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Abstract
Leptomeningeal metastases represent an aggressive stage of cancer with few durable treatment options. Improved under-
standing of cancer biology, neoplastic reliance on oncogenic driver mutations, and complex immune system interactions 
have resulted in an explosion in cancer-directed therapy in the last two decades to include small molecule inhibitors and 
immune checkpoint inhibitors. Most of these therapeutics are underexplored in patients with leptomeningeal metastases, 
limiting extrapolation of extracranial and even intracranial efficacy outcomes to the unique leptomeningeal space. Further 
confounding our interpretation of drug activity in the leptomeninges is an incomplete understanding of drug penetration 
through the blood–cerebrospinal fluid barrier of the choroid plexus. Nevertheless, a number of retrospective studies and 
promising prospective trials provide evidence of leptomeningeal activity of several small molecule and immune checkpoint 
inhibitors and underscore potential areas of further therapeutic development for patients harboring leptomeningeal disease.

 *	 Adrienne A. Boire 
	 boirea@mskcc.org

1	 Department of Neurology, Memorial Sloan Kettering Cancer 
Center, 1275 York Avenue, New York, NY 10065, USA

2	 Human Oncology and Pathogenesis Program, Brain Tumor 
Center, Memorial Sloan Kettering Cancer Center, New York, 
NY, USA

Key Points 

Several small molecule inhibitors, such as osimertinib 
and lorlatinib, demonstrate high penetrance into the 
cerebrospinal fluid, potent leptomeningeal activity, and 
superior survival outcomes relative to historical controls.

Immune checkpoint inhibitors can induce leptomenin-
geal responses in select patients with immunotherapy-
responsive cancers, though the bioactivity of these 
agents may be hampered by a dysfunctional leptome-
ningeal immune microenvironment and relatively low 
cerebrospinal fluid drug penetrance with intravenous 
administration.

Clinical trials designed specifically for patients with lep-
tomeningeal metastases, with inclusion of cerebrospinal 
fluid pharmacokinetic analyses, are needed to define the 
leptomeningeal bioactivity of novel agents in this patient 
population.

1  Introduction

Leptomeningeal metastases (LM) represent an aggressive 
stage of advanced cancer, defined by the entry of metastatic 
cancer cells into the cerebrospinal fluid (CSF) [1, 2]. Upon 
influx into this unique nutrient-sparse microenvironment, 
LM disseminate along the entire neuraxis as free-floating 
cells in the CSF and adherent plaques to the brain and spinal 
cord [3–6]. The incidence of LM varies by cancer type, rang-
ing from 5-20% based on population and autopsy studies, 
and is likely increasing as patients live longer with cancer 
[7–10]. Historical survival following the diagnosis of LM is 
2–5 months [11, 12]. This grim prognosis is, to some extent, 
improving in the modern era of targeted small molecule 
inhibitors and immunotherapy. Prior to the advent of modern 
cancer therapeutics in the last two decades, the treatment of 
LM from solid tumor malignancies has traditionally involved 
intrathecal chemotherapy [13–18], palliative involved-field 
radiation therapy to bulky or symptomatic disease [19, 20], 
and CSF-penetrating systemic chemotherapies [21]. None 
of these approaches have demonstrated a survival benefit 
for patients with LM in prospective studies. Very recently, 
proton craniospinal irradiation has emerged as an efficacious 
and life-prolonging strategy compared with conventional 
involved-field radiation [22, 23].

Small molecule inhibitors and immune checkpoint inhibi-
tors have revolutionized the treatment of both localized and 
advanced cancer, demonstrating a significant improvement 
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in cancer control and patient survival in large, controlled 
clinical trials. Patients with central nervous system (CNS) 
metastases, most particularly LM, have been excluded 
from the majority of these studies for several reasons. First, 
patients with CNS metastases possess a worse prognosis 
compared with those with extracranial-only disease, mak-
ing them challenging to study in a larger patient popula-
tion for efficacy endpoints. Second, assessing LM response 
to cancer therapeutics is inherently challenging given the 
dynamic disease state, and standardized grading systems for 
LM response have not been fully validated. Third, genomic 
divergence between the primary tumor and intracranial 
metastases underscores a potential opportunity for dis-
cordant intracranial and extracranial responses [24]. Last 
and very importantly, the existence of distinct blood–brain 
(BBB) and blood–CSF (BCSFB) barrier systems leads to 
uncertainty regarding drug access into the CNS, with incon-
sistent permeability potential between the brain parenchyma 
and intrathecal space [25]. For example, the well-established 
P-glycoprotein drug efflux transporter appears to have 
opposing functions at the BBB and BCSFB, transporting 
drugs out of the brain parenchyma but into the CSF [26, 
27]. Comparative brain tissue and CSF pharmacokinetic 
sampling is essential to better understand differential drug 
transport into these two compartments of the CNS, and one 
should not assume that lack of BBB penetration has equiva-
lent consequences at the BCSFB (or vice versa).

As a result of these limitations, the efficacy of targeted 
therapies and immune checkpoint blockade in the leptome-
ningeal space is largely unexplored, with potential therapeu-
tic impact based on case-reported responses, retrospective 
institutional studies, post-hoc analyses, and small prospec-
tive studies designed specifically for patients with CNS 
metastases. A wide range of CSF drug penetrance has been 
established for numerous agents (Table 1), though variabil-
ity in patient characteristics, pharmacokinetic assays, and 
reporting standards add complexity when making intra-
class drug comparisons. Nevertheless, these encouraging 
studies provide proof-of-concept evidence of leptomenin-
geal activity and highlight several areas worthy of further 
investigation.

2 � Small Molecule Inhibitors

The oncologic community has seen an enormous shift in 
cancer-directed therapy from cytotoxic chemotherapy to 
small molecule inhibitors [28]. Small molecule inhibitors 
in cancer therapy are defined as low molecular weight com-
pounds (≤ 1 kDa) capable of modulating extracellular and 
intracellular aberrant pathways involved in tumorigenesis. 
As a function of their small size, small molecule inhibitors 
are capable of translocating through the plasma membrane 

to access their molecular targets. Most small molecule 
inhibitors target critical pathways in cancer development, 
such as tyrosine and serine/threonine receptor kinases, sig-
nal transduction pathways, matrix metalloproteinases, heat 
shock proteins, and DNA repair enzymes. However, despite 
the relative specificity of small molecular inhibitors, many 
of these agents interact with multiple cellular proteins in 
both neoplastic and healthy tissues, increasing the risk for 
systemic toxicity. Additionally, pathway ‘escape’ mutations 
and other small molecule resistance mechanisms limit the 
long-term durability of these agents in some patients [29].

