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Abstract

We propose a method for learning the posture and structure of agents from unlabelled behavioral 

videos. Starting from the observation that behaving agents are generally the main sources of 

movement in behavioral videos, our method, Behavioral Keypoint Discovery (B-KinD), uses 

an encoder-decoder architecture with a geometric bottleneck to reconstruct the spatiotemporal 

difference between video frames. By focusing only on regions of movement, our approach works 

directly on input videos without requiring manual annotations. Experiments on a variety of agent 

types (mouse, fly, human, jellyfish, and trees) demonstrate the generality of our approach and 

reveal that our discovered keypoints represent semantically meaningful body parts, which achieve 

state-of-the-art performance on keypoint regression among self-supervised methods. Additionally, 

B-KinD achieve comparable performance to supervised keypoints on downstream tasks, such as 

behavior classification, suggesting that our method can dramatically reduce model training costs 

vis-a-vis supervised methods.

1. Introduction

Automatic recognition of object structure, for example in the form of keypoints and 

skeletons, enables models to capture the essence of the geometry and movements of 

objects. Such structural representations are more invariant to background, lighting, and other 

nuisance variables and are much lower-dimensional than raw pixel values, making them 

good intermediates for downstream tasks, such as behavior classification [4, 11, 15, 39, 43], 

video alignment [26, 44], and physics-based modeling [7, 12].

However, obtaining annotations to train supervised pose detectors can be expensive, 

especially for applications in behavior analysis. For example, in behavioral neuroscience 

[34], datasets are typically small and lab-specific, and the training of a custom supervised 

keypoint detector presents a significant bottleneck in terms of cost and effort. Additionally, 

once trained, supervised detectors often do not generalize well to new agents with different 
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structures without new supervision. The goal of our work is to enable keypoint discovery 

on new videos without manual supervision, in order to facilitate behavior analysis on novel 

settings and different agents.

Recent unsupervised/self-supervised methods have made great progress in keypoint 

discovery [20, 21, 51] (see also Section 2), but these methods are generally not designed for 

behavioral videos. In particular, existing methods do not address the case of multiple and/or 

non-centered agents, and often require inputs as cropped bounding boxes around the object 

of interest, which would require an additional detector module to run on real-world videos. 

Furthermore, these methods do not exploit relevant structural properties in behavioral videos 

(e.g., the camera and the background are typically stationary, as observed in many real-world 

behavioral datasets [5, 15, 22, 29, 34, 39]).

To address these challenges, the key to our approach is to discover keypoints based on 

reconstructing the spatiotemporal difference between video frames. Inspired by previous 

works based on image reconstruction [20, 37], we use an encoder-decoder setup to encode 

input frames into a geometric bottleneck, and train the model for reconstruction. We then 

use spatiotemporal difference as a novel reconstruction target for keypoint discovery, instead 

of single image reconstruction. Our method enables the model to focus on discovering 

keypoints on the behaving agents, which are generally the only source of motion in 

behavioral videos.

Our self-supervised approach, Behavioral Keypoint Discovery (B-KinD), works without 

manual supervision across diverse organisms (Figure 1). Results show that our discovered 

keypoints achieve state-of-the-art performance on downstream tasks among other self-

supervised keypoint discovery methods. We demonstrate the performance of our keypoints 

on behavior classification [42], keypoint regression [20], and physics-based modeling [7]. 

Thus, our method has the potential for transformative impact in behavior analysis: first, one 

may discover keypoints from behavioral videos for new settings and organisms; second, 

unlike methods that predict behavior directly from video, our low-dimensional keypoints are 

semantically meaningful so that users can directly compute behavioral features; finally, our 

method can be applied to videos without the need for manual annotations.

To summarize, our main contributions are:

1. Self-supervised method for discovering keypoints from real-world behavioral 

videos, based on spatiotemporal difference reconstruction.

2. Experiments across a range of organisms (mice, flies, human, jellyfish, and 

tree) demonstrating the generality of the method and showing that the discovered 

keypoints are semantically meaningful.

