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Abstract

RNA molecules adopt three-dimensional structures that are critical to their function and of 

interest in drug discovery. Few RNA structures are known, however, and predicting them 

computationally has proven challenging. We introduce a machine learning approach that 

enables identification of accurate structural models without assumptions about their defining 

characteristics, despite being trained with only 18 known RNA structures. The resulting scoring 

function, the Atomic Rotationally Equivariant Scorer (ARES), substantially outperforms previous 

methods and consistently produces the best results in community-wide blind RNA structure 

prediction challenges. By learning effectively even from a small amount of data, our approach 

overcomes a major limitation of standard deep neural networks. Because it uses only atomic 
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coordinates as inputs and incorporates no RNA-specific information, this approach is applicable to 

diverse problems in structural biology, chemistry, materials science, and beyond.

RNA molecules, like proteins, fold into well-defined three-dimensional (3D) structures to 

perform a wide range of cellular functions, such as catalyzing reactions, regulating gene 

expression, modulating innate immunity, and sensing small molecules (1). Knowledge of 

these structures is extremely important for understanding the mechanisms of RNA function, 

designing synthetic RNAs, and discovering RNA-targeted drugs (2, 3). Our knowledge of 

RNA structure lags far behind that of protein structure: The fraction of the human genome 

transcribed to RNA is ~30 times as large as that coding for proteins (4), but the number of 

available RNA structures is <1% of that for proteins (5). Computational prediction of RNA 

3D structure is thus of substantial interest (6).

Despite decades of intense effort, predicting the 3D structure of RNAs remains a grand 

challenge, having proven more difficult than prediction of protein structure. For proteins, 

state-of-the-art prediction methods leverage sequences or structures of related proteins (7–9). 

Such methods succeed much less frequently for RNA, both because template structures 

of closely related RNAs are available far less often and because sequence coevolution 

information provides less information about tertiary contacts in RNAs (10). Moreover, 

designing a scoring function that reliably distinguishes accurate structural models of RNA 

from less accurate ones has proven difficult, because the characteristics of energetically 

favorable RNA structures are not sufficiently well understood.

This problem raises the question of whether an algorithm could learn from known RNA 

structures to assess the accuracy of structural models of unrelated RNAs. Such a machine 

learning task poses two major challenges: (i) avoiding assumptions about which structural 

characteristics might distinguish accurate models from less accurate ones, and (ii) learning 

from the limited number of RNA structures that have been determined experimentally. Deep 

learning methods that do not require predefined features have led to notable recent advances 

in many fields, but their success has largely been restricted to domains where data are 

plentiful (11).

We designed a neural network, the Atomic Rotationally Equivariant Scorer (ARES), to 

address these challenges (Fig. 1). Given a structural model, specified by the 3D coordinates 

and chemical element type of each atom, ARES predicts the model’s root mean square 

deviation (RMSD) from the unknown true structure. ARES is a deep neural network: It 

consists of many processing layers, with each layer’s outputs serving as the next layer’s 

inputs (11). This network has a distinctive architecture that enables it to learn directly from 

3D structures and to learn effectively given a very small amount of experimental data.

ARES does not incorporate any assumptions about which features of a structural model are 

relevant to assessing its accuracy. For example, ARES has no preconceived notion of double 

helices, base pairs, nucleotides, or hydrogen bonds. The approach behind ARES is not at all 

specific to RNA and is thus applicable to any type of molecular system.
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The initial layers of the ARES network are designed to recognize structural motifs, the 

identities of which are learned during the training process rather than specified in advance. 

Each of these layers computes several features for each atom based on the geometric 

arrangement of surrounding atoms and the features computed by the previous layer. The first 

layer’s only inputs are the 3D coordinates and chemical element type of each atom.