To date, approximately 80 small molecule inhibitors have 
been approved by the Food and Drug Administration (FDA) 
for hematologic and solid tumor malignancies [30–32]. A 
number of these agents, such as epidermal growth factor 
receptor (EGFR) and anaplastic lymphoma kinase (ALK) 
inhibitors for non-small-cell lung cancer (NSCLC), human 
epidermal growth factor receptor (HER2)-targeting agents 
for breast cancer, and BRAF/MEK inhibitors for melanoma, 
have become the standard of care, reflecting their impact 
on disease control and patient survival [33–36]. However, 
despite the rising incidence of brain metastases across solid 
tumor malignancies, only a small portion of these small mol-
ecule inhibitors have been prospectively studied in patients 
with active, intracranial disease. The activity and durabil-
ity of small molecule inhibitors on LM remains even more 
elusive.

2.1 � EGFR Inhibitors

EGFR mutations are the most frequently encountered onco-
genes in NSCLC. EGFR is a transmembrane glycoprotein 
receptor that is tightly regulated to cellular proliferation. 
This receptor tyrosine kinase (RTK) harbors an extracel-
lular epidermal growth factor binding domain, a transmem-
brane domain, and an intracellular tyrosine kinase domain 
which manipulates several downstream signaling pathways, 
including the Janus kinase (JAK)-signal transducer and acti-
vator of transcription(STAT), phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B (Akt)/mammalian target of rapamy-
cin (mTOR), and mitogen-activated protein kinase (MAPK) 
pathways [37]. EGFR gene amplification and mutations 
resulting in receptor overactivation have been implicated 
in the pathogenesis of many human malignancies, namely 
NSCLC and glioblastoma [38, 39]. Activating mutations in 
the EGFR gene primarily occur in a portion of the tyrosine 
kinase domain encoded on exons 18–21. The most com-
mon mutations in NSCLC are exon 19 in-frame deletions 
and exon 21 L858R substitutions, accounting for over 80% 
of sensitizing mutations [40]. The exon 20 T790M muta-
tion also holds significant relevance, often presenting as a 
second-site resistance mutation to early generation tyros-
ine kinase inhibitors (TKI), erlotinib and gefitinib. EGFR 
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mutation incidence varies by geographic region, present in 
30–50% of cases of East Asian descent and 10–13% of cases 
of North American and European descent [41]. Patients har-
boring EGFR mutations have a higher incidence of CNS 
metastases, with an LM rate of 9.4% compared with 3.4% 
among their EGFR-wildtype counterparts [42, 43].

EGFR-TKIs are among the earliest examples of small 
molecule inhibitors in solid tumor malignancies, and there-
fore also among the most studied in patients with LM. The 
first- and second-generation EGFR-TKIs (erlotinib, gefitinib, 
afatinib) have demonstrated measurable drug levels within 
the CSF and have been investigated in patients with LM in 
a few small prospective and retrospective studies. At stand-
ard dosing, erlotinib has been observed to have superior 
CSF drug levels to gefitinib, with a CSF concentration of 
66.9 ± 39.0 nM versus 8.2 ± 4.3 nM, respectively [44]. Con-
sequently, retrospective analysis supports that erlotinib may 
outperform gefitinib in the treatment of NSCLC LM [45, 
46]. The relatively low CSF concentrations of gefitinib, how-
ever, increase with gefitinib dose escalation (CSF level up 
to 42 nM at gefitinib 1000 mg/day), and in a single patient, 
corresponded to CSF cancer cell clearance at peak drug lev-
els [47]. This finding prompted a phase I study of gefitinib 
alternating high dose (750–1000 mg/day) and maintenance 
dose (500 mg/day) every 2 weeks in patients with NSCLC 
LM, with a reported median neurological progression-free 
survival (PFS) of 2.3 months and a median overall survival 
(OS) of 3.5 months [48]. Despite the observation of CSF 
cancer cell clearance with higher CSF gefitinib concentra-
tions in the case report, this correlation was not observed in 
the controlled prospective study. Afatinib also has observed 
CSF penetration in 11 patients treated with afatinib 40 mg/
day, with a CSF level of 3.16 ± 1.95 nM corresponding to a 
CSF penetration rate of 2.45 ± 2.91% [49]. Survival in this 
small prospective LM cohort was 3.8 months, analogous to 
that shown with other early-generation EGFR-TKIs.

Osimertinib, a third-generation EGFR-TKI, was devel-
oped to overcome the acquired resistance to early-generation 
EGFR-TKIs by selectively and irreversibly inhibiting a broad 
range of EGFR mutations, including T790M [50, 51]. Osi-
mertinib has also demonstrated superior BBB penetration in 
preclinical pharmacokinetic studies [52, 53], radiolabeled 
11C-osimertinib CNS uptake by PET brain in healthy con-
trols [54], and unprecedented CNS control rates in prospec-
tive clinical trials [55, 56].

Similarly, patients with EGFR-mutant NSCLC LM 
treated with osimertinib at doses ranging 80–160 mg/day 
achieve higher CSF drug concentrations and improved LM 
control when compared with studies of early generation 
TKIs [57–61]. A small prospective study of osimertinib 
80 mg in 13 patients with possible or confirmed LM har-
boring T790M resistance mutations demonstrated a PFS 
of 7.2 months (95% CI 4.0–NR). In this study, survival 

was not reached, with higher CSF clearance rates in those 
with a detectable T790M mutation in the CSF [57]. The 
AURA program (AURA extension, AURA2, AURA17, 
and AURA3) evaluated osimertinib 80 mg daily in patients 
with T790M resistance mutations and disease progression 
on prior TKIs. These studies included patients with stable 
or asymptomatic LM. Twenty-two patients with LM in this 
dataset were retrospectively evaluated by neuroradiologic 
assessment, achieving an LM objective response rate (ORR) 
of 55% (95% CI 32–76) [58]. Median LM-PFS was 11.1 
months (95% CI 4.6–NC) and OS was 18.8 months (95% CI 
6.3–NC). While encouraging in the duration of LM disease 
control, interpretation of this study is limited due to the ret-
rospective design, post-hoc analysis, and lack of correlative 
CSF cytologic data.

In an effort to achieve greater leptomeningeal durabil-
ity and driven by encouraging dose-escalation preclinical 
models, the phase I BLOOM study enrolled 41 patients 
with EGFR-mutant NSCLC LM to a double dose of osi-
mertinib 160 mg daily after prior treatment with TKIs [59]. 
A slightly higher LM-ORR of 62% (95% CI 45–78) was 
achieved compared with the retrospective AURA LM analy-
sis, with approximately half of responders achieving a com-
plete response and with a duration of LM control of 15.2 
months (95% CI 7.5–17.5) on blinded independant central 
review. The entire cohort demonstrated a median OS of 11.0 
months (95% CI 8.0–18.0). Osimertinib and its metabolites 
were detectable in the CSF at steady-state drug levels, with 
an osimertinib CSF-to-free plasma ratio of 16%. A simi-
lar, phase II study evaluated osimertinib 160 mg daily in 
40 patients with T790M-positive LM [60]. An intracranial 
disease control rate (DCR) of 92.5% was reported with 5 
complete responders, and a median PFS and median OS 
of 8.0 months (95% CI 7.2–NR) and 13.3 months (95% CI 
9.1–NR), respectively. Importantly, the use of double-dose 
osimertinib ‘rescued’ intracranial disease control in 6 of 8 
patients who had leptomeningeal progression on osimertinib 
80 mg daily, though the duration of LM response in this 
small subgroup analysis was not reported. Whether osimer-
tinib 80 mg versus 160 mg is superior in treatment-naïve 
EGFR-mutant NSCLC LM is yet to be determined, and of 
particular importance given greater systemic toxicity at 
higher doses [50]. CSF penetration rate has been reported 
as between 2.5 and 31.7% with osimertinib 80 mg [57, 61], 
and 16% with osimertinib 160 mg [59]. Given the overlap-
ping CSF drug levels and differences between pharmacoki-
netic assessments, accurate conclusions cannot be drawn 
regarding the impact of CSF concentration and LM control. 
A comparative double-arm prospective study with CSF and 
plasma pharmacokinetic sampling would be informative.

