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What are the novel findings of this work?
T2-weighted magnetic resonance imaging (T2WI)-based
radiomics parameters can predict regrowth of residual
uterine myomas within 1 year after high-intensity focused
ultrasound (HIFU) treatment.

What are the clinical implications of this work?
Accurate prediction of residual myoma regrowth is
critical for the early customization of chronic disease
management plans after HIFU ablation in patients with
uterine myomas. T2WI-based radiomics may have a role
in this regard.

ABSTRACT

Objectives To develop and evaluate magnetic reso-
nance imaging (MRI)-based radiomics models for pre-
dicting residual myoma regrowth within 1 year after
high-intensity focused ultrasound (HIFU) ablation of uter-
ine myomas.

Methods A retrospective analysis of residual myoma
regrowth within 1 year was performed on 428 myomas
in 339 patients who were diagnosed with uterine myoma
and treated with HIFU ablation in two hospital centers.
In total, 851 radiomics features were extracted from
T2-weighted images (T2WI) obtained 1 day after HIFU
ablation, and the least absolute shrinkage and selection
operator in the training cohort (n = 243) was employed to
select radiomics features. Support vector machines were
adopted to develop radiomics, clinicoradiological and
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combined radiomics–clinical models to predict residual
myoma regrowth, defined as an increase in residual
myoma volume of > 10% between that at day 1
post HIFU and that at follow-up MRI within 1 year.
These models were validated in both internal (n = 81)
and external (n = 104) test cohorts. The predictive
performance and clinical application of these models
were assessed using receiver-operating-characteristics-
curve analysis, the area under the curve (AUC) and
decision-curve analysis.

Results The AUCs of the T2WI-based radiomics pre-
diction model in the internal and external test cohorts
were 0.834 (95% CI, 0.747–0.920) and 0.801 (95% CI,
0.712–0.889), respectively, and those of the clinicoradi-
ological model were 0.888 (95% CI, 0.816–0.960) and
0.912 (95% CI, 0.851–0.973), respectively. The com-
bined model had better predictive performance than
either the radiomics or the clinicoradiological model, with
AUC values of 0.922 (95% CI, 0.857–0.987) and 0.930
(95% CI, 0.880–0.980) in the internal and external test
cohorts, respectively. Decision-curve analysis also indi-
cated that application of the combined model has clinical
value, this model achieving more net benefits than the
other two models.

Conclusion T2WI-based radiomics features can predict
effectively the occurrence of residual myoma regrowth
within 1 year after HIFU ablation of uterine myomas,
which serves as an accurate and convenient reference
for clinical decision-making. © 2022 The Authors.
Ultrasound in Obstetrics & Gynecology published by
John Wiley & Sons Ltd on behalf of International Society
of Ultrasound in Obstetrics and Gynecology.
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INTRODUCTION

High-intensity focused ultrasound (HIFU) is well estab-
lished and widely used in the treatment of uterine myomas.
By analyzing patients’ magnetic resonance imaging (MRI)
data, Liu et al.1 reported that future reintervention was
related closely to regrowth of residual myomas. In the
postoperative follow-up period, residual myomas are
associated with lower mortality compared with residual
malignant tumors, such as uterine sarcomas2. However,
if the residual myoma tissue has a rich blood supply,
regrowth may occur, which is the main reason for increase
in tumor volume and recurrence of clinical symptoms after
HIFU ablation of uterine myoma1,3.

MRI provides high soft-tissue resolution without expo-
sure to radiation, making it an ideal tool for monitoring
uterine myomas after HIFU ablation. However, the high
cost, long scanning time and potential side effects of
gadolinium-based contrast agents used in MRI examina-
tion limits its use in follow-up4. Reliable methods for
prediction of regrowth of residual myomas would facil-
itate targeted disease management, potentially extending
the duration of uterine myoma volume reduction, reduc-
ing clinical symptoms postoperatively and improving the
patient’s quality of life after surgery. Currently, there is
no method to predict regrowth of residual myomas.

Radiomics is an emerging field that extracts from
medical images a large number of quantitative features
using data characterization algorithms and mathematical
tools5,6. On T2-weighted imaging (T2WI), there is good
contrast resolution between uterine myomas and the
surrounding tissue. T2WI-based radiomics studies of
uterine lesions have been able to differentiate between
benign and malignant uterine tumors7 and to predict
effectively the non-perfused volume ratio (NPVR) of
myomas after HIFU8. Whether T2WI-based radiomics
analysis can help to provide a prognosis for uterine
myomas has not been reported. In this study, we aimed
to analyze the heterogeneity of lesions after ablation and
the association with regrowth of residual myomas by
extracting T2WI radiomics features 1 day after HIFU
ablation and developing a machine-learning model to
predict prognosis.

METHODS

This retrospective study was conducted with the approval
of the Ethics Committees of Chongqing Haifu Hospital
(IRB-2022002) and the First Affiliated Hospital of
Chongqing Medical University (IRB-2006016). The
requirement for informed consent was waived.

