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Abstract
Purpose  We herein aimed to review the new insights into the impact of impaired thyroid function on male and female fertility, 
spacing from spontaneous pregnancy to ART, with the objective of providing an updated narrative revision of the literature.
Methods  This narrative review was performed for all available prospective, retrospective and review articles, published up 
to 2021 in PubMed. Data were extracted from the text and from the tables of the manuscript.
Results  Thyroid dysfunction is frequently associated with female infertility, whereas its link with male infertility is debated. 
Female wise, impaired function is detrimental to obstetric and fetal outcomes both in spontaneous pregnancies and in those 
achieved thanks to assisted reproduction technologies (ART). Furthermore, the reference range of TSH in natural pregnancy 
and ART procedures has recently become a matter of debate following recent reports in this field. On the other hand, the 
impact of thyroid function on the male reproductive system is less clear, although a possible role is suggested via modulation 
of Sertoli and Leydig cells function and spermatogenesis.
Conclusion  Thyroid function should be carefully monitored in both male and female, in couples seeking spontaneous preg-
nancy as well as ART, as treatment is generally immediate and likely to improve chances of success.

Keywords  Thyroid · Fertility · Assisted reproduction technologies—ART​ · In vitro fertilization—IVF · Thyroid 
autoantibody · Semen

Introduction

Infertility, defined as the inability to conceive after at least 1 
year of unprotected sexual intercourse, affects about 15% of 
couples, and it is particularly common in developing coun-
tries [1–3]. Male and female partners alone are responsible 
for 20–30% of cases, respectively, but contribute to 50% of 
cases overall [1].

There is a close link between thyroid function and female 
fertility: physiologically, pregnancy has a significant effect 
on the thyroid gland, and thyroid dysfunction has long been 
associated with female infertility [4] with both obstetric and 
fetal outcomes being well established [5]. Furthermore, the 
reference range of TSH in fertility, pregnancy, as well as 
in assisted reproduction technologies (ART) has become a 
matter of debate. On the other hand, the impact of thyroid 
function on the male reproductive system is debated, and a 
role for thyroid hormones in influencing Sertoli and Leydig 
cells as well as spermatogenesis has been proposed [6–8].

S. La Vignera and G. Defeudis contributed equally to this work.

 *	 M. Watanabe 
	 Mikiko.watanabe@uniroma1.it

1	 Endocrinology Unit, Department of Clinical and Molecular 
Medicine, Sapienza University of Rome, Sant’ Andrea 
Hospital, Rome, Italy

2	 Department of Endocrinology, Internal Medicine Clinic, 
Clinical Center of Montenegro, School of Medicine, 
University of Montenegro, Podgorica, Montenegro

3	 Unit of Endocrinology and Diabetes, Department 
of Medicine, University Campus Bio-Medico di Roma, 
Rome, Italy

4	 Clinica Valle Giulia, GeneraLife IVF, Rome, Italy
5	 Department of Experimental Medicine, Sapienza University 

of Rome, Viale Regina Elena, 328, 00161 Rome, Italy
6	 Department of Clinical and Experimental Medicine, 

Policlinico “G. Rodolico, ” University of Catania, Catania, 
Italy

http://orcid.org/0000-0003-2225-8814
http://crossmark.crossref.org/dialog/?doi=10.1007/s40618-022-01883-7&domain=pdf


16	 Journal of Endocrinological Investigation (2023) 46:15–26

1 3

We herein aimed to review the new insights on the rela-
tionship between impaired thyroid function and male and 
female fertility, spacing from spontaneous pregnancy to 
ART, with the objective of providing an updated narrative 
revision of the literature.

Materials and methods

This narrative review was performed for all available pro-
spective, retrospective and review articles, published up 
to 2021 in PubMed. Data were extracted from the text and 
from the tables of the manuscript. The keyword search used 
included “thyroid and female fertility”, “thyroid and preg-
nancy”, “hypothyroidism and pregnancy”, “hyperthyroidism 
and pregnancy”, “thyroid autoimmunity and pregnancy”, 
“thyroid and recurrent pregnancy loss”, “thyroid and IVF”, 
“hypothyroidism and IVF”, “hyperthyroidism and IVF”, 
“thyroid autoimmunity and IVF”, “thyroid and miscarriage”, 
“thyroid and male fertility”, “thyroid and male infertility”, 
and “thyroid and semen.”