Combinations of osimertinib with other agents in LM, 
such as pemetrexed and platinum-based therapy (FLAURA2, 
NCT04035486) and the vascular endothelial growth factor 
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(VEGF) inhibitor bevacizumab (NCT04425681), are cur-
rently under investigation. Additional third-generation 
EGFR-TKIs, such as lazertinib and almonertinib, are also in 
development and require further testing to understand poten-
tial activity within the leptomeninges [62]. Lazertinib is cur-
rently under investigation in combination with amivantamab, 
an EGFR-MET bispecific antibody with immune cell-direct-
ing activity [63], in patients with brain and leptomeningeal 
metastases in a two-arm phase II study (NCT04965090).

2.2 � MET Inhibitors

Acquired resistance to EGFR inhibitors in NSCLC is com-
mon after 6–12 months of treatment by two non-mutually 
exclusive mechanisms: secondary resistance mutations (such 
as exon 20 T790M in 50–60% of patients) and ‘oncogene 
kinase switch’ pathways (including MET gene amplification 
in 5–22% of patients) [64].

MET (or c-MET) gene amplification results in upregula-
tion of the MET RTK on the cellular membrane, resulting 
in signal transduction through the PI3K/Akt and MAPK 
pathways. Numerous genetic alterations (including point 
mutations, deletions, insertions, and indels) have also been 
shown to induce MET exon 14 skipping, which results in 
impairment in CBL-mediated receptor degradation, sub-
sequent MET receptor accumulation, and aberrant MET 
oncogene signaling [65]. MET exon 14 mutations occur in 
approximately 3–4% of patients with NSCLC, seen more 
commonly in older patients, those with a smoking history, 
and pleomorphic carcinoma or adenosquamous cell carci-
noma subtypes [66].

Two highly selective and brain-penetrant MET inhibitors, 
capmatinib and tepotinib, are FDA-approved for the treat-
ment of advanced MET exon 14-skipping mutant NSCLC 
[67, 68]. There are no prospective studies investigating 
the activity of either MET inhibitor in patients with LM. 
However, a case report of capmatinib in a patient with MET 
exon 14 mutant NSCLC demonstrated symptom resolution 
and LM radiographic improvement after 2 months of treat-
ment [69]. Duration of disease control was not reported. 
Two case reports also demonstrate leptomeningeal response 
to tepotinib lasting for at least 5 months [70, 71]. A CSF 
penetration rate between the two patients was calculated 
to be 1.2–1.8%, which is greater than the known half-
maximal inhibitory concentration (IC50) of tepotinib and 
therefore suggestive of pharmacokinetic potential in the 
leptomeninges.

2.3 � ALK Inhibitors

Genetic rearrangements affecting the ALK gene resulting in 
RTK overexpression are also often implicated in tumor biol-
ogy, present in approximately 5% of patients with NSCLC 

[72]. ALK-fusion proteins retain a C-terminus tyrosine 
kinase, joined to a unique protein at the N-terminus, result-
ing in kinase overactivation and signal transduction of cell 
survival and proliferation pathways. In the case of NSCLC, 
the most common ALK rearrangement is the echinoderm 
microtubule-associated protein-like 4 (EML4)-ALK fusion 
protein, which is enriched in the young, non-smoker popula-
tion [73, 74]. Patients with EML4-ALK rearrangements have 
a higher rate of CNS metastases at both initial presentation 
and relapse, and approximately 5% of patients will develop 
LM at an advanced stage of disease [75].

Crizotinib, a first generation ALK and c-ros oncogene 1 
(ROS1) inhibitor, was associated with reasonable extracra-
nial disease control but displayed a less robust intracranial 
response, with the CNS as a new site of disease in 20% of 
patients at the time of progression [76]. Case reports of lep-
tomeningeal response to crizotinib tend to be disappointing, 
likely owing to the low CSF-to-plasma drug ratios (range 
0.0006–0.026) [77, 78]. Second-generation (ceritinib [79], 
alectinib [80–83], brigatinib [84–86]) and third-generation 
(lorlatinib [34, 87–90]) ALK inhibitors have since emerged 
with improved brain and leptomeningeal response rates 
and CSF penetration. For example, a linear relationship 
was observed between CSF and free plasma alectinib lev-
els, with a CSF trough of 2.69 nM notably greater than the 
compound’s in vitro IC50 [81]. Case reports and small retro-
spective studies have reported LM response to alectinib for 
a median of 13 months, with both clinical and radiographic 
improvement [82, 83].

Lorlatinib, a dual ALK/ROS1 inhibitor and third-gener-
ation ALK-TKI, was designed to have superior CNS pen-
etration and demonstrated potent preclinical brain uptake as 
visualized with PET scans using radiolabeled 11C-lorlatinib 
[91]. Not surprisingly, the phase III CROWN study con-
firmed a robust intracranial ORR of 82% (95% CI 57–96) 
among lorlatinib-treated TKI-naïve patients with measurable 
brain metastases [34], prompting FDA approval of lorlat-
inib as first-line treatment of ALK-rearranged NSCLC. CSF 
sampling of 10 total patients treated with lorlatinib 100 mg 
daily in phase I/II studies revealed a CSF-to-plasma ratio of 
0.73 [92] and 0.77 [93], far higher than what had been pre-
viously demonstrated for crizotinib. Prospective studies of 
lorlatinib in patients with LM are lacking, however a phase 
II subgroup analysis and several case reports in patients 
with ALK+ LM have highlighted rapid symptom improve-
ment and long-lasting intracranial responses, ranging 8–22 
months [88, 94–96]. The largest cohort analysis of leptome-
ningeal activity of lorlatinib derives from an international 
early/expanded access program of 95 previously TKI-treated 
patients, in which 11 evaluable patients with LM (9 ALK+ 
and 2 ROS1+) achieved an intracranial ORR of 45% (95% 
CI 17–77) and DCR of 91% (95% CI 59–100) [97]. The 
median PFS was 9.3 months (95% CI 1.0–NR) for the entire 
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LM cohort of 13 patients, suggestive of durable leptomenin-
geal responses. Survival data was not included. A German 
early access program of 52 previously TKI-treated patients 
included 9 with LM and reported a partial response rate of 
77.8% in this cohort, without further comment on duration 
of disease control or patient survival [98]. While encourag-
ing, cognitive and mood disturbances, such as depression, 
agitation, mania, and hallucinations, occur in approximately 
20% of patients treated with lorlatinib in a dose-dependent 
manner [99]. This toxicity is likely more frequent among 
patients with pre-existing CNS metastases and steroid use, 
and therefore the therapeutic consequence of lorlatinib dose 
reductions in this population is uncertain. Further prospec-
tive, controlled data are needed to better understand how 
lorlatinib dose influences CSF penetration and LM response 
rates.