Patients

We obtained data retrospectively from the hospital
databases for patients diagnosed with one or more uterine
myomas based on imaging findings combined with clinical
symptoms who were treated with HIFU ablation at the
First Hospital of Chongqing Medical University between

May 2009 and October 2018 (n = 104) and Chongqing
Haifu Hospital between June 2011 and June 2020
(n = 324). Inclusion criteria were: (1) premenopausal
and aged ≥ 18 years; (2) symptoms related to uterine
myomas; (3) safe acoustic channel (i.e. without intestinal
tissue), with clear visibility of myomas under ultrasound
guidance; (4) remained conscious during surgery; (5)
MRI performed before and after surgery; and (6) myoma
maximum diameter ≥ 3 cm on pre-HIFU MRI. Exclusion
criteria were: (1) myoma regrowth detected after more
than 1 year; (2) poor image quality or incomplete image
data; (3) contraindication to MRI examination; (4) acute
pelvic inflammation; and (5) acoustic channel scarring
in the lower abdomen, resulting in significant acoustic
attenuation. We also carried out a prospective telephone
follow-up survey of all included cases, to ask whether
reintervention had been undertaken. Figure 1 summarizes
the study cohorts and Figure S1 illustrates the study
workflow.

HIFU ablation

A JC-type focused ultrasound tumor treatment system
(Chongqing Haifu Medical Technology Co., Chongqing,
China), which was monitored in real-time during surgery
using a color Doppler ultrasound scanner (Mylab 70,
Esaote, Genoa, Italy), was employed to treat all single
and multiple uterine myomas. The therapeutic ultrasound
transducer used for this procedure had a working
frequency of 0.8 MHz, diameter of 20 cm, power of up
to 400 W, physical focal field of 1.5 × 1.5 × 8.0 mm,
focal length of 18 cm and onboard imaging ultrasound
frequency of 3.5 MHz. Before surgery, preoperative
preparations including lower abdominal skin degassing
and cleansing enema were completed, and a catheter was
inserted in order to instil saline to control the volume of
the bladder. During the operation, the patient was in a
prone position on the treatment table, enabling the lower
abdominal skin to be in full contact with the degassing
water. The direction and angle of the ultrasound probe
were adjusted by the operator to guide treatment of the
target myoma. The acoustic wave emission power and
dose delivery were adjusted according to both the patient’s
tolerance level and the change in appearance of the myoma
on grayscale imaging. Fentanyl citrate (0.8–1.0 μg/kg)
and midazolam maleate (0.02–0.03 mg/kg) were injected
intravenously every 30–40 min to maintain conscious
sedation during surgery, with blood pressure, heart rate,
oxygen saturation and respiratory rate being monitored
throughout. The extent of ablation was assessed intra-
operatively and immediately after surgery using an ultra-
sound contrast agent (SonoVue; Bracco, Milan, Italy).

MRI

To evaluate the feasibility beforehand and the effec-
tiveness after HIFU for uterine myoma ablation, each
patient underwent pelvic contrast-enhanced (CE) MRI
prior to treatment, 1 day post-HIFU and in a follow-up
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examination, using a 3-Tesla (T) MRI scanner (GE
Healthcare, Milwaukee, WI, USA) or a Magnetom 1.5-T
MRI system (Umr570, United Imaging Company, Shang-
hai, China). T1-weighted imaging, T2WI and CE MRI
sequences were used to acquire sagittal, cross-sectional
and coronal images, respectively. Acquisition parameters
are specified in Table 1.

Clinicoradiological features, residual myoma regrowth
criteria and image segmentation

All MRI information for this analysis was retrieved retro-
spectively from the Picture Archiving and Communication
System (PACS) in Digital Imaging and Communications in
Medicine (DICOM) format. Clinicoradiological features,

obtained from MRI examinations before and 1 day after
HIFU, included: patient age, duration of follow-up, Inter-
national Federation of Gynaecology and Obstetrics stage9,
T2WI type, degree of blood supply, number of myomas
detected and treated per patient, maximum thickness and
basal extent of residual myomas, NPVR, postoperative
NPV, postoperative residual myoma volume, thickness of
the abdominal wall fat layer and distance from the center
of the myoma to the body surface.

