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Modeling foot sole cutaneous afferents: FootSim

Natalija Katic,1,2,3,7 Rodrigo Kazu Siqueira,4,7 Luke Cleland,4 Nicholas Strzalkowski,5 Leah Bent,5

Stanisa Raspopovic,3,6,8,9,* and Hannes Saal4,6,8,*
SUMMARY

While walking and maintaining balance, humans rely on cutaneous feedback from
the foot sole. Electrophysiological recordings reveal how this tactile feedback is
represented in neural afferent populations, but obtaining them is difficult and
limited to stationary conditions. We developed the FootSim model, a realistic
replication of mechanoreceptor activation in the lower limb. The model simulates
neural spiking responses to arbitrary mechanical stimuli from the combined
population of all four types of mechanoreceptors innervating the foot sole. It con-
siders specific mechanics of the foot sole skin tissue, and model internal parame-
ters are fitted using humanmicroneurography recording dataset. FootSim can be
exploited for neuroscientific insights, to understand the overall afferent activa-
tion in dynamic conditions, and for overcoming the limitation of currently avail-
able recording techniques. Furthermore, neuroengineers can use the model as
a robust in silico tool for neuroprosthetic applications and for designing biomi-
metic stimulation patterns starting from the simulated afferent neural responses.
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INTRODUCTION

Complex sensorimotor integration of foot sole cutaneous feedback is crucial for gait and posture con-

trol.2,3 If somatosensory feedback is disrupted, postural stability is impaired, as demonstrated by an in-

crease in sway and reduced gait stability in conditions of reduced feedback, such as under local anesthesia4

or cooling.5 Neuropathic conditions such as amputation or severe diabetic neuropathy also result in

compromised sensory feedback and motor control.6 Conversely, gait can be stabilized and sway reduced

by the use of balance-enhancing insoles with ridged surrounds if some sensitivity remains7–9 or with neural

implants where nerves have been damaged or severed.10 Tactile sensibility on the foot sole relies on four

classes of myelinated cutaneous afferents that provide information about touch and pressure.11,12 These

sensory units carry information to circuits in the spinal cord and further toward the somatosensory cortex.

Afferents are classified by the speed with which they adapt to constant stimulation, fast (FA) or slow (SA),

and the size of their receptive fields (RFs), type 1 (small, with receptors close to the skin surface) and type 2

(large, with receptors embedded deeper in the skin).

Our understanding of how these afferents respond under natural conditions, such as standing and walking,

is limited due to technical challenges related to in vivo electrophysiological recordings from afferent fibers.

Microneurography, a technique for recording electrophysiological responses from single fibers in human

nerves, is difficult to implement, time-consuming, and very unstable (and therefore not practicable in dy-

namic conditions such as walking and running). Experiments also require participants to remainmotionless,

so as not to dislocate the recording electrode from the single fiber of interest. Furthermore, the majority of

such studies have focused on the glabrous skin of the hand, and it is unclear how well these findings would

apply to the different mechanical environment of the foot sole. Even though the palmar skin of the hand

and the foot sole are innervated by the same classes of receptors, neural coding likely differs between

them for a number of reasons. First, the usage of hands and feet differ greatly; while the hand experiences

many small and delicate stimuli, such as during precision grips, the foot is usually exposed to a large spatial

extent. Such usage differences will affect the nature of the signal being sent to the brain. Innervation den-

sities also vary several-fold and are much lower on the foot than on the hand.13 The foot also displays an

apparent medial-lateral increase in the density of afferents, with the FA1 units being the most prevalent,12

which is not evident on the hand.14 Finally, the hardness of the skin differs from the hand and varies consid-

erably by region of the foot sole,15 which affects the propagation of mechanical stimuli and therefore the

neural responses.
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Figure 1. Overview of the FootSim model mimicking the mechanotransduction process

We divided the foot sole into 13 regions with different mechanical properties and tactile innervation: toes 1–5, lateral/middle/medial metatarsal/arch, and

lateral/medial heel (box 1, from the left). We incorporated different densities of specific afferent types (fast-adapting and slowly adapting type 1 and 2 – FA1,