2.4 � KRAS Inhibitors

The Kirsten rat sarcoma viral oncogene homologue (KRAS) 
gene encodes KRAS, a small intracellular guanosine triphos-
phatase (GTPase) and integral component of the RAS/
MAPK pathway [100]. KRAS, together with other RAS iso-
forms (HRAS and NRAS), are among the most commonly 
mutated proteins in cancer biology, present in 90% of pan-
creatic cancers, 42% of colon cancers, 20% of lung cancers, 
and 20% of melanoma [100, 101]. Despite its prevalence, 
KRAS has been notoriously challenging to target due to the 
protein’s smooth, shallow surface impeding small molecule 
binding as well as the extremely high affinity of KRAS for 
GTP. Sotorasib, a selective irreversible inhibitor of KRAS-
G12C, overcomes this challenge by covalently bonding to 
a pocket of the protein that is only present in the guanosine 
diphosphate (GDP)–bound state, trapping KRAS in an inac-
tive form and earning its place as the first FDA-approved 
KRAS inhibitor in 2021 [102, 103]. The intracranial activ-
ity of sotorasib was demonstrated in a post-hoc analysis of 
patients with KRAS G12C mutant NSCLC and stable brain 
metastases in the phase I/II CodeBreaK100 study [104]. 
Forty patients with asymptomatic, treated brain metastases 
achieved a median PFS of 5.3 months and OS of 8.3 months 
following initiation of sotorasib, compared with 6.7 months 
and 13.6 months, respectively, in 132 patients without base-
line brain metastases. Adagrasib, a second covalent inhibitor 
of KRAS-G12C, offers a longer half-life than sotorasib and 
demonstrated a comparable intracranial PFS of 5.4 months 
in patients with stable brain metastases [105]. The intrac-
ranial activity of sotorasib and adagrasib against untreated, 
active brain metastases is also suggested in case reports 
and preliminary findings from the KRYSTAL-1 study 
(NCT03785249) [106, 107].

To date, there are no published case reports or prospective 
studies highlighting the leptomeningeal activity of sotorasib 

or adagrasib. CSF penetration is confirmed, however, with 
2 patients treated with adagrasib in the KRYSTAL-1 study 
achieving CSF concentrations of 24.2 nM and 34.6 nM at 
steady state and with correlative regression of their untreated 
brain metastases [108].

2.5 � HER2 Inhibitors

The overexpression of HER2 is present in approximately 
30% of patients with breast cancer, propagating cancer cell 
progression via RTK-mediated PI3K/Akt and MAPK path-
way activation [109]. HER2 is also implicated in a number 
of other primary malignancies, including lung, esophageal, 
colon, ovarian, and endometrial cancer [110]. Patients with 
HER2+ breast cancer have high rates of intracranial metas-
tases, likely owing to both intrinsic neurotropism of HER2+ 
malignancies and the poor BBB penetrance of trastuzumab 
and pertuzumab, two first-line HER2-targeting monoclonal 
antibodies [111].The rate of LM in patients with HER2+ 
breast cancer is estimated between 6-7% [112].

Several small molecule HER2 inhibitors have been devel-
oped in attempts to improve outcomes and CNS control, 
primarily in HER2+ breast cancer. Lapatinib and neratinib 
represent second-generation HER2-targeting agents that are 
FDA-approved for the treatment of recurrent HER2+ breast 
cancer. Lapatinib reversibly targets both HER2 and EGFR, 
whereas neratinib is an irreversible pan-HER inhibitor [113]. 
Despite their small molecular weight (suggestive of BBB 
penetration), the intracranial benefit afforded these agents 
has been poor as monotherapies, with heterogenous uptake 
in brain metastasis pharmacokinetic studies [114–119]. 
Lapatinib and neratinib both demonstrate improved intracra-
nial control in prospective studies when in combination with 
capecitabine, with CNS ORR of 20–66% in trials [114–117]. 
The CSF penetration rates of lapatinib (1250 mg single dose, 
0.9–1.3%) and neratinib (250 mg for 7–21 days, undetectable 
< 1.50 ng/mL in CSF) are low in a few pharmacokinetic 
studies [120, 121]. Case reports of these agents suggest lep-
tomeningeal control lasting for 1–7 months for combination 
neratinib/capecitabine [117] and 6–12 months for lapatinib/
capecitabine [118, 122]; however, attribution is challenging 
as capecitabine monotherapy is also associated with case-
reportable leptomeningeal activity [123–126].

Tucatinib, a third-generation reversible and highly selec-
tive HER2 inhibitor, gained FDA approval in April 2020 
after its use was associated with improvements in both CNS-
PFS (9.9 vs 4.2 months) and OS (18.1 vs 12.0 months), when 
used in combination with trastuzumab and capecitabine in 
those with stable or active brain metastases [35, 127]. While 
this study excluded patients with LM, a subsequent case 
report suggested leptomeningeal disease control lasting 
10 months with whole brain radiotherapy (WBRT) followed 
by combination tucatinib and capecitabine in a patient with 
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HER2-activating variant breast cancer [128]. To appropri-
ately investigate this question, a phase II study is currently 
underway investigating combination tucatinib, trastuzumab, 
and capecitabine in patients with HER2+ breast cancer and 
LM (NCT03501979), with encouraging preliminary results 
supportive of durable leptomeningeal activity [129]. Paired 
CSF and plasma samples in 15 patients demonstrate detect-
able tucatinib (range 0.57–25 ng/mL, IC50 3.3 ng/mL) and 
its metabolite, ONT-993 (range 0.28–4.7 ng/mL), in the CSF 
as early as 2 hours following tucatinib administration [130], 
with steady state CSF levels of tucatinib approaching that of 
unbound plasma levels.

HER2-targeted treatments in breast cancer continue to 
evolve. Two HER2 antibody-drug conjugates, trastuzumab 
emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd), 
have gained FDA approval in recent years and have shown 
potent intracranial activity [131–137]. As bulky molecules 
with large molecular weights (> 100 kDa), the extent to 
which either agent penetrates the blood–CSF barrier remains 
to be determined. While these agents are not small molecule 
inhibitors and therefore beyond the scope of this review, they 
are worth mentioning as their leptomeningeal activity is an 
emerging topic of future study (NCT04420598). Additional 
non-small molecule inhibitor HER2-targeting agents, such 
as intrathecal trastuzumab [138, 139] and investigational 
intrathecal HER2 chimeric antigen receptor (CAR) T cells 
(NCT03696030), have been used in the HER2+ LM arena.