Using MicroSea 3D Image Processing Software
(Chongqing MicroSea Software Development Co., Ltd.,
Chongqing, China), an abdominal radiologist with
5 years’ experience in pelvic radiography (Reader 1) eval-
uated the clinical and radiological features and traced
the outlines layer-by-layer on MR images, to measure

Center A

n = 65 n = 82Excluded:

Myoma regrowth first detected > 1 year after HIFU

Lost to follow-up or incomplete follow-up data

Poor-quality or incomplete MRI

External test cohort
(n = 104)

Internal test cohort
(n = 81)

Training cohort
(n = 243)

Excluded:

(n = 406)(n = 169)

Uterine myomas in patients
undergoing HIFU treatment,
May 2009 to October 2018

Uterine myomas in patients
undergoing HIFU treatment,

June 2011 to June 2020

Center B

n = 32

n = 24

n = 9

n = 56

n = 18

n = 8

Non-regrowth (n = 52) Non-regrowth (n = 45)
Regrowth (n = 52) Regrowth (n = 36)

Non-regrowth (n= 132)

Regrowth (n =111)

Figure 1 Flowchart summarizing patient enrolment process and study cohorts. HIFU, high-intensity focused ultrasound; MRI, magnetic
resonance imaging.

Table 1 Magnetic resonance imaging (MRI) scan parameters

MRI type
Repetition
time (ms)

Echo
time
(ms)

Number of
excitations

Field of view
(cm × cm)

Matrix size
(mm × mm)

Slice
thickness

(mm)

Slice
gap

(mm)
Imaging
planes

T1-weighted 175/214 1.8/10 1/1.3 40 × 28/25.2 × 36 320 × 224/320 × 70 5/5 1.5/1.0 T
T2-weighted 4060/5300 100/88 3/2 22.4 × 28/24 × 24 288 × 224/320 × 75 5/5 1.5/1.0 T, S
Contrast-enhanced MRI 4.2/3.94 1.9/1.84 0.72/1 38 × 30.4/35 × 28 320 × 224/288 × 75 4/2.5 0/0.5 T, S, C

Parameters are presented as those used by the First Affiliated Hospital of Chongqing Medical University/those used by Chongqing Haifu
Hospital. C, coronal; S, sagittal; T, transverse.
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the three-dimensional (3D) uterine myoma volume and
non-perfused volume (NPV) (Figure 2). The NPVR (%)
was defined as NPV as a percentage of myoma volume,
and the residual myoma volume (RMV) was calculated
by subtracting NPV from myoma volume. This strat-
egy was also applied to volume measurements during
follow-up. An increase in RMV at the follow-up MRI
exam of greater than 10% from that in the immediate
postoperative period (1 day post HIFU) was set as the
criterion for identifying residual myoma regrowth1, and
open-source software (ITK-SNAP v3.8.0, www.itksnap
.org) was used to segment regions of interest (ROIs) on
T2WI obtained within 1 day post HIFU, layer-by-layer
along the edges of the myoma. The feature identification
and image segmentation outlined above were validated by
another radiologist (Reader 2) with 16 years’ experience in
pelvic radiography; in the case of disagreement, Reader 2
retraced the ROI and this was used as the final decision.

Image preprocessing and radiomics feature extraction

Before radiomics feature extraction, T2WI underwent
three preprocessing steps to minimize the variance

introduced by different scanners, scanning schemes
and acquisition artifacts. First, the ‘N4ITK’ bias field
correction algorithm was applied to all images to reduce
image artifacts and improve the grayscale distribution9.
Next, all images were normalized by calculating Z-scores
to obtain a standard normal distribution of the
image intensity. Finally, resampling was achieved by
setting the voxel size to 1 × 1 × 1 mm3 with B-spline
interpolation. For more details on image processing, see
Table S1.

Radiomics features for each ROI were extracted
from T2WI images obtained 1 day after HIFU using
Pyradiomics v.3.0 (https://pypi.org/project/pyradiomics/),
following the Image Biomarker Standardisation Ini-
tiative (IBSI) guidelines10. Extracted features included
851 features of shape (3D), first-order statistics,
gray-level co-occurrence matrix (GLCM), gray-level
size zone matrix (GLSZM), gray-level run-length
matrix (GLRLM), neighboring gray tone difference
matrix (NGTDM) and gray-level dependence matrix
(GLDM) and wavelets. Details are presented in
Table S2.

Figure 2 MicroSea 3D Image Processing Software was used to determine myoma volume and volume of non-perfused areas using a layer-
by-layer process. (a) Myomas were traced manually on T2-weighted magnetic resonance (MR) images. (b) Non-perfused areas were traced
on contrast-enhanced MR images. (c) Software calculated the three-dimensional volume.
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Reproducibility analysis of radiomics features
and feature selection

To assess the reproducibility of the radiomics features
extracted from the ROI, Reader 2 selected 30 images
arbitrarily, on which both Readers 1 and 2 performed ROI
segmentation prior to the radiomics feature extraction
process. Intraclass correlation coefficients (ICCs) were
used to assess the reproducibility of the radiomics
features extracted from all ROIs that were traced by
the two radiologists, and any feature with ICC ≥ 0.8 was
considered reliable.

All radiomics features with ICC ≥ 0.8 were stan-
dardized by Z-score. The best radiomics features in the
training cohort were identified and selected using the
least absolute shrinkage and selection operator (LASSO)
method, and the optimal value of the parameter λ

was determined based on a 10-fold cross-validation.
Individual radiomics scores (Rad-scores) were calculated
from a linear combination of each feature along with its
coefficient weighting according to the non-zero coefficient
features selected by LASSO.