3. Quantitative benchmarking on downstream behavior analysis tasks showing 

performance that is comparable to supervised keypoints.
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2. Related work

Analyzing Behavioral Videos.

Video data collected for behavioral experiments often consists of moving agents recorded 

from stationary cameras [1, 4, 5, 11, 15, 22, 33, 39]. These behavioral videos contain 

different model organisms studied by researchers, such as fruit flies [4, 11, 15, 24] and 

mice [5, 17, 22, 39]. From these recorded video data, there has been an increasing effort to 

automatically estimate poses of agents and classify behavior [13, 14, 17, 24, 30, 39].

Pose estimation models that were developed for behavioral videos [16, 30, 35, 39] 

require human annotations of anatomically defined keypoints, which are expensive and 

time-consuming to obtain. In addition to the cost, not all data can be crowd-sourced due 

to the sensitive nature of some experiments. Furthermore, organisms that are translucent 

(jellyfish) or with complex shapes (tree) can be difficult for non-expert humans to annotate. 

Our goal is to enable keypoint discovery on videos for behavior analysis, without the need 

for manual annotations.

After pose estimation, behavior analysis models generally compute trajectory features and 

train behavior classifiers in a fully supervised fashion [5, 15, 17, 39, 43]. Some works have 

also explored using unsupervised methods to discover new motifs and behaviors [3, 18, 

28, 50]. Here, we apply our discovered keypoints to supervised behavior classification and 

compare against baseline models using supervised keypoints for this task.

Keypoint Estimation.

Keypoint estimation models aim to localize a predefined set of keypoints from visual data, 

and many works in this area focus on human pose. With the success of fully convolutional 

neural networks [40], recent methods [8, 32, 45, 49] employ encoder-decoder networks by 

predicting high-resolution outputs encoded with 2D Gaussian heatmaps representing each 

part. To improve model performance, [32, 45, 49] propose an iterative refinement approach, 

[8, 36] design efficient learning signals, and [9, 47] exploit multi-resolution information. 

Beyond human pose, there are also works that focus on animal pose estimation, notably [16, 

30, 35]. Similar to these works, we also use 2D Gaussian heatmaps to represent parts as 

keypoints, but instead of using human-defined keypoints, we aim to discover keypoints from 

video data without manual supervision.

Unsupervised Part Discovery.

Though keypoints provide a useful tool for behavior analysis, collecting annotations is time-

consuming and labor-intensive especially for new domains that have not been previously 

studied. Unsupervised keypoint discovery [20, 21, 51] has been proposed to reduce keypoint 

annotation effort and there have been many promising results on centered and/or aligned 

objects, such as facial images and humans with an upright pose. These methods train and 

evaluate on images where the object of interest is centered in an input bounding box. Most 

of the approaches [20, 27, 51] use an autoencoder-based architecture to disentangle the 

appearance and geometry representation for the image reconstruction task. Our setup is 
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similar in that we also use an encoder-decoder architecture, but crucially, we reconstruct 

spatiotemporal difference between video frames, instead of the full image as in previous 

works. We found that this enables our discovered keypoints to track semantically-consistent 

parts without manual supervision, requiring neither keypoints nor bounding boxes.

There are also works for parts discovery that employ other types of supervision [21, 37, 38]. 

For example, [37] proposed a weakly-supervised approach using class label to discriminate 

parts to handle viewpoint changes, [21] incorporated pose prior obtained from unpaired data 

from different datasets in the same domain, and [38] proposed a template-based geometry 

bottleneck based on a pre-defined 2D Gaussian-shaped template. Different from these 

approaches, our method does not require any supervision beyond the behavioral videos. 

We chose to focus on this setting since other supervisory sources are not readily available for 

emerging domains (ex: jellyfish, trees).