FA2, SA1, SA2) across regions of the foot sole based on empirically established innervation densities1 (box 2). Stimuli are represented as spatiotemporal

indentation profiles on the foot sole (box 3), creating an input to the mechanical model (box 4), where it is converted into quasi-static and dynamic stresses

within the plantar skin at the locations of individual receptors.16 Quasi-static stress is associated with local vertical stress while dynamic component

represents the pressure component propagated through the skin. Both stress components are passed through firing models (box 5) that simulate single

afferent behavior. 11 parameters (1: low pass, 2:7: w1-w6, 8: saturation, 9: time constant, 10,11: post-spike inhibition parameters – slow and fast component,

respectively) are fitted to replicate characteristics of individual afferent classes. As output, the FootSim model creates time-varying firing patterns for the

desired afferent population (box 6). See also Figure S2.
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To address the need for a detailed understanding of foot afferent responses during standing and

walking, which are impossible to access via existing recording techniques, we constructed a realistic

in silico model of their behavior. The model is based on experimentally recorded spiking responses

from cutaneous afferents on the foot sole to arbitrary indentations of the skin. It is inspired by a pre-

viously constructed model replicating tactile responses from the hand for three classes of cutaneous

afferents16 but adapted to fit the mechanical environment and afferent response properties of the

foot. We divided the foot sole into separate regions based on the mechanical properties of the skin

and the estimated densities of different afferent classes. In a first step, the model determines the

stresses within the displaced skin arising from contact with an object and how these displacements

propagate across it. In a second step, it generates the spiking responses of individual afferents, which

are modeled by a set of 11 parameters each that are fit based on single-fiber recordings obtained from

the human tibial nerve.1 We validate the obtained results by comparing modeled estimates for firing

rates, thresholds, and RF sizes with the ones recorded experimentally and afferent responses to

ramp-and-hold stimuli reported in the literature. Finally, we estimate the population response origi-

nating from the foot sole during walking and demonstrate that the model can be used for understand-

ing the activation of sensory units during dynamic conditions, overcoming a considerable limitation of

available recording techniques.

RESULTS

FootSim model overview and fitting

We developed a model of an entire population of cutaneous afferents in the foot sole that is able to

simulate their neural responses to different types of mechanical stimuli. Taking into account mechani-

cal15,17 and innervation properties,12 we divided the foot sole into separate regions (Figure 1, box 1

from the left) and included respective densities of different classes of mechanoreceptor afferents (Fig-

ure 1, box 2). To achieve a higher modularity which would enable easy and fast simulation of different

realistic situations, we divided the foot sole into 13 regions which are differentially populated. The depth

at which afferents terminate within the skin is set for each mechanoreceptor type and is constant across

the foot sole. Tactile stimulation of the foot sole is modeled using a group of circular pins that indent the

skin orthogonal to its surface. That is similar to monofilament testing which is used to determine afferent

firing thresholds and map the RFs. Mechanical stimuli that a user can apply on the place of interest on the

foot sole can be defined in any shape. The indentation of every pin is set independently such that arbi-

trary spatiotemporal patterns of indentation can be simulated (Figure 1, box 3) and given as input to the

FootSim model.
2 iScience 26, 105874, January 20, 2023
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The FootSim model consists of two parts that jointly capture the complexity of mechanotransduction. The

first part corresponds to a mechanical model that computes the deformation of the skin by the applied

tactile stimulus (Figure 1, box 4): the calculated quasi-static stress reflects the perpendicular indentation

of the skin, while the dynamic stress component simulates the stimulus propagation across the sole of

the foot at higher frequencies. The second part consists of firing models that generate spiking output

for individual fibers of different afferent classes based on the time-varying mechanical inputs (Figure 1,

box 5). Each firing model contains 11 unique parameters. A low-pass filter (parameter 1) reflects the fact

that afferents become unresponsive to stimulation above a certain frequency of stimulation, dependent

on the afferent class. To provide an acceleration signal, we differentiated the dynamic skin response. Three

mechanical signals (quasi-static, dynamic, and dynamic derivative) are then split into positive and negative

signal contributions and rectified, resulting in six time-varying signals that are multiplied by six weight pa-

rameters (parameters 2–7) and summed. Because afferents’ neural responses can saturate as a reaction to

large skin deflections,18 the resulting signal trace is passed through a saturating nonlinear function (param-

eter 8). The resulting time-varying trace represents the input to the component that simulates the

generation of the action potential. Its membrane potential decays to its resting value according to a

time constant (parameter 9), and a post-spike inhibitory kernel is added to model the refractory period.