2.6 � PARP Inhibitors

The poly(ADP-ribose) polymerase (PARP) family of pro-
teins are involved in the base-excision repair system of DNA 
single-stranded breaks (SSBs) [140]. The accumulation of 
SSBs leads to the development of double-stranded DNA 
breaks, which necessitate different DNA repair pathways 
such as homologous recombination and nonhomologous 
end joining. Certain malignancies, namely breast cancer 
susceptibility proteins 1 (BRCA1) or BRCA2-mutated breast 
and ovarian cancer, have defective homologous recombina-
tion repair enzymes and therefore are more dependent on 
an intact SSB repair pathway to propagate [141]. The use 
of PARP inhibitors in this scenario invokes the concept of 
synthetic lethality, whereby combinatorial disruption of both 
DNA pathways results in cell death [142].

There are currently four FDA-approved PARP inhibitors 
(olaparib, rucaparib, niraparib, and talazoparib), with oth-
ers in development (veliparib), for the treatment of homolo-
gous recombination-deficient (HRD) cancers. Breast can-
cer brain metastases have been shown to contain a higher 
HRD mutational burden relative to matched primary tumor 
[143], raising the question of enhanced sensitivity of brain 
metastases to PARP inhibitors and with activity suggested in 
small studies and case reports [144–147]. The use of PARP 

inhibition is of particular value to patients with triple nega-
tive breast cancer, who are enriched in the BRCA1 subtype 
and oftentimes lack additional targetable therapies [148, 
149]. Data regarding the CSF penetration of these agents is 
lacking, with preclinical suggestion of superior brain and/or 
CSF penetration of veliparib and niraparib compared with 
other PARP inhibitors [150, 151]. Veliparib’s CSF pene-
tration rate is calculated to be 57% that of plasma in non-
human primates [152]. Case reports have hinted at durable 
LM responses with olaparib lasting 12–14 months for BRCA​
-mutated ovarian cancer [153, 154] and 19 months in BRCA​
-mutated breast cancer patients [155]. Further investiga-
tion of both CSF penetration and leptomeningeal activity of 
PARP inhibitors is warranted.

2.7 � Combinatorial Endocrine Therapy and CDK4/6 
Inhibition

The addition of cyclin-dependent kinase (CDK)4 and CDK6 
inhibitors, such as ribociclib, abemaciclib, and palbociclib, 
to endocrine therapy (ET) has significantly improved out-
comes in patients with hormone receptor (HR)-positive 
breast cancer. As LM most commonly represents a late 
stage of advanced cancer, the use of such agents in a heav-
ily pretreated patient population is challenging due to prior 
exposure to CDK4/6 inhibitors and acquired endocrine 
resistance.

ET is the therapeutic backbone of HR+ breast cancer 
patients, with data to suggest BBB penetrability of tamox-
ifen, letrozole, and anastrozole [156, 157]. Tamoxifen can 
also be detected in trace amounts in the CSF, with a CSF-
to-serum ratio < 0.2 [158]. A few case reports of durable 
leptomeningeal control with various ET monotherapies have 
been published (neurologic PFS of 16 months with letrozole, 
12 months with exemestane, 10 months for tamoxifen), con-
sistent with CSF penetration [159–163]. The largest study of 
ET in patients with HR+ brain and leptomeningeal metasta-
ses found a retrospective survival benefit among LM patients 
that received ET (7 vs 3 months), which on multivariate 
analysis was independent of the use of aromatase inhibitors, 
tamoxifen, or fulvestrant [164]. Significantly fewer patients 
with LM received ET compared with those with only paren-
chymal metastases (26.7% vs 47.6%), likely a consequence 
of acquired endocrine resistance at later stages of disease. As 
a result, hormonal therapy is likely insufficient in isolation 
for most patients with LM and should be used as combinato-
rial treatment with other agents when possible.

Justification for combinatorial ET and CDK4/6 inhibition 
strategies arises from the observation that cell dysregulation 
is a common cause of endocrine resistance [165]. The effi-
cacy of combination ET and CDK4/6 inhibition in patients 
with HR+ breast, brain and leptomeningeal metastases has 
been studied in one prospective phase II study, in which 10 
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patients with HR+ breast cancer LM (HR+ HER2− n = 7; 
HR+ HER2+ n = 3) received either abemaciclib with or 
without ET or trastuzumab [166]. CSF was collected at 
steady state, with roughly equivalent CSF-to-plasma concen-
trations which exceeded the IC50 for both CDK4 and CDK6 
inhibition. The best intracranial response in the HER2− LM 
cohort was stable disease in 2 of 7 patients, with a combined 
PFS of 5.9 months (95% CI 0.7–8.6) and a median OS of 
8.4 months (95% CI 3.3–23.5). In the HER2+ LM cohort, 
the best intracranial response was stable disease in 1 patient 
lasting < 6 months. Of note, cytologic data was only avail-
able in 20% of the LM patients on this study at study entry, 
limiting interpretation of the leptomeningeal burden of dis-
ease. Currently, there are no published case reports of the 
efficacy of ribociclib or palbociclib in LM, despite reports of 
intracranial activity for parenchymal metastases [167–169]. 
However, the CSF concentration of ribociclib in a phase 
0 glioblastoma study at the time of surgery was equal to 
0.374 μmol/L, with a CSF-to-plasma unbound ratio of 1.8 
(0.6–4.4) [170]. Drug concentration in the CSF was less than 
that in enhancing and non-enhancing tumor, but still greater 
than the in vitro CDK4/6 IC50.

2.8 � PI3K/Akt/mTOR Inhibitors

In addition to cell cycle dysregulation, resistance to endo-
crine therapies in breast cancer may also occur through 
upregulation of the PI3K/Akt/mTOR pathway [171]. In 
fact, aberrant activation of this pathway occurs in almost 
every human malignancy. Downstream signaling from the 
PI3K/Akt/mTOR pathway influences cellular proliferation, 
motility, metabolism, and angiogenesis [171]. Despite the 
ubiquitous nature of this master regulator, data supporting 
the use of any PI3K/Akt/mTOR inhibitor in LM from solid 
tumor malignancies has been largely disappointing.

Alpelisib, a selective PI3Kα inhibitor, has demonstrated 
activity in combination with ET for breast cancer brain 
metastases, with greater clinical activity among those har-
boring PI3Kα mutations [172–174]. Despite FDA approval 
in 2019 for advanced PIK3CA-mutated HR+HER2− breast 
cancer, to date there is no published literature on the CSF 
penetration or leptomeningeal activity of this agent. In clini-
cal practice, the use of PI3K inhibitors is limited in patients 
with brain metastases due to toxicities of mood disturbances 
and hyperglycemia, which are both challenging (and often 
dose-limiting) side effects for patients requiring corticoster-
oids for cerebral edema [175]. Psychiatric side effects were 
of particular concern for buparlisib, a CNS-penetrant oral 
pan-PI3K inhibitor, ultimately leading to discontinuation 
of study in the breast cancer population [176]. Preliminary 
results of a dose-finding phase I study of paxalisib, a CNS-
penetrant dual PI3K/mTOR inhibitor, in combination with 
WBRT for patients with brain or leptomeningeal metastases 

from PI3K-mutated malignancies showed this drug to be 
well tolerated [177]. The dose expansion arm of this study 
is currently recruiting (NCT04192981).