In previous works, keypoint discovery has been applied to downstream tasks, such as image 

and video generation [21, 31], keypoint regression to human-annotated poses [20, 51], 

and video-level action recognition [25, 31]. While we also apply keypoint discovery to 

downstream tasks, we note that our work differs in approach (we discover keypoints directly 

on behavioral videos using spatiotemporal difference reconstruction), focus (behavioral 

videos of diverse organisms), and application (real-world behavior analysis tasks [7, 42]).

3. Method

The goal of B-KinD (Figure 2) is to discover semantically meaningful keypoints in 

behavioral videos of diverse organisms without manual supervision. We use an encoder-

decoder setup similar to previous methods [20, 37], but instead of image reconstruction, 

here we study a novel reconstruction target based on spatiotemporal difference. In behavioral 

videos, the camera is generally fixed with respect to the world, such that the background 

is largely stationary and the agents (e.g. mice moving in an enclosure) are the only source 

of motion. Thus spatiotemporal differences provide a strong cue to infer location and 

movements of agents.

3.1. Self-supervised keypoint discovery

Given a behavioral video, our work aims to reconstruct regions of motion between a 

reference frame It (the video frame at time t) and a future frame It+T (the video frame 

T timesteps later, for some set value of T.) We accomplish this by extracting appearance 

features from frame It and keypoint locations (”geometry features”) from both frames It and 

It+T (Figure 2). In contrast, previous works [20, 21, 27, 37, 38] use appearance features from 

It and geometry features from It+T to reconstruct the full image It+T (instead of difference 

between It and It+T).

We use an encoder-decoder architecture, with shared appearance encoder Φ, geometry 

decoder Ψ, and reconstruction decoder ψ. During training, the pair of frames It and It+T 

are fed to the appearance encoder Φ to generate appearance features, and those features are 

then fed into the geometry decoder Φ to generate geometry features. In our approach, the 
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reference frame It is used to generate both appearance and geometry representations, and the 

future frame It+T is only used to generate a geometry representation. The appearance feature 

ℎa
t  for frame It are defined simply as the output of Φ:ℎa

t = Φ It .

The pose decoder Φ outputs K raw heatmaps Xi ∈ ℝ2, then applies a spatial softmax 

operation on each heatmap channel. Given the extracted pi = (ui, vi) locations for i {1,…, K} 

keypoints from the spatial softmax, we define the geometry features ℎg
t  to be a concatenation 

of 2D Gaussians centered at (ui, vi) with variance σ.

Finally, the concatenation of the appearance feature ℎa
t  and the geometry features ℎg

t  and 

ℎg
t + T  is fed to the decoder φ to reconstruct the learning objective S discussed in the next 

section: S = ψ ℎa
t , ℎg

t , ℎg
t + T .

3.2. Learning formulation

3.2.1 Spatiotemporal difference—Our method works with different types of 

spatiotemporal differences as reconstruction targets. For example:

Structural Similarity Index Measure (SSIM) [48].: This is a method for measuring the 

perceived quality of the two images based on luminance, contrast, and structure features. To 

compute our reconstruction target based on SSIM, we apply the SSIM measure locally on 

corresponding patches between It and It+T to build a similarity map between frames. Then 

we compute dissimilarity by taking the negation of the similarity map.

Frame differences.: When the video background is static with little noise, simple frame 

differences, such as absolute difference (S|d| = |It+T − It|) or raw difference (Sd = It+T − It), 

can also be directly applied as a reconstruction target.

3.2.2 Reconstruction loss—We apply perceptual loss [23] for reconstructing the 

spatiotemporal difference S. Perceptual loss compares the L2 distance between the features 

computed from VGG network φ [41]. The reconstruction S and the target S are fed to 

VGG network, and mean squared error is applied to the features from the intermediate 

convolutional blocks:

ℒrecon = ϕ S It, It + T − ϕ S It, It + T 2 . (1)

3.2.3 Rotation equivariance loss—In cases where agents can move in many 

directions (e.g. mice filmed from above can translate and rotate freely), we would like 

our keypoints to remain semantically consistent. We enforce rotation-equivariance in the 

discovered keypoints by rotating the image with different angles and imposing that the 

predicted keypoints should move correspondingly. We apply the rotation equivariance loss 