Thyroid and female fertility

Physiology

A well-functioning thyroid is crucial in pregnancy, and it 
undergoes physiologic changes to sustain fetal growth. There 
is a notable increase in thyroid gland size during pregnancy, 
by 10% in women who are well supplied in iodine and by 
to 20–40% in those who are iodine deficient [9]. The thy-
roid function changes in two ways: by increase in thyroxine 
binding globulin (TBG) due to estradiol level, and stimula-
tory effects of human chorionic gonadotropin (hCG), with 
repercussion on the hypothalamic–pituitary–thyroid axis [9].

An important role in the central and peripheral cross-
talk is also played by adipokines; specifically, kisspeptin, 
which is essential for human reproduction acting on the 

hypothalamus and stimulating GnRH production, may also 
stimulate TSH [10]. Furthermore, leptin, which is produced 
by adipocytes and regulates food intake and energy storage, 
influences the hypothalamus–pituitary–thyroid axis by regu-
lating the expression and stimulating thyrotropin-releasing 
hormone (TRH) [11, 12].

These conditions result in different thyroid-stimulating 
hormone (TSH) and free T4 (fT4) reference range than in the 
period out of gestation. In fact, TSH level decreases in the 
first trimester of pregnancy by 20–50%, due to hCG stimu-
latory effect on TSH receptor, leading to an fT4 increase in 
the same trimester, reaching maximum concentrations by 
16 weeks of gestation, and consequently TSH increasing 
and fT4 lowering throughout the rest of gestation. In 15% 
of pregnant women during the first trimester, TSH level is 
below the lower limit of reference range of 0.4 mU/L [5]. 
In multiple pregnancies, it is expected that TSH level is 
even more suppressed due to higher hCG concentration 
[13]. Previous data proposed TSH upper reference limit of 
2.5 mU/L in the first trimester and 3.0 mU/L in the sec-
ond and third trimester [14]; recent studies proposed wider 
ranges, and societies now recommend using the reference 
range for each trimester adjusted for the population (local 
laboratory ranges), and T4 instead of fT4 as more specific 
for the pregnancy, although, as this is not readily available 
in all countries, many clinicians rely on TSH to monitor 
thyroid function throughout pregnancy [9] (Table 1). When 
population- and trimester-specific reference ranges for TSH 
are not available, an upper reference of approximately 4 mU/
mL may be used [9].

The importance of thyroid hormones in the female repro-
ductive system has been highlighted since the evidence of 
TSH and thyroid hormone receptors (TR-a1 and TR-b1) on 
ovarian and oocytes surface [15], so its role in folliculogen-
esis, fertilization, embryogenesis, and in implantation, and 
maintaining pregnancy is inevitable. In this regard, in vitro 
studies suggest that thyroid hormones promote FSH-induced 
preantral follicle growth, activating the protein kinase B 
(Akt) pathway [16]. Furthermore, the expression of TSH 

Table 1   Reference limits of TSH and thyroid hormones dosage in pregnancy according to Guidelines

TSH thyroid-stimulating hormone, fT4 free thyroxine, fT3 free triiodothyronine

2014 European thyroid association guidelines 2017 American thyroid association guidelines

TSH - Trimester-specific reference ranges should be established in each labo-
ratory. Local variations may occur

- If not available, the following reference range are recommended: 
first trimester upper limits 2.5 mU/L; second trimester upper limits 
3.0 mU/L; third trimester upper limits 3.5 mU/L

- Reference range for each trimester adjusted for the population
Or
- TSH < 4 mU/mL

fT4
T4

-T4 and fT4 assays are both suitable for thyroid function testing in 
pregnancy

-T4 analysis is suitable instead of fT4

fT3
T3

- -T3 analysis could be helpful in the diagnosis and management 
of hyperthyroidism, in the presence of suppressed TSH
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receptor in human granulosa cells as well as the increase of 
cyclic adenosine monophosphate (cAMP) upon TSH stimu-
lation have been described [17]. Consequently, thyroid hor-
mones impairment could affect markers of ovarian reserve, 
including anti-Mullerian hormone (AMH) [18].