Post-spike inhibition consists of a fast component (parameter 10), which decays after 4 ms, and a slow

component, which peaks after 8 ms and decays completely after 36 ms (parameter 11), inspired by a pre-

vious model.19 As its final output, the model simulates neural responses of all afferent types innervating the

foot sole (Figure 1, box 6), giving the user information about the type, position, and firing pattern of each

activated afferent.

Mechanical properties of the glabrous skin of the foot differ compared to the hand and also vary

considerably across regions of the foot sole. These differences influence the propagation of the stimuli

through the skin and consequently the mechanotransduction properties of the hand and foot. The

FootSim model incorporates a physically plausible mechanism of dynamic stress propagation,20 which

is similarly used in a previously published model for the hand. Yet there are important changes we

implemented, to properly fit the specific properties of the foot sole. Poisson’s ratio, a measure that de-

scribes the expansion of material in directions perpendicular to the direction of compression, is set as

constant for all foot sites, based on previous measurements.21 Skin hardness represents how resistant

the skin is to material deformation due to the constant compression load. It influences the stiffness, skin

resistance to elastic elongation, characterized by Young’s modulus of the skin, a mechanical property

that defines the relationship between stress (s) and strain (ε) in the skin. We used experimentally ob-

tained hardness measurements in arbitrary units recorded by a handheld durometer (Rx-1600-OO,

with a 2 mm diameter, column-shaped indenter). For every single position of the recorded afferent,

a hardness measurement was obtained. We averaged all values from the same foot region (regions

defined as in Figure 1) and included them in the FootSim model (Figure 2A, upper part). Based on a

transformation appropriate for the type of durometer,22 we defined realistic values of Young’s modulus

(Figure 2A, lower part). Skin hardness values affect both quasi-static and dynamic stress components,

thereby influencing both the local vertical stress based on a quasi-static elastic model of the skin and

the mechanical stimulus propagation on the surface of the foot sole. Figure 2B shows an example

for how these two stress components propagate through the skin when stimuli are applied on regions

with different hardness values. The foot representation on the right shows how the dynamic stress

component is propagating spatially through the skin when stimuli are applied to the region with the

highest hardness value (heel) and with the lowest one (medial arch). In the Figure S1, we show the dif-

ferences in the firing rates spatially presented, and in form of peristimulus time histogram (PSTH), which

are resulting from the use of different hardness values. It is a straightforward demonstration of the

differences induced in the neural responses due to the variability of the hardness values, rather than

maintaining them constant.16 We can observe big changes in PSTH of afferent responses, reflecting

the influence of the hardness values used.

For fitting the parameter values of individual afferent models, we used the neural activity obtained in a pre-

viously published microneurography experiment,1 which we only briefly describe here for the sake of

clarity. In short, afferent responses were recorded using 200 mm tungsten microelectrodes at the level of

the popliteal fossa (Figure 3B, left). During the experiments, sinusoidal mechanical stimuli of varying am-

plitudes and frequencies were applied to the skin of the foot sole using a 6 mm diameter probe (Figure 3A,

left). In total, 52 tactile afferents terminating in different locations on the foot sole (Figure 3A, middle) were
iScience 26, 105874, January 20, 2023 3
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Figure 2. Mechanical model of FootSim simulates skin changes caused by the applied stimuli and its propagation

through the sole of the foot

(A) Typical hardness of the skin in different regions of the foot sole (arbitrary units) as experimentally measured and

incorporated into the model (upper part). Young’s modulus, describing the stiffness of the skin, is defined as a function of

skin hardness (down part).

(B) We calculated the deflection produced by the applied stimuli. Quasi-static (solid line) and dynamic (dashed line) stress

components as a result of sinusoidal stimulation with a circular probe (radius: 3 mm) at 10 Hz and amplitude of 0.25 mm.

Different shades of turquoise indicate skin hardness values in different foot regions. Units on the vertical axis are arbitrary.