(similar to the deformation equivariance in [46]) on the generated heatmap.
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Given reference image I and the corresponding geometry bottleneck hg, we rotate the 

geometry bottleneck to generate pseudo labels ℎg
R° for rotated input images IR° with degree 

R = {90°, 180°, 270°}. We apply mean squared error between the predicted geometry 

bottlenecks ℎg from the rotated images and the generated pseudo labels hg:

ℒr = ℎg
R° − ℎg IR°

2 . (2)

3.2.4 Separation loss—Empirical results show that rotation equivariance encourages 

the discovered keypoints to converge at the center of the image. We apply separation loss to 

encourage the keypoints to encode unique coordinates, and prevent the discovered keypoints 

from being centered at the image coordinates [51]. The separation loss is defined as follows:

ℒs =
i ≠ j

exp − pi − pj
2

2σs2
. (3)

3.2.5 Final objective—Our final loss function is composed of three parts: reconstruction 

loss ℒrecon, rotation equivariance loss ℒr, and separation loss ℒs:

ℒ = ℒrecon + 1epocℎ > n wrℒr + wsℒs . (4)

We adopt curriculum learning [2] and apply ℒr and ℒs once the keypoints are consistently 

discovered from the semantic parts of the target instance.

3.3. Feature extraction for behavior analysis

Following standard approaches [5, 17, 39], we use the discovered keypoints from B-KinD 

as input to a behavior quantification module: either supervised behavior classifiers or a 

physics-based model. Note that this is a separate process from keypoint discovery; we feed 

discovered geometry information into a downstream model.

In addition to discovered keypoints, we extracted additional features from the raw heatmap 

(Figure 3) to be used as input to our downstream modules. For instance, we found that 

the confidence and the shape information from the of the network prediction of keypoint 

location was informative. When a target part is well localized, our keypoint discovery 

network produces a heatmap with a single high peak with low variance; conversely, when 

a target part is occluded, the raw heatmap contains a blurred shape with lower peak value. 

This “confidence” score (heatmap peak value) is also a good indicator for whether keypoints 

are discovered on the background (blurred over the background with low confidence) or 

tracking anatomical body parts (peaked with high confidence), visualized in Supplementary 

materials. The shape of a computed heatmap can also reflect shape information of the target 

(e.g. stretching).

Given a raw heatmap Xk for part k, the confidence score is obtained by choosing the 

maximum value from the heatmap, and the shape information is obtained by computing 
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the covariance matrix from the heatmap. Figure 3 visualizes the features we extract from 

the raw heatmaps. Using the normalized heatmap as the probability distribution, additional 

geometric features are computed:

σx2 Xk =
ij

xi − uk
2Xk(i, j),

σy2 Xk =
ij

yj − vk
2Xk(i, j)

σxy2 Xk =
ij

xi − uk yj − vk Xk(i, j) .

(5)

4. Experiments

We demonstrate that B-KinD is able to discover consistent keypoints in real-world 

behavioral videos across a range of organisms (Section 4.1.1). We evaluate our keypoints on 

downstream tasks for behavior classification (Section 4.2) and pose regression (Section 4.3), 

then illustrate additional applications of our keypoints (Section 4.4).

4.1. Experimental setting

4.1.1 Datasets

CalMS21.: CalMS21 [42] is a large-scale dataset for behavior analysis consisting of videos 

and trajectory data from a pair of interacting mice. Every frame is annotated by an expert 

for three behaviors: sniff, attack, mount. There are 507k frames in the train split, and 262k 

frames in the test split (video frame: 1024 × 570, mouse: approx 150 × 50). We use only 

the train split on videos without miniscope cable to train B-KinD. Following [42], the 

downstream behavior classifier is trained on the entire training split, and performance is 

evaluated on the test split.