Thyroid hormones and hormone receptors also regulate 
the endometrium receptivity, which is the stage where all 
the actors, including thyroid hormones, cooperate to prepare 
and allow the implantation window of the blastocyst, with 
variations during the menstrual cycle [19, 20].

Moreover, alterations in thyroid hormones signaling 
could also have detrimental effects on the placenta, possibly 
even causing abortion; however, the molecular mechanisms 
involved have not been completely understood [21].

Pathology

Thyrotoxicosis

The most common cause of thyrotoxicosis, a clinical syn-
drome resulting in exposure to thyroid hormone excess, 
is hyperthyroidism, which, in reproductive age, is usually 
due to autoimmune Graves’ disease (GD). GD occurs in 
0.4–1.0% of women before pregnancy and about in 0.2% 
during pregnancy [15]. It is crucial to differentiate it from 
relatively common, hyperemesis gravidarum, which occurs 
in 0.3–1% of the cases. Other causes, such as toxic multi-
nodular goiter and toxic adenoma, as well as subacute thy-
roiditis, are less common, and others are very rare. It is, 

therefore, important to distinguish these clinical manifesta-
tions to apply an adequate treatment.

Gestational transient thyrotoxicosis is more frequent than 
GD. A rare cause of hyperthyroidism in pregnancy is the 
mutation of the TSH receptor gene with functional hypersen-
sitivity to hCG. Due to the stimulating effect of hCG on TSH 
receptor, serum TSH may decrease in the first trimester, with 
a peak of hCG between 7- and 11-weeks’ gestation. Even 
TSH levels lower than 0.1 mU/L may occur approximately 
in 5% of women by week 11 of pregnancy [9].

Impact on spontaneous conception  Thyrotoxicosis results 
in increased serum levels of sex hormone binding globulin 
(SHBG) due to increase in estradiol levels, and a reduction 
of the metabolic clearance rate of estradiol. In women with 
hyperthyroidism, testosterone and androstenedione levels 
increase due to a higher production rate. Furthermore, the 
ratio of the conversion of androstenedione to estrone, as 
well as of testosterone to estradiol, increases [22]. These 
hormonal alterations result in menstrual cycle disturbances 
2.5 times more frequent than in the general population [22] 
(Fig. 1).

Thyroid hormones increase hepatic SHBG production, 
which is also regulated by hepatocyte nuclear factor-4a 
(HNF-4a) in response to changes in the metabolic state of 
the liver [23]. Not only SHBG, but also other hormone bind-
ing proteins, such as corticosteroid-binding globulin (CGB) 
and thyroglobulin-binding-protein (TBG), are an index of 
thyroid action on the liver [24]. In severe hyperthyroidism, 

Fig. 1   Impact of thyroid function on male and female reproductive system
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even symptomatic hypocortisolemia may be present [25]. 
In addition, prolonged hyperthyroidism leads to direct liver 
toxicity and hepatocyte anoxia with impaired liver function 
[26]. In patients with GD, LH secretion is increased com-
pared to euthyroid patients [27].

Finally, a potential negative impact of RAI therapy on 
ovarian reserve has been reported [27].

Impact on ART outcomes  To date, no studies are available 
investigating the effect of hyperthyroidism on IVF out-
comes. Probably, this is because patients with hyperthyroid-
ism should postpone IVF techniques after normalization of 
thyroid function [27].

Impact on pregnancy and obstetric outcomes  Many mater-
nal and neonatal complications rise due to the consequence 
of hyperthyroidism in pregnancy. Thyrotoxicosis can lead 
to significant maternal complications including miscarriage 
(defined as spontaneous pregnancy loss occurring before 
20  weeks of gestation, although most miscarriages occur 
before 10 weeks of gestation [28]), recurrent pregnancy loss 
(defined as three or more consecutive miscarriages [28]), 
placenta abruption, preterm delivery, maternal congestive 
heart failure and preeclampsia [29]. Several studies suggest 
that fetal exposure to excessive levels of maternal thyroid 
hormone induces low birth weight, intrauterine growth 
restriction and stillbirth; furthermore, this condition could 
be related to seizure and neurobehavioral disorders in the 
offspring [30, 31].