Foot representation on the right indicates the values of dynamic component of stress showing how stress is propagating

over the skin depending on the region where stimuli is applied.We used the same stimuli values reported above but using

circular probe of 15 mm.

See also Figure S1.
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stimulated using frequency/amplitude combinations that were changing depending on the afferent type

(Figure 3A, right). The obtained dataset used for tuning of parameters contained neural responses from

52 single afferents stimulated by sinusoidal mechanical stimuli. The number of stimuli ranged between 2

and 109 different frequency-amplitude pairs, depending on the type of afferent and limited by the time

a stable afferent isolation could be maintained (Figure 3B, right). Using a differential evolution algorithm,

we optimized values for the set of 11 parameters that resulted in the most accurate reproduction of firing

rates for each afferent recorded experimentally (see STAR Methods). We achieved high accuracy of the

fitting procedure for several models of each afferent type. Different models partially reflect the natural

response variability of different afferents, which is observed in the empirical data. We did not observe

strong trends in clustering the parameter values across the different afferent types (Figure S2). As they

do not occupy the same parameter space, we ran a more extensive analysis of the parameter robustness

as explained in a later section.

The FootSim model matches experimental firing rates

We compared experimental and simulated firing rate responses to vibrotactile stimuli of different fre-

quencies and amplitudes (skin indentation levels), covering a substantial range of the stimuli that the

foot might be expected to encounter during natural behavior.

We found a close match between the experimental firing rates and the ones simulated by the model (Fig-

ure 4A), both across different afferent classes as well as for individual afferents. We show the rate-intensity

functions of two examples of fitted models for each afferent type (Figure 4B). The model reproduced ca-

nonical response properties of different afferent classes. We observed an overall higher responsivity of

FA afferents compared to SA afferents for vibrotactile stimuli. In addition, the frequencies eliciting the

highest rates are higher for FA afferents than for either SA class.23
4 iScience 26, 105874, January 20, 2023
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Figure 3. Microneurography recordings in human tibial nerve1 are used for fitting the model

(A) Applied mechanical stimuli: using a 6 mm diameter probe (left side of the panel, taken and adapted from15) sinusoidal

stimuli were with varying frequency and amplitude to excite afferents in different regions of the foot sole. Approximate

positions of excited afferents are given on the foot sole representation (middle of the panel), color-coded (blue – FA1,

orange – FA2, green – SA1, gray – SA2). 19 FAI, 9 FAII, 14 SAI and 10 SAII afferents were stimulated. Ranges of amplitude

and frequency values of sinusoidal mechanical stimuli vary depending on the afferent type (representation on right).

(B) Illustration of the microneurography technique, recording from the tibial nerve at the level of the popliteal fossa. Two

electrodes are inserted through the skin, one serves as a reference electrode, and the other is inserted into the nerve to

record single afferents. Firing thresholds and firing rates [spikes/s] of single afferents were recorded. Here we present the

average firing rate of responses that were stimulated with a specific frequency-amplitude combination.
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Response thresholds

As the frequency sensitivity profile of afferents is one of their main features and helps distinguish between

different afferent types, we investigated afferents’ absolute firing thresholds. These were defined as the

minimum stimulation amplitude necessary to apply at each frequency to elicit afferent firing rates of at least

1 Hz. We compared the frequency profile simulated by FootSim with the empirical behavior of afferents.

Within the boundaries of the range of frequencies evaluated, the model behavior closely matched exper-

imentally derived counterparts (Figure 5).

We observe that FA afferents decrease their threshold at higher frequencies. Specifically, the FA2 afferent

type displays very high responsiveness on frequencies higher than 90 Hz. On the other hand, SA1 afferents
iScience 26, 105874, January 20, 2023 5
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Figure 4. FootSim accurately simulates afferent firing rates

(A) Scatterplots showing experimental versus modeled firing rates. Individual panels show comparisons for different

afferent classes. Each dot corresponds to a tested frequency-amplitude pair, colored by frequency. Data from all afferents

within a class is overlaid. Boxplots are showing the accuracy of the fitted models in predicting the firing rate of the

afferents (FA1: median 0.94, min 0.87, max 0.98); FA2: median 0.96, min: 0.92, max: 0.98; SA1: median 0.85, min: 0.71, max:

0.98; SA2: median 0.91, min: 0.88, max: 0.99).