The combination of everolimus, a CNS-penetrant mTOR 
inhibitor, with exemestane is a long-accepted regimen for 
patients with metastatic HR+HER2− breast cancer fol-
lowing progression on aromatase inhibitors [178]. Despite 
known CNS activity of everolimus, the brain and leptome-
ningeal activity of this combination is not well characterized 
in the literature. The role of everolimus for breast cancer 
brain metastases has been studied in various chemotherapy-
containing combinations [179, 180], with 3-month clinical 
benefit rate ranging approximately 65–90%, but again with 
exclusion of patients with LM.

While PI3K and mTOR inhibitors have been previously 
established as treatment strategies for HR+ breast cancer 
and with some CNS activity, Akt inhibitors are only recent 
additions to the investigational landscape. Two small mol-
ecule Akt inhibitors, capivasertib and ipatasertib, are under 
investigation for patients with metastatic HR+ breast can-
cer [181–183]. Further studies are required to determine the 
brain and leptomeningeal activity of these agents. Of note, 
preclinical studies suggest that ipatasertib may have CNS-
active properties in breast cancer brain metastasis animal 
models [184] and is also currently under investigation for 
glioblastoma (NCT03673787).

2.9 � BRAF/MEK Inhibitors

Approximately 40–60% of patients with melanoma harbor 
an activating BRAF mutation, which results in constitutively 
active cytoplasmic serine–threonine kinase and MAPK path-
way [185]. Patients with BRAF-mutated melanoma tend to 
be younger and with a more aggressive phenotype, with a 
high frequency of brain metastases [186, 187]. The BRAF/
MEK inhibitor combinations, dabrafenib/trametinib and 
encorafenib/binimetinib, in patients with BRAF-mutant 
melanoma brain metastases carry an intracranial clinical 
benefit rate of approximately 60–90% for a duration of 4–8 
months [188, 189].

Despite ample data supporting BRAF/MEK inhibitor 
activity in parenchymal metastases, there are no prospec-
tive studies investigating these agents for patients with LM. 
CSF penetration of vemurafenib and dabrafenib are both 
predicted to be low based on available data. In an untimed 
analysis of 6 patients, mean vemurafenib CSF concentrations 
were 0.47 ± 0.37 mg/L with a CSF-to-plasma ratio of 0.98 ± 
0.84% [190]. In non-human primates, CSF penetration of 
dabrafenib has been calculated as 0.57 ± 0.18% [191]. Nev-
ertheless, case reports suggest leptomeningeal activity of 
these agents in small patient numbers. The largest retrospec-
tive review of this nature reported an OS of 7.2 months in 3 
patients treated with BRAF/MEK inhibition alone, and 6.2 
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and 12.5 months in 2 patients treated with BRAF/MEK inhi-
bition plus immune checkpoint blockade [192]. Vemurafenib 
monotherapy has been associated with LM-symptom, radio-
graphic and cytologic improvement lasting 4–16 months, 
with longer duration of control in combination with WBRT 
[193–195]. A similar rapid improvement in LM symptoms 
and imaging abnormalities was associated with dabrafenib 
monotherapy, lasting at least 3–4 months [196]. Dabrafenib 
and trametinib have induced LM disease control for at least 
5–9 months in 2 patients [197, 198]. Extrapolation of such 
data to true LM control rates of BRAF/MEK inhibition is 
challenging to determine given the high variability in patient 
characteristics, use of radiation, and prior immunotherapy or 
BRAF/MEK exposure among these case reports.

Prospective studies of BRAF/MEK inhibition in patients 
with LM are currently underway, including a phase I inves-
tigation of PF-07284890 in combination with binimetinib in 
patients with intracranial BRAF V600 mutant solid tumors 
(NCT04543188), and a phase II study of encorafenib, bini-
metinib, and nivolumab versus ipilimumab and nivolumab 
in BRAF V600 mutant melanoma and CNS metastases 
(NCT04511013).

2.10 � VEGF Inhibitors

Vascular Endothelial Growth Factor (VEGF) is a master 
regulator of angiogenesis in carcinogenesis, but also plays 
a key role in tumor environment immune modulation and 
cellular proliferation via the MAPK and PI3K/Akt pathways 
[199]. CSF levels of VEGF are elevated in the presence of 
LM, which has been associated with inferior response to 
therapy and poor patient outcomes [200–202].

Currently approved VEGF receptor small molecule inhib-
itors include sorafenib, sunitinib, and pazopanib. Subgroup 
analysis of the phase III TARGET study of sorafenib ver-
sus placebo in patients with renal cell carcinoma revealed 
a lower rate of brain metastasis development in those who 
received sorafenib versus placebo (3% vs 12%), suggesting 
CNS activity [203]. Sorafenib is also a radiosensitizer, and 
in patients with breast cancer brain metastases was shown to 
be well tolerated in combination with WBRT with a CNS-
PFS of 12.8 months (95% CI 6.7–NR) [204]. There are no 
available data regarding the CSF penetration of this agent, 
however a case report of a patient with renal cell carcinoma 
revealed a sorafenib-induced radiographic LM response 
lasting at least 10 weeks [205]. Considering the impact of 
anti-VEGF therapy on gadolinium uptake on MRI, further 
investigations of VEGF small molecule inhibitors should 
incorporate both radiographic and cytologic changes to 
measure response.

2.11 � NTRK Inhibitors

Neurotrophic tropomyosin receptor kinase (NTRK) gene 
fusions are rare oncogenic driver mutations present in a wide 
variety of cancers [206]. The NTRK1, NTRK2, and NTRK3 
genes encode tropomyosin receptor kinase (TRK) recep-
tors TRKA, TRKB, and TRKC, respectively. Under normal 
conditions, transmembrane TRK receptors are expressed 
primarily in neuronal tissues. Upon binding of neutrophin 
growth factors to the extracellular binding domain, TRK 
receptors dimerize to support neuronal function including 
neural development, cell growth, and synaptic plasticity. 
However, in cancer biology, activating fusion mutations of 
the NTRK gene with a 5′ fusion partner encoding a dimeri-
zation domain results in constitutive activation the TRK 
receptor, with downstream signaling through the MAPK, 
PI3K, and phospholipase C-ɣ1 pathways. In adults, NTRK 
gene fusions are enriched primarily in secretory carcino-
mas of the breast, secretory salivary gland carcinoma, and 
thyroid cancer, but can also be detected in a minority of 
patients with more common cancers such as melanoma, 
colon cancer, lung adenocarcinoma, and various sarcomas 
[207]. Larotrectinib, a highly selective TRKA/B/C inhibitor, 
and entrectinib, a multikinase inhibitor with activity against 
TRKA/B/C, are two CNS-active small molecule inhibitors 
with demonstrated clinical activity amongst cancers harbor-
ing NTRK fusion mutations, including durable responses in 
primary and metastatic brain tumors [208–210].