Hypothyroidism

The prevalence of overt and subclinical hypothyroidism 
in the general population is about 0.3–0.4% and 4.3–8.5%, 
respectively, and it is mainly due autoimmune disease, thy-
roid surgery and effects of radiations or medications [9]. 
The prevalence in pregnancy is estimated at 0.3–0.5% and 
2–3% (or even up to 5%), respectively [9]. The most frequent 
causes of hypothyroidism in pregnancy are the endemic 
iodine deficiency and the chronic autoimmune thyroiditis 
in iodine-repleted areas [32, 33]. If evidence linking overt 
hypothyroidism with infertility and poor pregnancy out-
comes is straightforward, that regarding subclinical hypo-
thyroidism is more controversial, and the reference range of 
TSH in fertility, pregnancy, as well as in ART has recently 
become a matter of debate.

Impact on  spontaneous conception  In hypothyroidism, 
hormonal changes in androgens and estrogen have been 
observed, following lower metabolic clearance of andros-
tenedione and estrone, and higher rate of peripheral aroma-
tization. Although free fractions of testosterone and estra-
diol are increased, total hormone levels are decreased due 

to decreased SHBG concentrations, and prolactin may be 
increased along with TSH in response to increased hypo-
thalamic thyrotropin-releasing hormone (TRH) [22]. As a 
consequence, about 80% of women with hypothyroidism 
present menstrual disturbances or irregularities [22]. Poor 
ovarian reserve (reflecting in follicle-stimulating hormone 
(FSH) typically > 14  IU/L on day 3 of menstrual cycle, 
antral follicle count < 5, and/or poor response to previous 
ovarian stimulation) was noticed with increasing TSH [34]. 
Among 239 women with infertility, those with unexplained 
cause had higher TSH levels, twice the number of them with 
TSH > 2.5 mIU/L compared to women with couple infertil-
ity due to a male factor [35].

Impact on ART outcomes  No study is available investigat-
ing the impact of overt hypothyroidism on IVF outcomes, 
as all patients are adequately treated prior to it. Different is 
for subclinical hypothyroidism: considering IVF/Intracyto-
plasmic sperm injection (ICSI) cycles, Fumarola et al. was 
the only author who found higher pregnancy rates in women 
with TSH levels ≤ 2.5 mIU/L compared to women with 
TSH levels > 2.5 mIU/L (22.3% vs 8.9%) [36]. These find-
ings were not confirmed by the other authors, and most stud-
ies suggest similar pregnancy outcomes using a TSH cutoff 
level of < 2.5 mIU/L or one of < 4 mIU/L. To this regard, 
in a large retrospective cohort study including the first IVF 
cycle, no differences in clinical pregnancy, delivery or mis-
carriages were found using the two different cutoffs [37]. 
Chai et al. found similar live birth and miscarriage rates in 
patients undergone IVF/ICSI cycles, comparing a cutoff of 
2.5 mIU/L to that of 4.5 mIU/L [38]. Finally, Unuane et al. 
conducted a retrospective study considering cumulative live 
birth delivery rates after 6 IVF/ICSI cycles and found no 
statistically significant differences using a TSH cutoff of 2.5 
mIU/L or one of 5 mIU/L [39]. Several studies compared 
the impact of TSH level before IUI. In a study by Karmon 
et al., patients with preconception TSH between 2.5 and 4.9 
mIU/L did not have worse clinical and obstetrical outcomes 
(lower live birth or spontaneous abortion) [40]. Unuane 
et al. and Tuncay et al. confirmed these results reporting no 
significant differences in live birth, pregnancy or miscar-
riage rate in subgroups according to TSH level (TSH 2.5–5 
mIU/L compared to TSH < 2.5 mIU/L) [41, 42].