The architecture of these initial network layers recognizes that instances of a given structural 

motif are typically oriented and positioned differently from one another and that coarser-

scale motifs (e.g., helices) often comprise particular arrangements of finer-scale motifs (e.g., 

base pairs). Each layer is rotationally and translationally equivariant—that is, rotation or 

translation of its input leads to a corresponding transformation of its output (12). This 

property captures the invariance of physics to rotation or translation of the frame of 

reference but ensures that orientation and position of an identified motif are passed on to the 

network’s next layer, which can use this information to recognize coarser-scale motifs. The 

design of these layers builds on recently developed machine learning techniques that capture 

rotational as well as translational symmetries (13–15)—particularly tensor field networks 

(16) and the PAUL method (17).

Whereas the initial layers of ARES gather information locally, the remaining layers 

aggregate information across all atoms. This combination allows ARES to predict a global 

property (in this case, the accuracy of the structural model) while capturing local structural 

motifs and interatomic interactions in detail.

To train ARES, we used 18 RNA molecules for which experimentally determined structures 

were published between 1994 and 2006 (18). We generated 1000 structural models of each 

RNA with the Rosetta FARFAR2 sampling method (19), without making any use of the 

known structure. We then optimized the parameters of the ARES neural network such that 

its output matches as closely as possible the RMSD of each model from the corresponding 

structure.

To assess ARES’s ability to identify accurate structural models of previously unseen RNAs, 

we used a benchmark consisting of all RNAs that were included in the RNA-Puzzles 

structure prediction challenge and for which experimentally determined structures were 

published between 2010 and 2017 (20). For each of these RNAs, we generated at least 

1500 structural models using FARFAR2 (12). To ensure that some models were near native 

(i.e., within a 2-Å RMSD of the experimentally determined native structure), we included 

energetic restraints to the native structure’s coordinates when generating 1% of the models 

for each RNA (12). We used the trained ARES network to produce a score for each model 

(i.e., the predicted RMSD of each model from the native structure). We also scored each 

model using three state-of-the-art scoring functions: the most recent (2020) version of 

Rosetta (19), Ribonucleic Acids Statistical Potential (RASP) (21), and 3dRNAscore (22).

ARES substantially outperforms the other three scoring functions on this first benchmark 

(Fig. 2, A to C, and figs. S3 and S4). The single best-scoring structural model is near native 

(<2 Å RMSD) for 62% of the benchmark RNAs when using ARES, compared with 43, 

33, and 5% for Rosetta, RASP, and 3dRNAscore, respectively. The 10 best-scoring models 

Townshend et al. Page 3

Science. Author manuscript; available in PMC 2023 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



include at least one near-native model for 81% of the benchmark RNAs when using ARES, 

compared with 48, 48, and 33% for Rosetta, RASP, and 3dRNAscore, respectively. Each 

of the best-scoring near-native models was generated with energetic restraints to the native 

structure.

Current methods for sampling candidate structural models often fail to generate near-native 

models in a reasonable amount of computation time. We therefore compiled a second 

benchmark that includes no near-native models. When predicting RNA structure, experts can 

often find some known structures that can be used as local templates, or other published 

experimental data that provide information on local tertiary structure—but we ignored all 

such prior information when generating candidate models, to simulate a difficult modeling 

scenario. We selected 16 structurally diverse RNAs, all substantially different from any of 

those used to train ARES or those in our previous benchmark, and each including one or 

more of the following hallmarks of structural complexity: ligand binding sites, multiway 

junctions, and tertiary contacts. We scored all models using ARES as well as six other 

scoring functions that have been used widely over the past 14 years.

On this second benchmark, ARES again outperforms all the other scoring functions (Fig. 

2D and fig. S5). The median RMSD across RNAs of the best-scoring structural model is 

significantly lower for ARES than for any other scoring function. The same is true when 

considering the most accurate of the 10 best-scoring structural models for each RNA.

Next, we turned to blind prediction of 3D RNA structure, participating in four rounds 

of RNA-Puzzles, a long-running community-wide challenge in which newly determined 

experimental structures are held in confidence until all participants have submitted their 

structural predictions (20). For each RNA molecule, we generated candidate structural 

models using the FARFAR2 sampling protocol and then selected among these models using 

the ARES scoring function. We describe the exact inputs to FARFAR2 in table S1. No 

template information was available for one of these structure prediction challenges, an 

intricate adenoviral RNA. Limited template information was available for the other three, 

which are distinct T-box–tRNA complexes (fig. S6 and table S1).

