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Short-term ex vivo tissue culture models help 
study human lung infections
A review
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Abstract 
Most studies on human lung infection have been performed using animal models, formalin or other fixed tissues, and in vitro 
cultures of established cell lines. However, the experimental data and results obtained from these studies may not completely 
represent the complicated molecular events that take place in intact human lung tissue in vivo. The newly developed ex vivo 
short-term tissue culture model can mimic the in vivo microenvironment of humans and allow investigations of different cell types 
that closely interact with each other in intact human lung tissues. Therefore, this kind of model may be a promising tool for future 
studies of different human lung infections, owing to its special advantages in providing more realistic events that occur in vivo. In 
this review, we have summarized the preliminary applications of this novel short-term ex vivo tissue culture model, with a particular 
emphasis on its applications in some common human lung infections.

Abbreviations: AEC = alveolar epithelial cell, AM = alveolar macrophage, C. pneumoniae = Chlamydia pneumoniae, CD163 
= cluster of differentiation 163, COPD = chronic obstructive pulmonary disease, COVID-19 = coronavirus disease 2019, CXCL = 
C-X-C motif chemokine ligand, EVLP = ex vivo lung perfusions, H. influenzae = Haemophilus influenzae, IFNs = interferons, IL = 
interleukin, L. pneumophila = Legionella pneumophila, MAPK = mitogen-activated protein kinase, NTHi = nontypeable Haemophilus 
influenzae, pHp = pulmonary haptoglobin, S. pneumoniae = Streptococcus pneumoniae, SARS-CoV-2 = severe acute respiratory 
syndrome coronavirus 2, TLR2 = Toll-like receptor 2, TLR4 = Toll-like receptor 4, TNF-α = tumor necrosis factor-α.
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1. Introduction

To date, most results of human lung infections have been 
obtained from in vitro experiments using animal models, con-
served tissues, and established cell lines. Owing to their non-hu-
man background, animal experiments may not fully reflect the 
actual situation of the human body.[1] Thus, significant differ-
ences between animal and human immune systems may hinder 
the transmission of results obtained in animals to human patho-
physiology.[2–4] In addition, due to the price and ethical limita-
tions, some susceptible species do not fully represent human 
infection, or sometimes do not develop the expected symp-
toms.[5,6] Carefully conserved tissues pretreated by different tis-
sue fixation techniques, such as formalin and Hepes-Glutamic 
acid buffer mediated Organic solvent Protection Effect based 
techniques, have been widely applied for immunohistochemical 
studies to characterize the immunological profiles of lung infec-
tion.[7,8] These data provide limited information on the molec-
ular events involved in human lung infection in vivo, owing to 
the unexpected effects of fixatives on tissues. Results acquired 

from established cell lines, which comprise only a singular cell 
type, cannot represent the complex interaction of different 
components in intact human lung tissues in vivo and repro-
duce the complex structures and immunological responses in 
the human respiratory tract completely.[9,10]

The establishment of an ex vivo tissue culture model using 
fresh and intact specimens may be a possible option for con-
serving the tissue architecture ex vivo. However, the premise to 
establish a tissue culture model is capable of producing suffi-
ciently thin tissue sections because the lack of diffusion of oxy-
gen and nutrients in the center of thick tissue cubes may lead to 
cell death when they are cultured ex vivo. Introducing a tissue 
microtome solved this problem and enabled the preparation of 
thin tissue slices.[11,12] Thereafter, a short-term ex vivo tissue cul-
ture model was established directly from fresh human lung tis-
sues, which showed some advantages.[13,14] Figure 1 Shows the 
process of the establishment of an ex vivo tissue culture model.

Although ex vivo short-term tissue culture cannot be prop-
agated, this model provides important information on the 
complex communication between different tissue cells and 
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the extracellular matrix in intact tissues, and it also over-
comes some of the differences in host–defense mechanisms 
between humans and other animal species.[15] For example, 
human lung organoid is a newly developed ex vivo tissue cul-
ture model. This model can present the in vivo environment 
and 3D lung structure, and simulate the function of human 
lung. Additionally, such ex vivo models can represent differ-
ent part of respiratory tract and offer an opportunity for fur-
ther studies of the whole respiratory system.[16] This kind of 
model derived from human pluripotent stem cells which can 
differentiate to airway and alveolar epithelial cells (AECs) in 
peripheral blood.[17,18] Human pluripotent stem cells-derived 
organoids can be induced to differentiate into specific cell types 
and form tissue-specific organoids.[19,20] Therefore, these cells 
can be co-cultured with mesenchymal and endothelial cells to 
build a 3D organoid which represents a part of structure and 
function of human lung. Although this kind of model may not 
fully recapitulate the whole functions of mature human lung, 
it remains an efficient way to study the mechanisms of lung 
infections because it replicates the human respiratory tract bet-
ter than previous models.[21,22]

This mini-review summarizes the preliminary applications of 
the above-mentioned novel tissue culture model, with a particu-
lar emphasis on its applications in human lung infection.