There is extreme heterogeneity across existing studies, 
with a variety of factors possibly influencing the findings. 
The main reason is that the definition of “normal thyroid 
function” and “subclinical hypothyroidism” has been 
changed during the time. Accordingly, the decision on 
whether to start treatment with levothyroxine or not, due to 
TSH cutoff definition, may differ. The definitions or criteria 
of final outcomes in different studies were often unclear or 
missing and the study designs were miscellaneous. Con-
tributing factors as patient age, body mass index, previous 
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IVF attempts, infertility cause, are all of great significance 
for the outcome. Furthermore, the protocol type used in the 
IVF cycle potentially may influence the outcomes, due to 
the well-known impact on thyroid function, and the data on 
fertilization method are frequently imprecise. Last, the use 
of ICSI for male factor infertility and the number of embryos 
transferred could affect the outcomes. Thus, all these factors 
may have influenced the interpretation of the results, making 
the final medical decision often challenging to make.

Impact on pregnancy and obstetric outcomes  Overt hypo-
thyroidism is associated with increased risk of hypertension 
and preeclampsia, abruptio placentae, miscarriage, preterm 
delivery, postpartum hemorrhage, low birth weight, neo-
natal respiratory distress, and stillbirth [43]. In case of not 
adequately treated overt hypothyroidism, an estimated 60% 
risk of fetal loss occurs [44], together with possible stunted 
intrauterine growth and mild deficits in neurodevelopment 
[45]. When happening in early gestational age, changes in 
behavior and decreased cognitive abilities in the offspring 
may arise, as well as delayed psychomotor development and 
impairment in the intellectual development of the offspring 
[44, 46, 47].

A subclinical form of hypothyroidism has been reported 
in some studies, depending on a cutoff for TSH when defin-
ing subclinical hypothyroidism, to be associated with an 
increased risk of miscarriage, premature delivery, preec-
lampsia, and increased fetal mortality, and impairment in 
neuropsychological tests and vision development of the chil-
dren [35]. Some studies highlighted a significantly lower 
miscarriage rate in women with TSH below 2.5 mU/L com-
pared to those with one over 2.5 [48, 49]. Casey et al. con-
ducted a study in a large cohort of 17,298 pregnant women 
and found that subclinical hypothyroidism (TSH > 3) was 
associated with an increased risk of premature delivery 
(before 34 weeks) [50]. These results were not confirmed 
by Cleary-Goldman et al., who demonstrated no associa-
tion between higher TSH levels with prematurity (before 
37 weeks) [51].

Impact on  spontaneous conception  Dosiou et  al. showed 
the presence of TPO expression on mature granulosa cells 
[4]. Three hypotheses are proposed to clarify the connection 
between TAI and impaired fertility. The first suggests that 
TAI represents a general autoimmune response, enhancing 
natural cytotoxicity; the second is that TAI directly affect 
ovarian tissue; the third indicates that TAI, inducing thy-
roid function deterioration to overt hypothyroidism, affects 
reproductive health [4]. Dosiou et  al. presented one more 
model: at early stages, the autoimmunity affects the ovary, 
when levothyroxine has no impact on outcomes, and antiox-
idants and immunomodulators as well as inositol may prove 
instead useful [52, 53]. During the progression of TAI, 

impaired thyroid response to hCG stimulation arises; this 
deterioration of thyroid function leads to a further impos-
sibility to adapt it to the increased demands during preg-
nancy leading to a vicious circle [4]. As a matter of fact, 
TAI, regardless of thyroid function, is associated with unex-
plained subfertility [54], and it was suggested that it may 
represent an important cause of infertility and low ovarian 
reserve. Confirming this, low antral follicle count, consid-
ered a marker of ovarian reserve, and high TPOAb are seen 
in cases of unexplained infertility [55].

Impact on  ART outcomes  Different original articles and 
systematic reviews focused on the relationship between TAI 
and ART outcomes; however, findings are controversial. A 
meta-analysis conducted on 1098 subfertile women under-
going IVF (141 with TAI and 957 without TAI) found that 
the presence of TAI was associated with twofold higher risk 
of miscarriage, with no significant effect on clinical preg-
nancy and delivery rates [56], findings confirmed by more 
recent and larger meta-analyses which also found increased 
preterm delivery rate [57], and decreased rate of live birth 
[58].