A few clinical cases and preclinical experiments high-
light potential CSF activity of NTRK inhibitors, particu-
larly entrectinib. Rat toxicology modeling suggests superior 
CSF-to-unbound plasma concentrations of entrectinib (0.22) 
compared with larotrectinib (0.03) following intravenous 
administration [211]. One case report outlines a patient with 
undifferentiated uterine sarcoma who developed widespread 
LM after treatment with larotrectinib for 3 years [212]. No 
drug resistance mutations were identified on meningeal 
biopsy. She subsequently received WBRT and transitioned 
to entrectinib, but unfortunately experienced neurologic 
deterioration after 1 month of treatment and transitioned 
to hospice. CNS progression on larotrectinib therapy was 
also demonstrated in a patient with NSCLC and an acquired 
TPM3-NTRK1 fusion mutation, though the authors do not 
comment on whether the resistance mutation was present in 
the leptomeninges [213]. The clinical activity of entrectinib 
was, however, demonstrated in two pediatric patients with 
CSF-disseminated ROS1/NTRK-fusion high-grade glio-
mas [214]. A partial radiographic response was observed 
in 1 patient after initiation of entrectinib monotherapy, and 
combination of entrectinib with other treatments (includ-
ing radiation and intrathecal therapy) appeared to be well 
tolerated with controlled leptomeningeal tumors for at least 
5–8 months. Entrectinib concentration in the CSF steadily 
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increased over time, approaching approximately 25 nM after 
40 days of treatment in 1 patient. In summary, CSF penetra-
tion and activity of entrectinib is suggested in gliomas in 
small patient numbers, but the performance of either agent 
in patients with LM from extracranial malignancies remains 
to be determined.

3 � Immune Checkpoint Inhibitors

The immune checkpoint pathways, cytotoxic T-lymphocyte-
associated antigen 4 (CTLA-4) and programmed death 1 
(PD-1), are two signaling pathways integral to T-cell matu-
ration and the downregulation of T cells reactive to self-
antigens. These two molecules compete with costimulatory 
signals upon T-cell receptor (TCR) binding to the antigen-
presenting major histocompatibility complex (MHC). By 
blocking the costimulatory signal from activating the matur-
ing T-lymphocyte, the CTLA-4 and PD-1 pathways induce 
T-cell anergy either in the priming phase of T-lymphocyte 
development within the lymph nodes (for CTLA-4) or in the 
effector stage in the peripheral tissues (for PD-1). Cancer 
cells evade this system by downregulating MHC expression 
and by upregulating the CTLA-4 and PD ligand-1 (PD-
L1) molecules. The use of monoclonal antibodies directed 
against CTLA-4 (ipilimumab), PD-1 (nivolumab, pem-
brolizumab, cemiplimab), and PD-L1 (atezolizumab, dur-
valumab, avelumab) inhibitors remove the cancer-express-
ing “brakes” on the immune system and result in increased 
T-lymphocyte-mediated destruction. Immune checkpoint 
inhibitors have confirmed intracranial activity in patients 
with brain metastases from a wide variety of malignancies, 
including melanoma [215, 216], NSCLC [217–219], renal 
cell carcinoma [220–222], and breast cancer [223, 224]. The 
combination of intracranial radiation with immunotherapy 
may augment this response, in part through the radiation-
mediated release of cancer antigens [225–227].

Despite demonstrable activity of immunotherapy for 
parenchymal brain metastases, the efficacy of these agents 
in LM has been slower to crystalize. A few retrospective 
reviews and prospective studies do provide a suggestion of 
potential benefit in select patients.

Three phase II studies treated patients with LM with 
various immune checkpoint blockade regimens. One study 
for patients with melanoma brain metastases investigated 
combination ipilimumab/nivolumab versus nivolumab mon-
otherapy for intracranial control, and included a cohort C 
designed for those with poor prognosis (brain metastasis 
recurrent after local therapy, neurologic symptoms, and/or 
presence of LM) to receive nivolumab monotherapy [228]. 
Four of the 16 patients in this cohort had LM; none of them 
responded intracranially to nivolumab monotherapy, and the 
best intracranial response was progressive disease in 81% 

of the entire cohort. A second phase II study studied pem-
brolizumab monotherapy in patients with solid tumor LM, 
which included predominantly breast cancer patients [229]. 
The median OS was 3.6 months (90% CI 2.2–5.2), with a 
trend for higher pre-treatment CSF lymphocyte percentage 
among those surviving longer than 3 months. No difference 
in survival was observed on the basis of HR or HER2 sta-
tus. The best intracranial response to pembrolizumab was 
stable disease in 11 of 16 evaluable patients. A third study 
investigated combination ipilimumab and nivolumab in 18 
patients with LM from solid tumor malignancies, with breast 
cancer representing 44% of the study population [230]. The 
median OS was 2.9 months (90% CI 1.6–5.0) with a median 
intracranial PFS of 1.93 months (90% CI 1.28–2.66 months).

Given the lack of lung cancer representation in the 
available prospective studies, a retrospective review of 19 
patients with NSCLC LM treated with immune checkpoint 
inhibitors was performed across seven European institu-
tions [231]. Lung cancer patients obtained a median PFS of 
2.0 months (range 1.8–2.2) and a median OS of 3.7 months 
(range 0.9–6.6) with immune checkpoint blockade. Patients 
classified as ‘good risk’ by the National Comprehensive 
Cancer Center Network LM prognostic classification had a 
longer 6-month PFS compared with those considered ‘poor 
risk’ (40% vs 0%), however without a significant difference 
in 6- and 12-month survival rates between the two groups. 
Neurologic symptoms only improved in 1 patient, with all 
others with stable or worsening condition while on treat-
ment. Combining immunotherapy with other agents might 
yield a more robust response in this patient population. A 
case report of the IMpower150 (IMP150) regimen (atezoli-
zumab, bevacizumab, paclitaxel, carboplatin) in a patient 
with ‘good risk’ PD-L1-positive NSCLC suggests improve-
ment in clinical, radiographic, and cytologic abnormalities 
lasting for at least 6 cycles with ongoing response [232]. 
The leptomeningeal activity of IMP150 is further supported 
by a multi-institutional retrospective review including 21 
patients with NSCLC LM: ORR was 43%, DCR was 81%, 
PFS was 4.3 months (95% CI 3.5–9.9), and median OS was 
7.1 months (95% CI 4.6–14.0) [233]. The authors refrain 
from commenting on the rate of CSF conversion, owing 
to the logistical challenge of measuring leptomeningeal 
responses in an uncontrolled retrospective review; however, 
the durable OS when employing combination therapy is 
encouraging and suggests superiority over regimens using 
immunotherapy alone.

Certain trends have emerged in a systematic review of 
61 patients with solid tumor LM across 14 published stud-
ies treated with immune checkpoint inhibitors, alone or in 
combination with other treatments [234]. Median PFS and 
OS were 5.1 and 6.3 months, respectively, but with signifi-
cantly lower survival among patients treated with steroids. 
There were no statistically significant differences in survival 
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outcomes between tumor types. Immunotherapy adverse 
events were found in 68.7% of patients, however the major-
ity of these toxicities were mild and self-limited.