In every case, this procedure yielded the most accurate model submitted by any participant, 

as measured by both RMSD and deformation index (Fig. 3, fig. S8, and table S2). For 

each RNA, competing submissions were produced by at least nine other methods, including 

methods that used the same sets of candidate FARFAR2 structural models but selected 

among them using the judgment of human experts in the Das lab or the Rosetta (2020) 

scoring function. We also found that the ARES scoring function outperforms a variety of 

other scoring functions applied to the same sets of candidate models, including a recent 

machine learning approach based on a convolutional neural network (23) (table S3).

Analysis of the trained ARES network indicates that it has spontaneously discovered certain 

fundamental characteristics of RNA structure. For example, ARES correctly predicts the 

optimal distance between the two strands in a double helix—i.e., the distance that allows 

for ideal base pairing (Fig. 4A). In addition, the high-level features ARES extracts from a 

set of RNA structures reflect the extent of hydrogen bonding and Watson-Crick base pairing 
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in each structure (Fig. 4B), even though we never informed ARES that hydrogen bonding 

and base pairing are key drivers of RNA structure formation. We also observe that ARES is 

able to accurately identify complex tertiary structure elements, including ones that are not 

represented in the training dataset (figs. S7 and S9).

Several deep learning techniques have recently been applied to problems in structural 

biology as well as quantum chemistry, leading to substantial advances in protein structure 

prediction and other areas (8, 24–30). ARES, however, tackles a particularly challenging 

geometric learning problem, in that it (i) learns entirely from atomic structure, using 

no other information (e.g., sequences of related RNAs or proteins), and (ii) makes no 

assumptions about what structural features might be important, taking inputs specified 

simply as atomic coordinates and without even being provided basic information such as the 

fact that RNAs comprise chains of nucleotides.

ARES’s performance is particularly notable given that all of the RNAs used for blind 

structure prediction (Fig. 3), and most of those used for systematic benchmarking (Fig. 

2), are larger and more complex than those used to train ARES (Fig. 1). RNAs in the 

training set comprise 17 to 47 nucleotides (median: 26), whereas RNAs in the blind structure 

prediction challenges comprise 112 to 230 nucleotides (median: 152.5), and RNAs in 

the benchmark sets comprise 27 to 188 nucleotides (median: 75, with 31 of 37 RNAs 

comprising more nucleotides than any RNA in the training set).

A limitation of the current study is its reliance on a previously developed sampling method 

to generate candidate structural models. Future work might use ARES to guide sampling, so 

as to increase the accuracy of the best candidate models. ARES might be improved further 

by incorporating other types of experimental data, including low-resolution cryogenic 

electron microscopy and chemical mapping data (31).

ARES’s ability to outperform the previous state of the art despite using only a small 

number of structures for training suggests that similar neural networks could lead to 

substantial advances in other areas involving 3D molecular structure, where data are often 

limited and expensive to collect. In addition to structure prediction, examples might include 

molecular design (both for macromolecules such as proteins or nucleic acids and for small-

molecule drugs), estimation of electromagnetic properties of nanoparticle semiconductors, 

and prediction of mechanical properties of alloys and other materials.
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Fig. 1. The ARES network.
(A) ARES takes as input a structural model, specified by each atom’s element type and 3D 

coordinates. Atom features are repeatedly updated based on the features of nearby atoms. 

This process results in a set of features encoding each atom’s environment. Each feature 

is then averaged across all atoms, and the resulting averages are fed into additional neural 

network layers, which output the predicted RMSD of the structural model from the true 

structure of the RNA molecule. Figure S1 illustrates the ARES architecture in more detail. 