MARS-Pose.: This dataset consists of a set of videos with similar recording conditions 

to the CalMS21 dataset. We use a subset of the MARS pose dataset [39] with keypoints 

from manual annotations to evaluate the ability of our model to predict human-annotated 

keypoints, with {10, 50, 100, 500} images for train and 1.5k images for test.

Fly vs. Fly.: These videos consists of interactions between a pair of flies, annotated per 

frame by domain experts. We use the Aggression videos from the Fly vs. Fly dataset [15], 

with the train and test split having 1229k and 322k frames respectively (video frame: 144 × 

144, fly: approx 30 × 10). Similar to [43], we evaluate on behaviors of interest with more 

than 1000 frames in the training set (lunge, wing threat, tussle).

Human 3.6M.: Human 3.6M [19] is a large-scale motion capture dataset, which consists 

of 3.6 million human poses and images from 4 viewpoints. To quantitatively measure the 

pose regression performance against baselines, we use the Simplified Human 3.6M dataset, 

which consists of 800k training and 90k testing images with 6 activities in which the human 

body is mostly upright. We follow the same evaluation protocol from [51] to use subjects 1, 
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5, 6, 7, and 8 for training and 9 and 11 for testing. We note that each subject has different 

appearance and clothing.

Jellyfish.: The jellyfish data is an in-house video dataset containing 30k frames of recorded 

swimming jellyfish (video frame: 928 × 1158, jellyfish: approx 50 pix in diameter). We use 

this dataset to qualitatively test the performance of B-KinD on a new organism, and apply 

our keypoints to detect the pulsing motion of the jellyfish.

Vegetation.: This is an in-house dataset acquired over several weeks using a drone to record 

the motion of swaying trees. The dataset consists of videos of an oak tree and corresponding 

wind speeds recorded using an anemometer, with a total of 2.41M video frames (video 

frame: 512×512, oak tree: varies, approx 1
4  of the frame). We evaluate this dataset using a 

physics-based model [7] that relates the visually observed oscillations to the average wind 

speeds.

4.1.2 Training and evaluation procedure—We train B-KinD using the full objective 

in Section 3.2.5. During training, we rescale images to 256 × 256 and use T of around 

0.2 seconds, except Human3.6M, where we use 128 × 128. Unless otherwise specified, all 

experiments are ran with all keypoints discovered from B-KinD with SSIM reconstruction 

and with 10 keypoints for mouse, fly, and jellyfish, 16 keypoints for Human3.6M, 15 

keypoints for Vegetation. We train on the train split of each dataset as specified, except 

for jellyfish and vegetation, where we use the entire dataset. Additional details are in the 

Supplementary materials.

After training the keypoint discovery model, we extract the keypoints and use it for different 

evaluations based on the labels available in the dataset: behavior classification (CalMS21, 

Fly), keypoint regression (MARS-Pose, Human), and physics-based modeling (Vegetation).

For keypoint regression, similar to previous works [20, 21], we compare our regression 

with a fully supervised 1-stack hourglass network [32]. We evaluate keypoint regression on 

Simplified Human 3.6M by using a linear regressor without a bias term, following the same 

evaluation setup from previous works [27, 51]. On MARS-Pose, we train our model in a 

semi-supervised fashion with 10, 50, 100, 500 supervised keypoints to test data efficiency. 

For behavior classification, we evaluate on CalMS21 and Fly, using available frame-level 

behavior annotations. To train behavior classifiers, we use the specified train split of each 

dataset. For CalMS21 and Fly, we train the 1D Convolutional Network benchmark model 

provided by [42] using B-KinD keypoints. We evaluate using mean average precision 

(MAP) weighted equally over all behaviors of interest.

4.2. Behavior classification results

CalMS21 Behavior Classification.—We evaluate the effectiveness of B-KinD for 

behavior classification (Table 1). Compared to supervised keypoints trained for this task, our 

keypoints (without manual supervision) is comparable when using both pose and confidence 
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as input. Compared to other self-supervised methods, even those that use bounding boxes, 

our discovered keypoints on the full image generally achieve better performance.