Intravenous administration of immune checkpoint inhibi-
tors results in some penetration of drug into the CSF. Paired 
CSF and serum levels of steady-state pembrolizumab sug-
gests a mean CSF-to-plasma ratio of only 0.009 (95% CI 
0.004–0.014) in patients with glioblastoma [235]. How-
ever, this small concentration of drug remained capable 
of reducing PD-1-expressing T-lymphocyte percentage in 
the leptomeninges from 39.3% to 3.8%, suggestive of bio-
chemical activity in the CSF. In patients with solid tumor 
CNS metastases receiving nivolumab, the CSF nivolumab 
concentration ranged from 14.5  ng/mL to 304  ng/mL, 
with again low corresponding CSF-to-plasma ratios [236]. 
Given the lack of more robust responses in prospective stud-
ies, intrathecal delivery of immune checkpoint inhibitors to 
increase CSF drug concentration is one potential strategy 
to improve patient outcomes. The concept of direct CSF 
T-lymphocyte activation is also not a unique concept; previ-
ous investigations of intrathecal IL-2 in patients with mela-
noma LM resulted in a median survival of 7.8 months (range 
0.4–90.8) but with transient intracranial pressure complica-
tions [237]. Intrathecal nivolumab is currently being investi-
gated in patients with solid tumor LM (NCT05112549) and 
in combination with intravenous nivolumab for melanoma 
LM (NCT03025256). Preliminary data suggests intrathecal 
nivolumab to be well tolerated with potential clinical ben-
efit by current survival analysis [238]. The compassionate 
use of intrathecal pembrolizumab in a patient with triple 
negative breast cancer LM demonstrated tolerability without 
acute infusion reactions after two cycles of intrathecal drug 
administration, however the patient died 3 weeks later due 
to progressive neurologic symptoms [239].

In addition to the drug penetration and durability issues 
faced by all leptomeningeal-directed therapies, the activ-
ity of immune checkpoint blockade in LM also requires a 
functional immune system within the CSF, a topic of much 
debate. The presence of cancer cells in the leptomeninges 
certainly invokes an inflammatory response of both lym-
phoid and myeloid lineage [240], hence the historical term 
‘neoplastic meningitis’ to describe this clinical syndrome. 
However, single cell sequencing of melanoma-containing 
skin, brain, and CSF samples reveals three immunologi-
cally distinct microenvironments, with the leptomeninges 
generally harboring a more immunosuppressive phenotype 
enriched with exhausted or inactivated CD4 and CD8 cells 
[241]. Immune checkpoint inhibition is associated with an 
abundance of CSF CD8+ T-lymphocytes with a proliferat-
ing phenotype compared with pre-treatment baseline [242]. 
These CD8+ T-lymphocytes demonstrate heightened gene 
expression related to antitumoral IFN-γ signaling and 
effector function, correlating with IFN-γ response within 

the tumor cells at equivalent time points. Further investi-
gation into anatomic site-specific leptomeningeal immune 
responses to immune checkpoint blockade is warranted, with 
particular attention on to what degree this therapy can ‘revi-
talize’ exhausted T-lymphocytes in the intrathecal space and 
achieve leptomeningeal responses.

In conclusion, a wide spectrum of clinical outcomes is 
evident when comparing the relatively shorter survival in 
the prospective studies with superior outcomes in larger ret-
rospective reviews, leading to several hypotheses. Survival 
estimates of 2–4 months in prospective studies with intrave-
nous immune checkpoint blockade mirrors the historical sur-
vival benchmarks in the pre-immunotherapy era and under-
performs relative to targeted therapy with small molecule 
inhibitors. While this suggests leptomeningeal bioactivity, 
it also raises questions regarding the potency of this strategy 
in isolation. Patient selection is also critically important. The 
retrospective reviews tended to be enriched in patients with 
known immunotherapy-responsive tumors and saw higher 
rates of immune checkpoint combinations with chemo-
therapy, anti-angiogenic agents, or immediately following 
radiation therapy. The relatively low CSF penetrability of 
immune checkpoint inhibitors into the CSF, compounded 
by dysfunctional and paucicellular immune repertoire in the 
leptomeninges, underscores the need for innovative strate-
gies to amplify immunotherapeutic responses in the spinal 
fluid. In addition to intrathecal immune checkpoint inhibitor 
approaches (NCT05112549, NCT03025256), several other 
immunotherapy combinatorial strategies are under inves-
tigation for patients with LM, such as combination with 
WBRT (NCT03719768), the multi-kinase VEGFR inhibi-
tor lenvatinib (NCT04729348), encorafenib and binimetinib 
(NCT04511013), and EGFR inhibition (NCT04833205).

4 � Conclusion

Modern cancer therapeutics have evolved tremendously 
in the last two decades since the FDA approval of several 
small molecule inhibitors and immune checkpoint inhibi-
tors for several malignancies, primarily lung, breast, and 
melanoma. A number of these agents have demonstrable 
activity in the leptomeningeal space based on retrospec-
tive series and select clinical trials designed specifically for 
patients with LM, providing a glimmer of hope for patients 
with historically poor outcomes and high unmet need. This 
benefit is most impressively demonstrated in patients with 
solid tumors harboring targetable driver mutations, such 
as EGFR-mutant and ALK/ROS1-positive NSCLC, with 
robust improvements in clinical performance status and 
unprecedented survival benefits for select patients with 
LM. Ongoing studies will hopefully soon illustrate whether 
this benefit may also be seen using modern HER2-targeting 
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strategies in patients with HER2+ breast cancer. Consider-
ing the high penetrance of TKIs into the leptomeningeal 
space as demonstrated in a few pharmacokinetic studies, the 
incorporation of such treatment strategies in patients with 
LM should be prioritized whenever possible. The extrapola-
tion of immunotherapeutic approaches in patients with LM 
have been slower to crystalize, likely due to the relatively 
lower penetrance of immune checkpoint inhibitors into the 
CSF, the dysfunctional immune microenvironment in the 
leptomeninges, the need for optimal patient selection with 
immunotherapy-responsive tumors, and consideration of 
combinatorial strategies for this patient population.

As the neuro-oncologic community continues to develop 
clinical trials dedicated to patients with CNS metastases, 
further prospective studies of both existing and emerging 
oncogene- and immune-targeted therapies will soon illumi-
nate the efficacy of these modern therapeutics in the lep-
tomeningeal space. Pharmacokinetic sampling of matched 
CSF, plasma, and, when appropriate, brain metastasis tissue 
should always be considered in clinical trial design in order 
to define drug permeability through the unique blood–brain 
and blood–CSF barriers. Investigation of these agents in 
combination with our currently available therapies for LM, 
such as intrathecal chemotherapy and radiation, is also 
essential to devise the optimal sequential treatment strategy 
in this subset of patients and determine when potentially 
neurotoxic standard therapies might even be delayed or 
deferred in favor of modern CNS-active therapies.
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