Model construction and evaluation

The clinicoradiological model was constructed by com-
bining clinical and radiological features that showed
statistical differences in the training cohort: patient age,
T2WI signal intensity of myomas (T2WI type), degree
of myoma blood supply, NPVR, RMV, maximum dis-
tance from surface to center of myomas, FIGO stage,
maximum thickness of residual myomas and their basal
distribution range. Additionally, follow-up time is an
important feature in predicting myoma regrowth and was
included for construction of clinicoradiological and com-
bination models. A radiomics model was constructed
using T2WI radiomics features. A radiomics–clinical
model was constructed by combining radiomics features
with clinicoradiological features.

We employed support vector machines (SVM) to
build the model (Python scikit-learn environment, version
0.21.3; https://scikit-learn.org/stable/index.html). In the
training cohort, 10-fold cross-validation and grid search
were applied to select optimal model parameters and
kernel functions. The receiver-operating-characteristics
(ROC) curve was generated to evaluate whether the
model had the ability to predict the regrowth of residual
myomas, with validation carried out on the model in
both internal and external test cohorts. In addition, the
predictive performance of the model in different cohorts
was evaluated using the area under the ROC curve (AUC).
To obtain the AUC 95% CI, we applied non-parametric
bootstrap sampling to perform the calculation 2000 times.

Evaluation of clinical application

Decision-curve analysis was performed to assess whether
the prediction model would help in the development
of clinical treatment strategies by calculating the net

benefit of the model at different threshold probabilities
in the three cohorts. The best prediction model was
determined by the AUC value and used to predict residual
myoma regrowth in patients on days 30, 90, 180, 270
and 360.

Statistical analysis

Continuous data are presented as the mean ± SD or
median and interquartile range (IQR), depending on
whether the data were distributed normally. We applied
the χ2 test or Fisher’s exact test to compare differences
in categorical variables and the Mann–Whitney U-test to
compare differences in continuous variables. Categorical
variables were described by frequency and rate, and
a two-sided test with P < 0.05 indicated statistical
significance.

RESULTS

There was residual myoma regrowth after HIFU ablation
in 199/428 (46.5%) of myomas: 111/243 (45.7%) in
the training cohort, 36/81 (44.4%) in the internal test
cohort and 52/104 (50.0%) in the external test cohort.
Baseline clinical and radiological features are presented in
Table 2. There were significant differences in patient age,
T2WI type, blood supply, maximum thickness and basal
extent of residual myomas, NPVR, and postoperative
RMV in all three datasets (training, internal test
and external test sets). Patients were younger in the
regrowth group compared with in the non-regrowth
group (P < 0.05). The proportions of T2WI Types III
and IV were significantly higher in the regrowth group
than in the non-regrowth group, whereas Type I was
predominant in the non-regrowth group (P < 0.05).
The proportion of the regrowth group with abundant
blood supply was significantly higher than that in the
non-regrowth group (P < 0.001). The regrowth group
had greater maximum thickness, wider basal distribution
range and larger volume of residual myomas compared
with the non-regrowth group (P < 0.001). The NPVR
was significantly lower in the regrowth group than in the
non-regrowth group (P < 0.001).

Radiomics feature selection and radiomics score
(Rad-score) calculation

Among the 851 radiomics features extracted, the
interobserver consistency for their extraction from ROIs
was good, with ICC ≥ 0.8 for 665 (78.1%) features.
From these, 17 non-zero coefficient features were selected
by LASSO, including one GLDM feature, one GLRLM
feature and 15 wavelet features.

Figure 3 illustrates the process of LASSO feature
selection, as well as the selected features, with their coeffi-
cients, that were used to calculate the Rad-score for each
patient. Figure 4 shows the distribution of the Rad-score
values for each patient in the training cohort and the two
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Table 2 Baseline characteristics, including clinical and radiological features, in study population of patients with uterine myomas treated
with high-intensity focused ultrasound (HIFU) ablation

Characteristic Regrowth Non-regrowth Z-statistic P*

n (training/internal validation/external validation cohorts) 111/36/52 132/45/52
Patient’s age (years)

Training 39 (33.5–43) 41 (35–45) –2.408 0.016
Internal 34 (30.5–40) 42 (36–45) –3.257 0.001
External 34 (29–39) 37.5 (33–42) –2.138 0.032

Follow-up time (days)†
Training 200.0 (149.0–277.5) 201.5 (138.5–272.0) –0.420 0.674
Internal 194.0 (137.0–227.0) 249.0 (192.0–377.0) –3.241 0.001
External 178.0 (105.0–32.0) 119.5 (92.3–256.8) –1.726 0.084