2. Model applications in lung infection

2.1. Acute pulmonary Chlamydia infection

This ex vivo tissue culture model was first used to investigate 
acute pulmonary Chlamydia infection. Vital lung specimens 
were found to be infected with Chlamydia pneumoniae (C. 
pneumoniae) for at least 48 hours ex vivo. C. pneumoniae is 
predominantly found in alveolar macrophages (AMs). In con-
trast to acute Chlamydia infection, chronic obstructive pul-
monary disease (COPD) patients with persistent Chlamydia 
infection showed a significantly higher infection rate in type 

I AECs, which increased from 2.3 ± 0.9% to 18.2 ± 3.5%. 
However, only a few bronchial epithelial cells were found to 
be infected. Chlamydial viability and virulence were confirmed 
by detecting the expression of chlamydial heat shock protein 
60 messenger ribonucleic acid in an acute Chlamydia infection 
model.[23] C-X-C motif chemokine ligand (CXCL)-8 expres-
sion, an important early innate response mediator, and Toll-like 
receptor 2 (TLR2), but not Toll-like receptor 4 (TLR4), were 
significantly increased in the acute Chlamydia infection model 
compared to COPD patients with persistent Chlamydia infec-
tion. Further studies showed that CXCL8 secretion was reduced 
dramatically when TLR2 signaling, but not TLR4, was blocked 
by a neutralizing antibody. Therefore, TLR2 signaling plays 
an important role in the early innate response caused by acute 
Chlamydia infection.[24]

2.2. Streptococcus pneumoniae (S. pneumoniae) infection

Later, application of this ex vivo tissue culture model was 
extended to explore acute S. pneumoniae infection, and similar 
to Chlamydia infection, S. pneumoniae was detected predomi-
nantly in AM with 80 to 90% positive rate for S. pneumoniae 
deoxyribonucleic acid after 24-hour infection. Depletion of 
AM with clodronate/liposomes revealed that AM was respon-
sible for cytokine release from lung tissue. Furthermore, lung 
cell apoptosis has been shown to be associated with marked 
caspase-3 activation after pneumococcal infection in a time-de-
pendent manner. In this study, although both TLR2 and TLR4 
were upregulated in response to pneumococcal stimulation, 
they had negligible effects on the expression of interleukin (IL)-
8, tumor necrosis factor-α (TNF-α), and IL-6. However, inhibi-
tion of p38 mitogen-activated protein kinase (MAPK) signaling 
markedly reduced the production of inflammatory mediators, 
suggesting that p38 MAPK signaling may play a crucial role 
during S. pneumoniae infection.[25] Moreover, cyclooxygen-
ase-2 was confirmed to be involved in S. pneumoniae infec-
tion in this model. Cyclooxygenase-2 was upregulated in AM, 

Figure 1. The schematic diagram of ex vivo tissue culture model. Thin lung tissue blocks were prepared using a tissue microtome with edge length approx-
imately 0.5 cm and then were cultivated ex vivo in conditioned cell culture medium. After stimulation/infection with a variety of pathogens in tissue culture, 
molecular events can be detected ex vivo directly by appropriate techniques. Created with BioRender.com.
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vascular endothelium, and alveolar type III epithelial cells, but 
not type I epithelial cells. Extracellular regulated protein kinase 
and p38 MAPK signaling were found to be correlated with 
COX-2 induced prostaglandin E2 formation after S. pneumo-
niae infection. Further functional analysis showed that COX-2 
and prostaglandin E regulate pro-inflammatory and anti-inflam-
matory mediators such as TNF-α, IL-1β, granulocyte-macro-
phage colony-stimulating factor, platelet-derived growth factor, 
IL-10, IL-1RA, IL-15, and IL-17 during acute S. pneumoniae 
infection.[26]