Keypoints discovered with image reconstruction, similar to baselines [20,37] cannot track 

the agents well without using bounding box information (Figure 4) and does not perform 

well for behavior classification (Table 1). When we provide bounding box information to 

the model based on image reconstruction, the performance is significantly improved, but 

this model does not perform as well as B-KinD keypoints from spatiotemporal difference 

reconstruction.

For the per-class performance (see the Supplementary materials), the biggest gap exists 

between B-KinD and MARS on the “attack” behavior. This is likely because during attack, 

the mice are moving quickly, and there exists a lot of motion blur and occlusion which 

is difficult to track without supervision. However, once we extract more information from 

the heatmap, through computing keypoint confidence, our keypoints perform comparably to 

MARS.

Fly Behavior Classification.—The FlyTracker [15] uses hand-crafted features computed 

from the image, such as contrast, as well as features from tracked fly body parts, such as 

wing angle or distance between flies. Using discovered keypoints, we compute comparable 

features without assuming keypoint identity, by computing speed and acceleration of 

every keypoint, distance between every pair, and angle between every triplet. For all 

self-supervised methods, we use keypoints, confidence, and covariance for behavior 

classification. Results demonstrate that while there is a small gap in performance to 

the supervised estimator, our discovered keypoints perform much better than image 

reconstruction, and is comparable to models that require bounding box inputs (Table 2).

4.3. Pose regression results

MARS Pose Regression.—We evaluate the pose estimation performance of our method 

in the setting where some human annotated keypoints exist (Figure 5). For this experiment, 

we train B-KinD in a semi-supervised fashion, where the loss is a sum of both our keypoint 

discovery objective (Section 3.2.5) as well as standard keypoint estimation objectives based 

on MSE [39]. For both black and white mouse, when using our keypoint discovery objective 

in a semi-supervised way during training, we are able to track keypoints more accurately 

compared to the supervised method [39] alone. We note that the performance of both 

methods converge at around 500 annotated examples.

Simplified Human 3.6M Pose Regression.—To compare with existing keypoint 

discovery methods, we evaluate our discovered keypoints on Simplified Human3.6M (a 

standard benchmarking dataset) by regressing to annotated keypoints (Table 3). Though 

our method is directly applicable to full images, we train the discovery model using 

cropped bounding box for a fair comparison with baselines, which all use cropped bounding 

boxes centered on the subject. Compared to both self-supervised + prior information and 

self-supervised + regression, our method shows state-of-the-art performance on the keypoint 
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regression task, suggesting spatiotemporal difference is an effective reconstruction target for 

keypoint discovery.

Learning Objective Ablation Study—We report the pose regression performance on 

Simplified Human3.6M (Table 4) by varying the spatiotemporal difference reconstruction 

target for training B-KinD. Here, image reconstruction also performs well since cropped 

bounding box is used as an input to the network. Overall, spatiotemporal difference 

reconstruction yield better performance over image reconstruction, and performance can 

be further improved by extracting additional confidence and covariance information from the 

discovered heatmaps.

4.4. Additional applications

We show qualitative performance and demonstrate additional downstream tasks using our 

discovered keypoints, on pulse detection for Jellyfish and on wind speed regression for 

Vegetation.

Qualitative Results.—Qualitative results (Figure 6) demonstrates that B-KinD is able to 

track some body parts consistently, such as the nose of both mice and keypoints along the 

spine; the body and wings of the flies; the mouth and gonads of the jellyfish; and points on 

the arms and legs of the human. For visualization only, we show only keypoints discovered 

with high confidence values (Section 3.3); for all other experiments, we use all discovered 

keypoints.

Pulse Detection.—Jellyfish swimming is among the most energetically efficient forms 

of transport, and its control and mechanics are studied in hydrodynamics research [10]. 