Before HIFU
FIGO stage

Training 4.0 (4.0–6.0) 4.0 (4.0–5.0) –2.410 0.016
Internal 5.5 (4.0–6.0) 4.0 (3.0–4.0) –3.099 0.002
External 4.5 (4.0–6.0) 4.0 (4.0–6.0) –1.508 0.132

T2WI type (I/II/III/IV) (n)‡
Training 46/7/37/21 84/12/25/11 –3.841 < 0.001
Internal 13/4/11/8 26/8/10/1 –2.696 0.004
External 16/13/16/7 33/10/8/1 –3.614 < 0.001

Degree of blood supply (low or absent/moderate/rich) (n)
Training 8/47/56 43/67/22 –6.371 < 0.001
Internal 1/19/16 19/18/8 –3.961 < 0.001
External 0/39/13 15/33/4 –4.210 < 0.001

Number of myomas (per patient)
Training 2.0 (1.0–≥ 5.0) 2.0 (1.0–≥ 5.0) –1.120 0.236
Internal 1.0 (1.0–2.5) 2.0 (1.0–5.0) –0.929 0.259
External 1.0 (1.0–5.0) 2.0 (1.0–5.0) –1.282 0.200

Abdominal fat thickness (cm)
Training 1.29 (0.94–1.85) 1.37 (0.96–1.77) –0.504 0.614
Internal 1.14 (0.68–1.73) 1.37 (1.02–1.85) –1.402 0.161
External 1.27 (1.07–1.66) 1.52 (1.02–1.93) –1.291 0.197

Maximum AP distance from surface to center of myomas (cm)
Training 7.95 (6.27–10.25) 7.03 (5.74–8.67) –2.614 0.009
Internal 6.74 (5.75–8.64) 6.93 (6.43–7.99) –0.699 0.485
External 6.90 (5.71–9.34) 7.29 (6.19–9.11) –0.731 0.465

1 day post HIFU
Number of treated myomas (per patient)

Training 2 (1 to ≥ 5)¶ 2 (1 to ≥ 5)¶ –0.618 0.525
Internal 1 (1–2) 1(1–5) –1.483 0.094
External 1 (1–3) 1 (1–4) –0.755 0.450

Maximum thickness of residual myomas (cm)
Training 1.14 (0.81–1.51) 0.50 (0.28–0.66) –10.532 < 0.001
Internal 1.05 (0.84–1.70) 0.42 (0.00–0.65) –6.442 < 0.001
External 1.21 (0.82–1.60) 0.43 (0.27–0.65) –6.706 < 0.001

Basal distribution of residual myomas§
Training 3 (2–4) 1 (1–2) –9.394 < 0.001
Internal 3 (2–3.5) 1 (0–2) –5.199 < 0.001
External 3 (2–3) 1 (1–2) –6.081 < 0.001

NPVR
Training 57.14 (40.52–69.83) 81.26 (69.24–89.80) –9.344 < 0.001
Internal 64.20 (47.69–69.82) 82.93 (72.14–90.33) –4.892 < 0.001
External 59.04 (48.63–72.53) 85.29 (69.56–95.02) –6.095 < 0.001

Postoperative NPV (cm3)
Training 40.00 (16.60–87.15) 48.00 (22.85–87.65) –1.386 0.166
Internal 61.60 (33.25–120.00) 48.30 (20.53–103.08) –1.511 0.131
External 36.60 (21.03–73.25) 41.55 (20.85–65.25) –0.189 0.850

Postoperative RMV (cm3)
Training 30.00 (15.58–60.45) 10.70 (4.50–22.31) –7.458 < 0.001
Internal 41.15 (20.60–67.75) 11.20 (3.70–20.50) –4.862 < 0.001
External 27.00 (12.55–44.58) 6.20 (2.98–14.05) –6.225 < 0.001

Data are presented as median (interquartile range), unless stated otherwise. *Significance indicated by P < 0.05 (Mann–Whitney U-test).
†From 1 day post HIFU to follow-up magnetic resonance imaging within 1 year. ‡Myoma type according to signal intensity on pretreatment
T2-weighted imaging (T2WI): Type I: hypointense, signal intensity equal to that of skeletal muscle; Type II: isointense, signal intensity lower
than that of uterine myometrium but higher than that of skeletal muscle; Type III: heterogeneous hyperintense; Type IV, homogeneous
hyperintense. §Basal distribution of residual myomas quantified according to Zhang et al.27, based on the distribution across four equal
quadrants of the original myoma distribution: 0, no residual myoma; 1, limited distribution; 2, small distribution; 3, obvious distribution;
4, extensive distribution. ¶It was not always possible to count multiple myomas, so these were expressed as ≥ 5. AP, anteroposterior; FIGO,
International Federation of Gynaecology and Obstetrics28; NPV, non-perfused volume; NPVR, non-perfused volume ratio; RMV, residual
myoma volume.
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Figure 3 Radiomics feature selection. (a) Selection, via mean square error, of tuning parameter λ in least absolute shrinkage and selection
operator (LASSO) model, on each fold of the 10-fold cross-test method; gray vertical lines show optimal λ values according to the
corresponding minimum mean square error. (b) LASSO coefficient profiles of the 851 radiomics features, resulting in 17 non-zero coefficient
features. (c) The 17 most predictive feature subsets selected by LASSO and their correlation coefficients.