(B) Examples of two fitted models for each afferent class showing experimental and modeled rate-intensity functions.

Solid semi-transparent lines denote experimental data, while dashed lines show the model results. Color scheme as in

panel A.
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have high thresholds across all frequencies. Modeled SA2 afferents show slightly lower thresholds than the

empirically recorded ones, especially on the higher frequencies. This result matches the behavior of SA2

shown in Figure 4A, where we observe a higher firing rate on high frequencies compared to the experimen-

tally measured ones. SA2 afferents were stimulated up to 100 Hz (Figure 3A) during the microneurography

recording. Therefore, lack of the neural response data on higher frequencies limits the parameter-fitting

procedure and the accuracy of simulated responses.

Model validation and robustness

We evaluated the performance of the model on a number of standard physiological metrics that are

commonly used in the literature to characterize the response behavior of tactile afferents.

Receptive fields

Tactile afferents differ in the size of their RFs.11 This effect is most prominent across class, with type 1 fibers

characterized by small RFs, while type 2 fibers possess much larger RFs that might also vary considerably

between afferents of the same class. RFs predicted by the model emerge ‘‘naturally’’ out of the interaction

between skin mechanics and the fitted response behavior of the different afferent models. We tested

whether modeled RFs were comparable to experimentally recorded ones. We simulated the responses

of all individual models to suprathreshold stimuli at fixed distances to determine the maximal distance

at which a tactile stimulus would still elicit a response from the afferent (see STAR Methods for details).

As our model of the skin is isotropic, modeled RFs will always be circular, while empirically measured
6 iScience 26, 105874, January 20, 2023



Figure 5. FootSim demonstrates realistic absolute firing threshold values

Top row: Empirically measured absolute firing thresholds for afferents from all four classes over a range of different

frequencies, obtained using a circular probe with 3 mm diameter. Each line with different color shade represents a

different recorded afferent. Bottom row: Modeled absolute firing thresholds of the afferents using identical stimulation

parameters as in experimental setup. Absolute threshold is defined as the minimal applied stimulation indentation level

with specific frequency that results with the afferent firing rate of 1 Hz. Each line represents a different model fit.

Experimentally recorded afferent and its modeled replication in FootSim are presented with the same color on the top

and bottom panel.
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RFs are often elliptical, likely caused by the structure of the skin and possibly properties of the receptors

themselves. Nevertheless, when comparing RF sizes (expressed as the radius of a circular field of a given

area), we found relatively good agreement between the modeled and empirical fields (Figure 6A). SA1

and FA1 RFs were small and matched well though the measured fields showed higher size variability

than the modeled ones. FA2 fields were large but highly variable in size and could cover a considerable

portion of the foot sole. Modeled SA2 RFs, on the other hand, were smaller than those of real afferents.

We ran a Kruskal-Wallis test to check whether the modeled and experimental values are statistically

different. A significant difference was found only for SA2 afferents. Experimentally, SA2s are pretty insen-

sitive to indentation, so they have highmonofilament thresholds. For that reason, very large monofilaments

are used to map the RFs, which are required to induce skin stretch to evoke SA2 firing. Therefore, it is likely

that the simple skin model we implemented, which reproduces stresses to normal indentation only, is not

sufficient to capture the response profile of SA2 afferents accurately enough.

Responses to ramp-and-hold stimuli

Different afferent classes are characterized by their stereotypical and canonical response profiles to ramp-

and-hold stimuli: SA afferents respond during stimulus onset but importantly also during sustained, con-

stant indentation with a continued and graded dynamic response with SA2s havingmore uniform interspike

intervals than SA1s. FA afferents only respond to dynamic phases during stimulus onset and offset.24 In or-

der to test whether the model reproduced these stereotypical responses reported in the literature, we

simulated simple indentation traces with 2 mm depth and computed the firing responses of all afferent

models in every region of the foot sole (Figure 6B). Stimulation was given in a 1 s window. In agreement

with empirical expectations, SA1 afferents responded during the ramp onset and, less vigorously, during

the plateau phase. In addition, SA2 afferents responded weakly but consistently throughout the stimulus