2.3. Haemophilus influenzae (H. influenzae) infection

Using this tissue culture model, Drömann and colleagues 
showed that non-typeable H. influenzae (NTHi) infection 
induced a much higher infection rate of AM after acute infec-
tion with NTHi-1 and NTHi-2 strains than that of infected 
COPD lungs. In addition, acute NTHi infection in vitro induced 
a strong pro-inflammatory response with increased expression 
of CXCL8, TNF-α, and p38 MAPK, while transforming growth 
factor-β release decreased. This study also depicted an obvious 
upregulation of transforming growth factor-pseudoreceptor 
BMP and activin membrane-bound inhibitor with ubiquitous 
expression on AM and AEC after in vitro infection of COPD 
lung tissue, indicating that activin membrane-bound inhibitor 
might play an important role in the early immune response of 
pulmonary NTHi infection.[27] In a comparative study, this ex 
vivo tissue culture model was infected with different respiratory 
pathogens including C. pneumoniae, S. pneumoniae, and H. 
influenzae. PCR results showed a significant downregulation of 
cluster of differentiation 163 (CD163) due to H. influenzae and 
C. pneumoniae infections. Further immunohistochemistry con-
firmed that the expression of pulmonary haptoglobin (pHp) was 
elevated more frequently in AM than that in AEC II, whereas 
CD163 expression was downregulated after 24-hour infection 
with H. influenzae. The upregulation of pHp and CD163 caused 
by S. pneumoniae infection was found to be mainly located in 
AEC II and AM. These results suggested that pHp and CD163 
may be functional immunoregulatory elements in human lung 
infection.[28]

2.4. Legionella pneumophila (L. pneumophila) infection

Recently, this ex vivo tissue culture model has been utilized 
to determine the early stages of L. pneumophila infection. It 
was shown that L. pneumophila adhered to the alveolar lin-
ing and primarily infected AM and could replicate within this 
tissue culture model. This study revealed for the first time that 
L. pneumophila outer membrane vesicles, which contain many 
virulence-related proteins bound predominantly to AM sur-
faces, could be detected in the cytoplasm. In addition, downreg-
ulation of the macrophage receptor with collagenous structure 
was identified by transcriptome analysis and was further con-
firmed at the sites of pathogen-infected tissue destruction using 
immunohistochemistry.[29]

2.5. Influenza A virus infection

Moreover, the ex vivo tissue culture model also assisted in 
the study of other types of lung infections, such as viral and 
protozoal infections. Some subtypes of influenza A virus can 
lead to acute severe respiratory disease, resulting in epidemics 
every year.[30] It has been reported that using this ex vivo cul-
ture model can help understand the mechanisms that support or 
restrict the growth of influenza viruses in the lower respiratory 
tract. The research found that after 24-hour infection, influenza 
virus-positive cells were predominantly AEC II. In addition, dif-
ferent kinds of viral antigens could also be detected in AM in 
infected lung specimens, but they constituted only 4 to 11%. 

However, although different influenza A viruses shared the same 
cell tropism for AEC II, large differences existed between the 
strains with regard to replication and cytokine induction, which 
might explain why different subtypes showed different infectiv-
ity and virulence. For example, porcine and low-pathogenicity 
avian influenza viruses were observed to have growth restric-
tion, while the seasonal and pandemic H1N1 viruses propa-
gated efficiently. At the same time, avian influenza viruses were 
found to induce a considerably stronger cytokine response in 
the alveolar tissue than other human-adapted viruses, such as 
pandemic H1N1-2009 virus and the seasonal H3N2 and H1N1 
viruses, even in the lack of recruited immune cells. The results 
showed differential induction of cytokines and chemokines in 
human lung tissues by human and animal influenza A viruses. 
This might explain why different subtypes grow differently in 
the human lungs.

These results indicated that differences in the pathogenicity 
of influenza A viruses in the human lung cannot be attributed 
to different cellular tropisms.[10] Instead, it depended on virus’s 
inherent replicative properties in AEC II.[31] This research also 
stressed the value of ex vivo human lung cultures models in 
pathophysiological processes study.[10]

2.6. Cryptosporidium infection

Generally, Cryptosporidium infection causes self-limiting diar-
rhea in immunocompetent individuals,[32] but it can also target 
the respiratory tract, causing respiratory cryptosporidiosis in 
both immunocompetent and immune-deficient individuals.[33] 
However, the specific pathophysiology of respiratory infections 
is still unclear. Thus, ex vivo human lung culture models can 
be used to examine whether the parasite can infect the lungs 
and finish its life cycle. Within 24 hours after oocyst injection, 
quantification of 18S ribosomal ribonucleic acid showed that 
the parasite dramatically increased in the lung model. By per-
forming immunofluorescence assays using a zoite-specific anti-
body, this model verified the development of asexual (meront I) 
and (macrogamont) stages. Finally, newly formed oocysts were 
observed in sporozoite-infected organoids at 6th day post-infec-
tion. Therefore, ex vivo human lung culture models allowed C. 
parvum to propagate and complete the full life cycle, which is a 
potential tool for further research.[34]