test cohorts. An optimal Rad-score cut-off value of 0.475
was determined based on the maximum Youden index in
the training-cohort patients who had regrowing residual
myomas. The significantly higher Rad-score in patients
with than in those without regrowth was confirmed in the
two test cohorts, indicating that the selected radiomics
features could distinguish effectively between myomas
which would regrow and those which would not. The
equation and statistical analyses for the Rad-scores are
presented in Appendix S1 and Table S3, respectively.

Model evaluation

The linear kernel was selected as the most suitable
kernel function for SVM modeling. The prediction
performances of the clinicoradiological model, radiomics
model and combined radiomics–clinical model are
presented in Table 3 and Figure 5. The radiomics model,
based on the selected 17 T2WI features, showed excellent
predictive performance, with AUCs of 0.834 (95% CI,
0.747–0.920) in the internal test cohort and 0.801
(95% CI, 0.712–0.889) in the external test cohort. The
AUC values of the clinicoradiological model, based on
patient age, T2WI signal intensity of myomas, degree
of myoma blood supply, NPVR, RMV, follow-up time,

maximum distance from surface to center of myomas,
maximum thickness of residual myomas and their basal
distribution range, were 0.888 (95% CI, 0.816–0.960) in
the internal test cohort and 0.912 (95% CI, 0.851–0.973)
in the external test cohort. The model combining clinical
and radiomics features had the greatest predictive
validity: the AUCs of this prediction model were 0.922
(95% CI, 0.857–0.987) in the internal test cohort 0.930
(95% CI, 0.880–0.980) in the external test cohort.
Individual ROC curves with 95% CIs are plotted in
Figure S2.

Clinical application

Decision-curve analysis can represent clinical utility
based on the determined net benefits. In this study, the
strategies of ‘treat all’ (reintervention therapy for all
myomas, whether regrowing or not) or ‘no treatment’ (no
reintervention therapy for any myoma) were interpreted
as the net benefit to patients who were predicted to
have regrowth or non-regrowth of residual myomas.
The results of the decision-curve analysis indicated
that the combined radiomics–clinical model achieved
greater net benefit across the majority of the range of
threshold probabilities than did the radiomics model, the

© 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2022; 60: 681–692.
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Figure 4 Radiomics score (Rad-score) boxplots of the three study
cohorts: (a) training cohort, (b) internal test cohort and (c) external
test cohort. Red bars represent patients with residual uterine myoma
non-regrowth, and blue bars represent patients with regrowth. Rad-
score cut-off value for prediction of myoma regrowth = 0.475.

clinicoradiological model, the treat-all strategy and the
treat-none strategy (Figure 6).

Applying the combined radiomics–clinical model to
predict residual myoma regrowth on days 30, 90, 180,
270 and 360 (Figure 7), we obtained rates of correct
prediction of residual myoma regrowth of 83.3% in the
internal test cohort and 90.4% in the external test cohort,
suggesting that the combined model is a promising tool
for predicting residual myoma regrowth at different
timepoints following HIFU.

Reintervention follow-up survey

During a median follow-up time for the reintervention
survey of 43 (IQR, 24–71) months, 323 of the 339
patients were included, while 16 patients were lost to
follow-up. The survey findings suggested that 65/323
(20.1%) patients underwent reintervention after HIFU
ablation. Of these 65 cases, 21 (32.3%) underwent HIFU
ablation, 36 (55.4%) myomectomy and three (4.6%)
hysterectomy, three (4.6%) were treated with medication
and there were two (3.1%) other cases. In addition, at
the time of our follow-up survey, nine (13.8%) patients
with residual myoma regrowth were considering what
type of reintervention to take. The interval between
surgery and the occurrence of reintervention was 18
(IQR, 12–36) months.

Among the 65 patients who underwent reintervention,
84.6% (n = 55) had residual myoma regrowth. When
residual myoma regrowth occurred, the subsequent
reintervention rate was 40.4% (55/136), while the
reintervention rate was only 5.3% (10/187) when there
was no occurrence of regrowth.