To this regard, Thangaratinam et al. [57] reported an odds 
ratio (OR) of miscarriage of 3.15 while Busnelli et al. an 
OR of 1.44 [58]. Interestingly, the most recent meta-analy-
ses found no difference in ART outcomes [59–61]. Poppe 
et al. in 2018 investigated the impact of TAI on pregnancy 
outcomes in infertile women undergoing ICSI treatment, 
excluding IVF or IUI cycles, accounting for 4 studies for a 
total of 1855 ICSI cycles (of them, 290 with TAI) reporting 
no increased risk of early miscarriage [62]. A meta-anal-
ysis investigating the effect of levothyroxine treatment in 
TAI-positive women undergoing ART denied any positive 
impact on that the miscarriage rate; however, levothyroxine 
decreased the miscarriage rate if subclinical hypothyroidism 
was present [63] suggesting that this condition per se may be 
detrimental [9, 64]. Specific information regarding the effect 
of thyroid function on controlled ovarian hyperstimulation 
(COH) is limited, mainly due to the absence of randomized 
controlled trials.

Impact on  pregnancy and  obstetric outcomes  Stagnaro-
Green for the first time showed an association between 
pregnancy loss and thyroid autoimmunity, thus the patients 
who were positive for TAI demonstrated a twofold increased 
risk of pregnancy loss [65], data later confirmed by several 
other studies and meta-analyses [66–70]. Women with nor-
mal thyroid function positive for TPOAb or TgAb also seem 
to have a significantly higher risk of preterm birth, reaching 
an OR as high as 2.9, as reported by several large studies 
and meta-analyses [57, 71–74]. However, it should be noted 
that three recent large prospective cohort studies showed no 
significant associations between TAI and risk for premature 
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delivery [75–77]. Increased risk of other complications in 
TAI-positive women was reported, such as perinatal death 
[77], placental abruption [78], and postpartum depression 
[79].

A significant number of studies have evaluated the neu-
rodevelopment outcomes associated with TAI in children of 
TAI-positive women. Lower motor and intellectual develop-
ment in the offspring [80] and sensorineural hearing loss 
were noticed [81]. Interestingly, Williams et al. reported 
lower perceptual performance and motor scores in children 
conceived by TgAb-positive mothers, and lower perceptual 
performance scores in children with TgAb-positive cord 
blood [82].

There are a growing number of studies trying to elucidate 
if levothyroxine treatment reduces the risk of maternal and 
fetal complications with conflicting results. Two randomized 
studies showed a significant reduction in miscarriages with 
levothyroxine treatment [83, 84], while one other, very large, 
did not find any significant difference in live birth rates upon 
treatment with a fixed dose of 50 mcg levothyroxine started 
before pregnancy [85]. Finally, one study noted a 69% reduc-
tion of preterm birth [57], results confirmed by Negro et al. 
who showed that thyroid hormone replacement reduced both 
miscarriage and preterm delivery rates in euthyroid women 
with TAI [83]. Interestingly, the beneficial impact may be 
only for those conceiving naturally, as the miscarriage rate 
was unchanged in those undergoing ART [63].

Treatment recommendations from latest guidelines

TAI and hypothyroidism

The recommendations are very clear in treating overt hypo-
thyroidism before and during pregnancy, but when it comes 
to subclinical hypothyroidism, there is no consensus on 
whether to treat it or not, and, as previously mentioned, the 
concept of subclinical hypothyroidism itself is currently a 
matter of debate. According to the latest ATA guidelines, 
TPOAb should be measured in all pregnant women with 
TSH > 2.5  mU/L. All women with a TSH greater than 
10.0 mU/L should start treatment even when fT3/fT4 are 
within ranges. TPOAb+ women should be treated if with 
a TSH greater than the pregnancy-specific reference range 
and may be treated if with TSH concentrations > 2.5 mU/L 
and below the upper limit of the pregnancy-specific refer-
ence range. TPOAb− women may be treated if with TSH 
concentrations greater than the pregnancy-specific reference 
range and below 10.0 mU/L, but should not be treated with 
a normal TSH (TSH within the pregnancy-specific reference 
range or < 4.0 mU/L if unavailable) [9]. TPO/TgAb + euthy-
roid women should be monitored with TSH serum levels 
at the time of pregnancy confirmation and every 4 weeks 
until mid-pregnancy [9]. Both ATA and ETA guidelines 

