(
A) Comparison of growth phenotypes for all elements between our pilot single-sgRNA library and Horlbeck et al. data, merged by gene name (n=20,228 elements). Growth phenotypes are reported as γ (log
2 fold-enrichment of T
final over T
0, per doubling) and correlated between experiments (r=0.82). (
B) Comparison of growth phenotypes for all elements between our pilot dual-sgRNA library and Horlbeck et al. data, merged by gene name (n=20,228 elements). Growth phenotypes are reported as γ and correlated between experiments (r=0.83). (
C) Comparison of growth phenotypes for all elements between our pilot single- and dual-sgRNA libraries, merged by gene name (n=21,239 with 20,228 targeting elements and 1011 non-targeting elements). Growth phenotypes are reported as γ and correlated between experiments (r=0.86). (
D) Comparison of true and false-positive rates in single element screens. ‘Positives’ (n=1363 elements) were defined as genes with a K562 CRISPRi growth screen p-value <0.001 and γ<–0.05 (
Horlbeck et al., 2016a), and ‘negatives’ were defined as non-targeting control sgRNA pairs (n=1011 elements). (
E) Comparison of recombination rates for non-targeting dual-sgRNA elements between replicates of our K562 growth screen. Non-targeting elements with a growth phenotype (γ>0.05 or γ<−0.05) were excluded (n=973 elements). Recombination rates were weakly correlated between replicates (r=0.30). (
f) Comparison of recombination rates for all dual-sgRNA elements between replicates of our K562 growth screen (n=20,387 elements). Recombination rates were strongly correlated between replicates (r=0.77). (
G) Comparison of recombination rates and growth phenotypes for all dual-sgRNA elements in our K562 growth screen (n=20,387 elements). Growth phenotypes are reported as γ. Recombination rates were strongly anticorrelated with growth phenotypes (r=−0.84).