(B) To perform structure prediction, we use ARES to score candidate structural models 

(e.g., those generated by the FARFAR2 sampling software), selecting the models that ARES 

predicts to be most accurate (i.e., lowest RMSD). (C) ARES is trained using 18 RNA 

structures solved before 2007. (D) We benchmark ARES using more recently solved RNA 

structures, most of which are much larger than any of those used for training. Representative 

examples of structures used for training and benchmarking are shown in this figure, with the 

remainder in fig. S2.
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Fig. 2. ARES substantially outperforms previous scoring functions at identifying accurate 
structural models.
(A) Given a large set of candidate structural models for each RNA in benchmark 1—which 

includes some models restrained to be close to the experimentally determined (native) 

structure—we rank the models using ARES and three leading scoring functions. The 

model scored as best by ARES is usually more accurate (as assessed by RMSD from 

the native structure) than the model scored as best by the other scoring functions. Each 

cross corresponds to one RNA. “Rosetta” indicates the most recent (2020) version of the 
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Rosetta scoring function. (B) When using ARES, the 10 best-scoring structural models for 

each RNA in benchmark 1 include an accurate model more frequently than when using the 

other scoring functions. (C) For each RNA in benchmark 1, we determine the rank of the 

best-scoring near-native structural model—that is, how far down the ranked list we need to 

go to include one near-native structural model (RMSD < 2 Å). This rank is usually lower 

(better) for ARES than for the other scoring functions. Across the RNAs, the mean rank of 

the best-scoring near-native model is 3.6 for ARES, compared with 73.0, 26.4, and 127.7 

for Rosetta, RASP, and 3dRNAscore, respectively (geometric means). (D) For each of the 

16 RNAs in benchmark 2—for which all structural models were generated without using 

any template structures or other experimental data that could provide information on local 

tertiary structure—we determine the RMSD of the model scored as best by each of seven 

scoring functions. For each scoring function, we plot the median across RNAs, with a 95% 

confidence interval determined by bootstrapping (12). ARES significantly outperforms each 

of the other scoring functions [P values 0.001 to 0.016 (12)]. Of the other scoring functions, 

none significantly outperforms any other [P values 0.24 to 0.66].
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Fig. 3. ARES achieves state-of-the-art results in blind RNA structure prediction.
(A) We submitted structural models, which ARES selected from sets of candidates 

generated by FARFAR2, to four recent rounds of the RNA-Puzzles blind structure prediction 

challenge: RNA A (the adenovirus VA-I RNA), RNA B (the Geobacillus kaustophilus T-box 

discriminator–tRNAGly), RNA C (the Bacillus subtilis T-box–tRNAGly), and RNA D (the 

Nocardia farcinic T-box–tRNAIle), whose structures are now in the Protein Data Bank with 

IDs 6OL3, 6PMO, 6POM, and 6UFM, respectively. For all four RNAs, ARES produced 

the most accurate structural model of any method. The dash indicates no submission. (B) 

For RNA A, the adenovirus VA-I RNA, ARES selected a structural model (blue) with a 

4.8-Å RMSD to the experimentally determined structure (green), which was not available 

at prediction time. (C) For RNA A, the most accurate structural model produced by any 

another method (orange; produced by Rosetta) had an RMSD of 7.7 Å. ARES predicts the 

3D geometry of the hinge motif at lower left much more accurately than Rosetta (fig. S7). 

Figure S8 illustrates results for the other RNAs.
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Fig. 4. ARES learns to identify key characteristics of RNA structure that are not specified in 
advance.
(A) As the distance between two complementary strands of an RNA double helix is varied, 

ARES assigns the best scores when the distance closely approximates the experimentally 

observed distance (red vertical line). The distance is measured between the C-4′ atoms 

of the central base pair (yellow dotted lines). (B) ARES’s learned features separate RNA 

structures according to the fraction of bases that form Watson-Crick pairs (left) and the 

average number of hydrogen bonds per base (right). The arrow in each plot indicates the 

direction of separation. Learned features 1, 2, and 3 are the first, second, and third principal 

components, respectively, of the activation values of the 256 nodes in ARES’s penultimate 

layer across 1576 RNA structures. Each dot corresponds to one of these structures (12).
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