confirm that isolated hypothyroxinemia, defined as low fT4 
concentrations with TSH in reference ranges, should not be 
routinely treated in pregnancy [9, 27].

If starting an ART procedure, the latest recommenda-
tions suggest measuring TSH and TPO/TgAb in all women. 
Women with TSH > 4.0 mIU/L should start treatment to 
TSH < 2.5 mIU/L, and women with TAI and TSH levels 
between 2.5 and 4 mIU/L could benefit from treatment on a 
case-by-case basis to optimize embryo development [9, 27]. 
In TPOAb− women with TSH > 2.5 mIU/L, sonographic 
criteria of TAI may be sought, although this is operator 
dependent and should, therefore, be considered with cau-
tion [27]. TPOAb− women with a TSH between 2.5 and 4 
and no ultrasonographic finding of TAI should not be treated 
[27] (Table 2).

Hyperthyroidism

Several options exist to treat hyperthyroidism: radioiodine 
ablation (RAI), surgical thyroidectomy, or antithyroid drug 
(ATD) therapy; in pregnancy, the first method is contraindi-
cated, as well as in the 6 months before conception [9]. As 
RAI was associated with worsening of the ovarian reserve, 
it is important to adequately inform fertile women, although 
the scarcity of evidence available does not allow to formu-
late specific recommendations. Regarding surgery, the opti-
mal time to perform this procedure is during the second tri-
mester, followed by a gradual disappearance of TSH receptor 
antibodies (TRAb) [86]. Considering ATD, propylthiouracil 
(PTU) is the preferred drug in the first 16 weeks of preg-
nancy because of the possibility of teratogenic effects of car-
bimazole and methimazole (MMI) (aplasia cutis and MMI 
embryopathy); however, because of the risk of hepatotoxic-
ity in the second half of the gestation, caution is needed [9]. 
Fetal hyperthyroidism caused by the cross-placental passage 
of TRAb could appear at or after week 20 of pregnancy, 
so, a careful monitoring is required and maternal fT4 levels 
should be kept in the upper third of the normal non-pregnant 
reference range. Finally, fetal hypothyroidism may also be 
expected due to overtreatment with the antithyroid drug.

When women seeking ART procedures are found with 
TSH < 0.3 and increased fT3 and/or fT4, ART should be 
postponed until an endocrine work up has been conducted. 
If, however, fT3 and/or fT4 are within ranges, ART may not 
be postponed [27] (Table 2).

Thyroid and male fertility

Physiology

Human testes have two main functions: androgen produc-
tion and spermatogenesis. Specifically, Leydig cells produce 



21Journal of Endocrinological Investigation (2023) 46:15–26	

1 3

androgenic hormones: testosterone, androstenedione and 
deidroepiandrosterone, whereas Sertoli cells promote sper-
matogenesis and release androgen-binding protein (ABP) 
under FSH stimulation [87]. Thyroid hormones have their 
nuclear receptors expressed within the testis [88], and influ-
ence Sertoli cells, Leydig cells and spermatogenesis through 
regulation of gene transcription, protein synthesis, prolifera-
tion and differentiation [6–8].

Under physiological conditions, T3 inhibits Sertoli cell 
proliferation and promotes maturation, essential for sper-
matogenesis [89, 90].

Pathology

Several endocrine and metabolic diseases are involved in 
male infertility, such as hypogonadism, diabetes, obesity 
and adrenal dysfunction [91–95]. Beyond these conditions, 
thyroid dysfunction may affect male fertility too, albeit this 
is not widely investigated. Noteworthy, congenital hypothy-
roidism does not cause impaired development of male repro-
ductive system [96–98], although, on the other hand, if not 
properly treated with replacement therapy, it causes delayed 
sexual maturation [96–99], and the treatment of hypo- and 
hyperthyroidism is associated with an improvement in testis 
function, but evidence is scarce [89, 100–102].