Table 3 Performance of radiomics, clinicoradiological and combined radiomics–clinical models in prediction of residual uterine myoma
regrowth after high-intensity focused ultrasound ablation

Model AUC Sensitivity Specificity PPV NPV Accuracy

Training set (n = 243)
Radiomics 0.835

(0.783–0.886)
0.788

(0.709–0.852)
0.774

(0.680–0.847)
0.818

(0.740–0.878)
0.739

(0.645–0.815)
0.782

(0.726–0.829)
Clinicoradiological 0.911

(0.874–0.947)
0.829

(0.754–0.885)
0.845

(0.756–0.906)
0.879

(0.808–0.927)
0.784

(0.694–0.854)
0.835

(0.783–0.877)
Combination 0.933

(0.901–0.965)
0.894

(0.825–0.939)
0.874

(0.794–0.927)
0.894

(0.825–0.939)
0.874

(0.794–0.927)
0.885

(0.838–0.919)
Internal test set (n = 81)

Radiomics 0.834
(0.747–0.920)

0.740
(0.594–0.849)

0.742
(0.551–0.875)

0.822
(0.674–0.915)

0.639
(0.462–0.787)

0.741
(0.635–0.824)

Clinicoradiological 0.888
(0.816–0.960)

0.755
(0.608–0.862)

0.750
(0.563–0.879)

0.822
(0.674–0.915)

0.667
(0.489–0.809)

0.753
(0.649–0.835)

Combination 0.922
(0.857–0.987)

0.869
(0.731–0.946)

0.857
(0.689–0.946)

0.889
(0.752–0.958)

0.833
(0.665–0.930)

0.864
(0.771–0.924)

External test set (n = 104)
Radiomics 0.801

(0.712–0.889)
0.868

(0.711–0.951)
0.712

(0.586–0.814)
0.635

(0.489–0.760)
0.904

(0.782–0.964)
0.769

(0.679–0.840)
Clinicoradiological 0.912

(0.851–0.973)
0.767

(0.637–0.862)
0.864

(0.719–0.943)
0.885

(0.759–0.952)
0.731

(0.587–0.840)
0.808

(0.721–0.873)
Combination 0.930

(0.880–0.980)
0.891

(0.756–0.959)
0.810

(0.682–0.897)
0.789

(0.649–0.885)
0.904

(0.782–0.964)
0.846

(0.764–0.904)

Values in parentheses are 95% CI. AUC, area under the receiver-operating-characteristics curve; NPV, negative predictive value; PPV, posi-
tive predictive value.
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Figure 5 Receiver-operating-characteristics curves for prediction of
residual uterine myoma regrowth after high-intensity focused
ultrasound ablation by: (a) radiomics model, (b) clinicoradiological
model and (c) combined radiomics–clinical model. Curves are
shown for training cohort ( ), internal test cohort ( ) and
external test cohort ( ).

DISCUSSION

Using our combined model to predict a patient’s
prognosis may help to address the problem that follow-up
after HIFU ablation generally relies on expensive MRI
examinations. The overall reintervention rate in our
study population was 20.1%, and 84.6% of these
patients had residual myoma regrowth. Adding to these
the nine patients with myoma regrowth who, at the
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Figure 6 Decision-curve analysis of radiomics, clinicoradiological
and combined models for: (a) training cohort, (b) internal test
cohort and (c) external test cohort. Gray and black lines represent
all patients receiving the ‘all treatment’ or ‘no treatment’ strategy,
respectively, and curves represent the radiomics model ( ),
clinicoradiological model ( ) and combined radiomics–clinical
model ( ).
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Figure 7 Combined radiomics–clinical model was used to predict outcome of four cases (Patients A–D, regrowth group) of residual
myomas at different timepoints (30, 90, 180, 270 and 360 days post high-intensity focused ultrasound treatment). + indicates that predicted
result is regrowth, – indicates that predicted result is non-regrowth and × indicates the point at which follow-up magnetic resonance
imaging examination was performed, in patients with myoma regrowth.

time of follow-up, had not yet reached a decision
regarding reintervention, the percentage of residual
myoma regrowth in those undergoing reintervention was
as high as 86.5%. The reintervention rate in patients
with myoma regrowth was 40.4%, much higher than the
5.3% reintervention rate in patients without regrowth.
Thus, regrowth of residual myomas is the dominant
risk factor for reintervention after HIFU ablation of
myomas. Effectively predicting such factors can aid in
predicting the patient’s prognosis and enable initiation
of appropriate clinical intervention, such as continued
follow-up, endocrine therapy, treatment for overall
physical and mental wellbeing11, repetition of HIFU or
myoma resection, in order to avoid or limit adverse effects.

We found that younger women were more likely
to experience residual myoma regrowth, which may
be related to the fact that uterine myomas are
hormone-dependent benign tumors. This is consistent
with the findings of Gorny et al.12, who suggested that
younger women are more likely to undergo reintervention
after MR-guided HIFU treatment of myomas. We
found that patients with residual myoma regrowth
predominantly had myomas with high signal intensity

(T2WI Type III–IV), and the proportion of patients
with abundant blood supply was significantly higher
in those with than in those without myoma regrowth.
This is probably because the areas that tend to remain
non-ablated during HIFU are usually those that are
rich in blood supply13 or smooth-muscle cells14,15, and
these characteristics are fundamental to residual myoma
regrowth16. These characteristics suggest that, during
HIFU ablation of uterine myomas, the more difficult it
is to ablate the myoma, the more likely it is to regrow.
The maximum thickness, basal distribution range and
volume of residual myomas can be used to describe their
morphological characteristics.

