repair? How important
are NER factors for the repair of oxidative damage? (7) Does XPG
participate in the processing of all R-loops? Is there any general
mechanism for XPG (and XPF) to involve in R-loop resolving?

New answers to the above questions will certainly emerge in next
few years, which can help to reveal the molecular details underlying
NER and uncover the link between NER and human health diseases.
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