Patients with primary hypothyroidism show delayed Ser-
toli cell maturation, with normalization when euthyroidism 
is restored [103–105], together with Leydig cell function 
impairment, causing a decrease in androgen production, cell 
maturation and hCG binding sites [103, 106]. As a conse-
quence, SHBG, total, and free testosterone concentrations 
are decreased [22] (Fig. 2). Hypothyroidism can also cause 
an alteration in sperm morphology [22, 107]. Krassas et al. 
have demonstrated that patients affected by hypothyroid-
ism show more frequently atypical sperm percentage than 
euthyroid patients [90]. Moreover, they have found a correla-
tion between teratozoospermia and fT4 levels [90], with an 
improvement in spermatozoa morphology after replacement 
treatment [90]. Hypothyroidism may also decrease the total 
sperm number and motility as well as lead to an impair-
ment in acrosome integrity and mitochondrial activity [108], 
with improved motility upon hormone replacement [89, 109] 
(Fig. 2).

On the other hand, men with thyrotoxicosis show an 
increase in SHBG and total testosterone, with normal free 
testosterone, reduced testosterone clearance rate and free 
testosterone/estradiol rate, due to elevated total and free 
estradiol concentration [8, 22, 96, 110–114]. Furthermore, 
hyperthyroidism promotes the conversion of androgen into 
estrogen [22, 89] (Fig. 2). According to animal studies, thy-
rotoxicosis can affect Leydig cells, with delayed cell matu-
ration and spermatogenetic alterations, but promoted cell 
proliferation [105, 115]. Moreover, acute increase in T3 Ta
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increases LH receptors on Leydig cells and consequently 
steroidogenesis, although chronic high levels of T3 have an 
opposite effect [89]. Conversely, Sertoli cell proliferation 
is inhibited in hyperthyroidism, with negative effects on 
spermatogenesis and reduction of testis volume [88, 89]. 
Hyperthyroidism is also associated with the reduction of 
sperm concentration, motility and impairment of sperm 
morphology, as well as a reduction of semen volume [107, 
116] (Fig. 2). The effect of hyperthyroidism on semen has 
been described in different studies. Krassas et al. have seen 
that the treatment of thyrotoxicosis improves sperm motil-
ity, without significant changes in sperm morphology and 
count [117, 118]. Moreover, high levels of thyroid hormones 
can cause sperm DNA damage and infertility. Indeed, high 
levels of T3 and T4 promote an increase in reactive oxygen 
species (ROS) and consequently oxidative stress [119–121]. 
Finally, fT4 seminal plasma levels were recently assessed 
by Condorelli et al. (3.15 ± 0.7 pmol L−1) [6]; the authors 
also evaluated the effect of bio-functional sperm parameters 
after incubation of semen with increasing concentrations of 
levothyroxine and found reduced sperm necrosis and lipid 
peroxidation along with an improvement in chromatin com-
pactness with a levothyroxine concentration of 2.9 pmol L−1. 
This in vitro study could open a new scenario of clinical 
application in patients with idiopathic infertility, although 
further studies are warranted to identify thyroid hormone 
seminal plasma reference ranges possibly representing the 
appropriate semen-thyroid hormones balance. What is cur-
rently well established is that treatment of hyperthyroidism, 
restoring normal or high-normal level of T4, improves semi-
nal parameters [120, 122].

Conclusions

Infertility affects millions of people during reproductive age 
worldwide. Male and female factors on this condition con-
tribute similarly (20–30%), and the endocrine system plays 
a role in this condition. Among endocrine conditions, thy-
roid dysfunction is frequently associated with female infer-
tility, with emerging evidence on male fertility, and ART 
outcomes are influenced as well. Thyroid function should, 
therefore, be carefully monitored in both male and female, 
in couples seeking spontaneous pregnancy as well as ART, 
as treatment is generally immediate and likely to improve 
chances of success.
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