Of key interest is the relationship between body plan and swim pulse frequency across 

diverse jellyfish species. By computing distance between B-KinD keypoints, we are able 

to extract a frequency spectrogram to study jellyfish pulsing, with a visible band at the 

swimming frequency (Supplementary materials). This provides a way to automatically 

annotate swimming behavior, which could be quickly applied to video from multiple species 

to characterize the relationship between swimming dynamics and body plan.

Wind Speed Modeling.—Measuring local wind speed is useful for tasks such as tracking 

air pollution and weather forecasting [6]. Oscillations of trees encode information on wind 

conditions, and as such, videos of moving trees could function as wind speed sensors [6, 7]. 

Using the Vegetation dataset, we evaluate the ability of our keypoints to predict wind speed 

using a physics-based model [7]. This model defines the relationship between the mean wind 

speed and the structural oscillations of the tree, and requires tracking these oscillations from 

video, which was previously done manually. We show that B-KinD can accomplish this task 

automatically. Using our keypoints, we are able to regress the measured ground truth wind 

speed with an R2 = 0.79, suggesting there is a good agreement between the proportionality 

assumption from [7] and the experimental results using the keypoint discovery model.

Limitations.—One issue we did not explore in detail, and which will require further work, 

is keypoint discovery for agents that may be partially or completely occluded at some 
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point during observation, including self-occlusion. Additionally, similar to other keypoint 

discovery models [27, 38, 51], we observe left/right swapping of some body parts, such 

as the legs in a walking human. One approach that might overcome these issues would be 

to extend our model to discover the 3D structure of the organism, for instance by using 

data from multiple cameras. Despite these challenges, our model performs comparably to 

supervised keypoints for behavior classification.

5. Discussion and conclusion

We propose B-KinD, a self-supervised method to discover meaningful keypoints from 

unlabelled videos for behavior analysis. We observe that in many settings, behavioral 

videos have fixed cameras recording agents moving against a (quasi) stationary background. 

Our proposed method is based on reconstructing spatiotemporal difference between video 

frames, which enables B-KinD to focus on keypoints on the moving agents. Our approach is 

general, and is applicable to behavior analysis across a range of organisms without requiring 

manual annotations.

Results show that our discovered keypoints are semantically meaningful, informative, and 

enable performance comparable to supervised keypoints on the downstream task of behavior 

classification. Our method will reduce the time and cost dramatically for video-based 

behavior analysis, thus accelerating scientific progress in fields such as ethology and 

neuroscience.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Self-supervised Behavioral Keypoint Discovery.
Intermediate representations in the form of keypoints are frequently used for behavior 

analysis. We propose a method to discover keypoints from behavioral videos without 

the need for manual keypoint or bounding box annotations. Our method works across a 

range of organisms (including mice, humans, flies, jellyfish and tree), works with multiple 

agents simultaneously (see flies and mice above), does not require bounding boxes (boxes 

visualized above purely for identifying the enlarged regions of interest) and achieves state-

of-the-art performance on downstream tasks.
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Figure 2. B-KinD, an approach for keypoint discovery from spatiotemporal difference 
reconstruction.
It and It+T are video frames at time t and t + T. Both frame It and frame It+T are fed to 

an appearance encoder Φ and a pose decoder Ψ. Given the appearance feature from It and 

geometry features from both It and It+T (Sec 3.1), our model reconstructs the spatiotemporal 

difference (Sec 3.2.1) computed from two frames using the reconstruction decoder ψ.
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Figure 3. Behavior Classification Features.
Extracting information from the raw heatmap (Section 3.3): the confidence scores and the 

covariance matrices are computed from normalized heatmaps. Note that the features are 

computed for all x, y coordinates. We visualize the zoomed area around the target instance 

for illustrative purposes.
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Figure 4. 
Comparison with existing methods [20], full image, bounding box, and SSIM 

reconstruction (ours). “Jakab et al. ” and “full image” results are based on full image 

reconstruction. “White mouse bounding box” and “black mouse bounding box” show the 

results when the cropped bounding boxes were fed to the network for image reconstruction.
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Figure 5. Keypoint data efficiency on MARS-Pose.
The supervised model is based on [39] using stacked hourglass [32], while the semi-

supervised model uses both our self-supervised loss and supervision. PCK is computed 

at 0.5cm threshold, averaged across nose, ears, and tail keypoints, over 3 runs. “b” and “w” 

indicates the black and white mouse respectively.
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Figure 6. Qualitative Results of B-KinD.
Qualitative results for B-KinD trained on CalMS21 (mouse), Fly vs. Fly (fly), Human3.6M 