Unlike the radiomics model, which extracted MRI
features automatically, in the clinicoradiological model,
MRI features were selected and measured manually.
However, identification of MRI features is subjective,
and both feature selection and accurate measurement
of features rely on the physician’s clinical experience.
Although the radiomics model had a weaker predictive
performance than did the clinicoradiological model, it
was based only on single-sequence T2WI, without CE.
Our results indicate that radiomics can identify effectively

© 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2022; 60: 681–692.
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shape, texture and grayscale features of residual myomas
on T2WI after HIFU ablation. Future work should assess
the effect of including multiple MRI sequences in the
radiomics model to further improve prediction accuracy.

In recent years, radiomics has been emerging as a
tool capable of extracting ‘hidden’ data from medical
images. It has been used to quantify tumor heterogeneity
by analyzing the spatial arrangement of imaging voxels
with variations in signal intensity, assisting in medical
decision-making17. Radiomics has been employed in the
field of uterine myoma research, for example for the
differentiation of benign and malignant tumors and the
prediction of HIFU NPVR8,18,19. However, no study
has explored the application of radiomics in predicting
prognosis after HIFU ablation of uterine myomas. In our
study, radiomic features of different categories were incor-
porated into the residual myoma regrowth prediction
model. The GLRLM feature, GLRLM_SRHGLE (Short
Run High Gray Level Emphasis), showed the greatest
significance at the time of modeling in the LASSO feature
selection results. This feature represents the distribution
of voxel homogeneity by measuring the distribution of
short-range run lengths for higher grayscale values; these
gradually decreased as the spatial inhomogeneity of the
voxel alignment increased20,21. Wavelet features can
further reflect the spatial heterogeneity of tumor tissue
on multiple levels to provide more detailed information
on tumor biology and supplement visual features. Higher
Rad-scores also indicated greater lesion heterogeneity
and increased risk of residual myoma regrowth, whereas
lower scores indicated more homogeneous lesions and a
better prognosis, consistent with previous study findings
on cervical cancer22. The feature variability detected by
radiomics in patients with residual myomas may be an
early indicator of continued myoma progression, enabling
the identification of heterogeneity characteristics, i.e. the
radiomics features that identify heterogeneous changes
in myomas, at the microscopic level23,24. Furthermore,
quantitative measurements of specific tissue areas can
provide additional information on subtle differences
in tissue structure, including areas of necrosis, cell
proliferation and neoangiogenesis25,26, that relate to
intrinsic regrowth mechanisms of residual myomas not
visible to the naked eye.

Our models were not sufficiently accurate to predict
the time of myoma recurrence, mainly because the cases
in this study were limited to a year’s follow-up, and each
patient had follow-up at only one specific timepoint.
However, our results suggest that it is possible to predict
whether residual myomas will have regrown by different
timepoints. The inclusion of cases with longer follow-up
times in future studies will help to improve the correlation
between residual myoma regrowth and the time variable.

Our study has several limitations. First, enrolled
patients were followed for 1 year. Thus, records of
longer follow-up times are lacking. Some patients may
have experienced residual myoma regrowth beyond the
study period, limiting the model’s applicability. Second,
we selected T2WI for radiomics analysis to minimize

the variability of acquisition parameters. However, this
restriction may have resulted in less accurate prediction
results; multimodal studies may improve accuracy further.
Third, we chose only one feature selection method
(LASSO) and one classifier (SVM). A combination of
multiple classifiers and feature selection may yield a model
with better prediction performance.

In conclusion, we developed and validated a combined
prediction model based on T2WI radiomics through
machine learning combined with clinicoradiological
features. The model can predict effectively whether
residual myoma recurrence occurs within 1 year after
HIFU ablation of uterine myomas. It can serve as an accu-
rate and convenient reference for clinical decision-making,
providing a basis for the early customization of chronic
disease management plans after HIFU ablation in patients
with uterine myomas.
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The following supporting information may be found in the online version of this article:

Appendix S1 Formula for least absolute shrinkage and selection operator (LASSO)-derived Rad-scores

Figure S1 Diagram summarizing study workflow. (a) Patient enrolment process and study cohorts. (b) Data
collection. (c) Radiomics analysis, machine learning modeling and evaluation.

Figure S2 Receiver-operating-characteristics curves and 95% CIs for prediction of residual uterine myoma
regrowth after high-intensity focused ultrasound ablation in training cohort, internal test cohort and external
test cohort, using radiomics, clinic–radiological and combined radiomics–clinical models.

Table S1 Feature extraction configuration following guidelines of the Image Biomarker Standardization
Initiative (IBSI)

Table S2 Extracted image features, classified into eight categories

Table S3 Comparison of Rad-scores between patients with and those without regrowth of uterine myoma
after high-intensity focused ultrasound ablation
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