2.7. Coronavirus disease 2019 (COVID-19)

In recent years, the ongoing COVID-19 pandemic, caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
has created an immense global health crisis.[35] The widely used 
cell culture infection models that typically use monolayers of a 
single cell type can support SARS-CoV2 replication and have 
been successfully applied to SARS-CoV-2 study.[36] For exam-
ple, these models can help explore cell-autonomous defense 
mechanisms,[37] host cell interactions,[38] virus replication kinet-
ics[39] and assess the effect of different kinds of medicines.[40,41] 
However, these simple cell culture models cannot explain the 
complex pathophysiological processes in organ level, due to the 
lack of cell-type diversity. Besides, the use of susceptible animal 
models is also limited because it may lead to problems such as 
high cost, moral and ethical controversies.[42]

An ex vivo human lung culture model has been used to study the 
mechanisms of SARS-CoV-2 infection.[43–45] The research showed 
that SARS-CoV-2 replicated in human lung tissues very efficiently 
within a 48-hour interval. SARS-CoV-2 targeted AEC I, II, and 
AM primarily in cell tropism. Importantly, SARS-CoV-2 did not 
significantly lead to type I, II, or III interferons (IFNs) in infected 
human lung tissues, despite highly efficient virus replication. In 
addition, SARS-CoV-2 infection only upregulated 38.46% of key 
inflammatory mediators, including IL-6, monocyte chemoattrac-
tant protein-1, CXCL1, CXCL5, and CXCL10 (IP10). Therefore, 
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some untested patients with COVID-19 showed mild or even no 
symptoms, resulting in spreading the virus in communities and 
hospitals unknowingly.[45,46] Furthermore, the ex vivo lung culture 
model will also help understand the earliest stages of SARS-CoV-2 
infection in the human respiratory system and reduce the late-
phase morbidity and mortality of COVID-19. It was found that 
lung cells presented a limited innate immune response to SARS-
CoV-2, with an obvious lack of type I and III IFNs, contrasting 
with the strong innate immune response to the influenza virus. 
This indicated that the early innate immune response resulted in 
restricted viral clearance once the virus got access to the lung. 
Moreover, because type III IFN has been proven to regulate crit-
ical immune activities,[47] avoiding excessive local inflammation, 
the obvious lack of type I and III IFNs upregulation in early 
SARS-CoV-2-infected lung tissues could explain the uncontrolled 
SARS-CoV-2 replication in late-phase and imbalanced hyperin-
flammatory response of severe COVID-19. Therefore, studies 
using this ex vivo tissue culture model can be further employed to 
assess the impact of viral evolutionary changes and evaluate new 
therapies against SARS-CoV-2.[43]

2.8. New techniques in ex vivo lung model conservation

The ex vivo lung model is an efficient tool for human lung infection 
study and can be implied in other fields as well. However, one chal-
lenging problem is to keep the cell viability in this kind of model 
for a relatively long time. In recent years, the emergence of a new 
technique named ex vivo lung perfusions (EVLP) can be a solution 
to this problem. EVLP is regarded as the most effective technique 
for estimating marginal donor lungs and may help to prolong the 
normothermic preservation time of ex vivo lung tissues.[48,49] Most 
importantly, it can potentially recondition impaired lung tissues 
and restore good state of them.[50] The basic mechanism of EVLP 
is using a pump to perfuse pulmonary artery with high oncotic 
pressure preservation fluid which is pure or mixed with red blood 
cells and recollecting the liquid in a reservoir.[51] At present, there 
are 3 main EVLP techniques: the Lund, the Organ Care System 
and the Toronto protocols.[50] Nevertheless, the high cost of EVLP 
limit its application in science research and clinic.[49] Therefore, it’s 
necessary to improve current EVLP technology to have longer run-
ning time and lower running cost. EVLP can be an effective way to 
retain viability of the ex vivo lung model in the future.

3. Conclusion
In summary, the short-term ex vivo tissue culture model mimics 
the in vivo tissue microenvironment with a complete tissue archi-
tecture and has been applied in different kinds of lung infections 
(Table 1). This model represents a promising tool for exploring 
molecular events during acute lung, as it allows the investigation 
of the early innate immune response in the human lung. However, 
it also has some inherent limitations: a short period of cell viabil-
ity; inability of cells to propagate; lack of recruitment of cells and 
mediators from blood; incomplete compensation by conditioned 
cell culture medium; bypassing the natural route of bacterial infec-
tion; availability of such human lung tissue samples is limited; can-
not represent the effect of host systemic inflammatory response 
and the adaptive immune response; and limited complex interac-
tions with the host.[25,26,34,45] In addition to its application in lung 
infections, it may also be an important tool for identifying new 
potential molecular targets for immunotherapy and chemother-
apy in lung cancer.[14,52] We believe that this model, in particular, 
combined with other techniques, will be widely applied in further 
research beyond human lung infections.[53]
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