(human), jellyfish and Vegetation (tree). Additional visualizations are in the Supplementary 

materials.
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Table 1.
Behavior Classification Results on CalMS21.

“Ours” represents classifiers using input keypoints from our discovered keypoints. “conf” represents using the 

confidence score, and “cov” represents values from the covariance matrix of the heatmap.

CalMS21 Pose Conf Cov MAP

Fully supervised 

MARS † [39]

✓ .856 ± .010

✓ ✓ .874 ± .003

✓ ✓ ✓ .880 ± .005

Self-supervised 

Jakab et al. [20] ✓ .186 ± .008

Image Recon.

✓ .182 ± .007

✓ ✓ .184 ± .006

✓ ✓ ✓ .165 ± .012

Image Recon. bbox†

✓ .819 ± .008

✓ ✓ .812 ± .006

✓ ✓ ✓ .812 ± .010

Ours

✓ .814 ± .007

✓ ✓ .857 ± .005

✓ ✓ ✓ .852 ± .013

†
refers to models that require bounding box inputs before keypoint estimation. Mean and std dev from 5 classifier runs are shown.
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Table 2.
Behavior Classification Results on Fly.

“FlyTracker” represents classifiers using hand-crafted inputs from [15]. The self-supervised keypoints all use 

the same “generic features” computed on all keypoints: speed, acceleration, distance, and angle.

Fly MAP

Hand-crafted features 

FlyTracker [15] .809 ± .013

Self-supervised + generic features 

Image Recon. .500 ± .024

Image Recon. bbox† .750 ± .020

Ours .727 ± .022

†
refers to models that require bounding box inputs before keypoint estimation. Mean and std dev from 5 classifier runs are shown.
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Table 3.
Comparison with state-of-the-art methods for landmark prediction on Simplified Human 
3.6M.

The error is in %-MSE normalized by image size.

Simplified H36M all wait pose greet direct discuss walk

Fully supervised: 

Newell [32] 2.16 1.88 1.92 2.15 1.62 1.88 2.21

Self-supervised + unpaired labels 

Jakab [21]‡ 2.73 2.66 2.27 2.73 2.35 2.35 4.00

Self-supervised + template 

Schmidtke [38] 3.31 3.51 3.28 3.50 3.03 2.97 3.55

Self-supervised + regression 

Thewlis [46] 7.51 7.54 8.56 7.26 6.47 7.93 5.40

Zhang [51] 4.14 5.01 4.61 4.76 4.45 4.91 4.61

Lorenz [27] 2.79 – – – – – –

Ours (best) 2.44 2.50 2.22 2.47 2.22 2.77 2.50

Ours (mean) 2.53 2.58 2.31 2.56 2.34 2.83 2.58

Ours (std) .056 .047 .062 .048 .066 .048 .063

All methods predict 16 keypoints except for [21]‡, which uses 32 keypoints for training a prior model from the Human 3.6M dataset. B-Kind 
results are computed from 5 runs.
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Table 4.
Learning objective ablation on Simplified Human3.6M.

%-MSE error is reported by changing the reconstruction target. Extracted features correspond to keypoint 

locations, confidence, and covariance. Results are from 5 B-KinD runs.

Learning Objective %-MSE

Image Recon. 2.918 ± 0.139

Abs. Difference 2.642 ± 0.174

Difference 2.770 ± 0.158

SSIM 2.534 ± 0.056

Self-supervised + extracted features 

SSIM 2.494 ± 0.047
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