presentation. In contrast, both FA1 and FA2 afferents responded only during the onset and offset. We

also tested the model with a slightly changed shape of ramp-and-hold stimuli, making the ramp phase

steeper, reaching the plateau amplitude value in the short time period. In this scenario, FA afferents

increased their firing rate, showing that the modeled afferent representatives are able to code the velocity.
iScience 26, 105874, January 20, 2023 7
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Figure 6. FootSim can produce realistic receptive field sizes and afferent responses to ramp-and-hold stimuli,

replicating the natural behavior of specific afferent types

(A) Receptive field sizes measured experimentally (stars) and simulated with FootSim (circles) for different afferent classes.

Kruskal-Wallis test didn’t show statistical difference (p > 0.05) of modeled and experimentally measured receptive field

sizes, except for SA2 (0.01 < p < 0.05).

(B) Responses of different classes to the ramp-and-hold stimuli. Average population responses of the four different

afferent classes (colored lines) to a ramp-and-hold stimulus (indentation trace shown as black line). Themodel reproduces

canonical response properties of the four afferent classes, as have been widely reported in the literature.24
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Thus, the model reproduces afferent behavior during ramp-and-hold stimuli as expected based on previ-

ous findings.

Robustness of model parameters

The firing model employed by FootSim is composed of eleven parameters (Figure 1) that form a nonlinear

dependence between the stress profile given as an input and the neural response as an output of the simu-

lation. We ran several simulation experiments in order to explore the parameter space that is occupied by

different neuron classes, validate the robustness of the fitted parameter values, and demonstrate the

importance of both the absolute values and the relationships between parameters.

First, we sampled new models by ‘‘mixing and matching’’ different models of the same afferent type. We

selected each parameter value of the new model by sampling it with replacement from the set of originally

fitted values for that afferent type (Figure S2A). This change highly reduced the accuracy in predicting the

firing rates compared to the fitted models. As fitted parameters are not clustered based on the afferent

type (Figure S1), this result was expected and additionally emphasizes that specific parameters are not in-

dependent of each other.

To address whether the relationship between values is a key feature of accurate and realistic behavior of

afferent models, we substantially changed the absolute values of the model parameters, while keeping their

relationship constant—increasing or decreasing all values five times (Figures S3B and S3C, respectively). These

changes mostly surpassed the behavior of mix-and-match models; however, accuracy was highly decreased.

Finally, we examined whether slight changes of each parameter in the model would result in unexpected

responses or whether the models are robust enough with respect to moderately small parameter jittering.

We changed the value of each parameter by randomly jittering them between 5% and 30% of their value

(Figure 7). The accuracy of the predicted firing rates was slightly decreased, as expected, but overall these

models performed reasonably well. Estimated RF sizes remained very similar to the originally fittedmodels,

and responses on ramp-and-hold stimuli were very similar to the ones presented in Figure 6. In summary,

results show that slight jittering of parameters does not change significantly the neural responses.

Based on the investigated variations of model parameters, we can conclude that both absolute values and

the relationships between different values are important for realistic and accurate prediction of neural re-

sponses. In addition, slight changes in these features will not cause a significant change in behavior,

demonstrating the robustness of the fitted models.
8 iScience 26, 105874, January 20, 2023



Figure 7. FootSim is robust to modifications of parameters values but also to changes of relationships between parameters

We changed parameter (11 parameters from the Figure 1) values by increasing or decreasing randomly by between 5% and 30% of their nominal value.

Scatterplots on the left show experimental versus modeled firing rates. Individual panels show comparisons for different afferent classes. Each dot

corresponds to a tested frequency-amplitude pair, colored by frequency. Boxplots are showing the accuracy of the models in predicting the firing rate of the

afferents. Plots on the right show the size of receptive fields for each afferent type. See also Figure S3.

ll
OPEN ACCESS

iScience
Article
Simulating neural responses during walking

Tactile responses during dynamic behavior are technically challenging to record as the microneurography

technique requires the subject to be still. One of the benefits of the FootSim computational model is that it

can be used to simulate neural responses to natural spatiotemporal pressure distributions during dynamic

activities, such as walking, and thereby yield novel insights into neural population responses in behaviorally

relevant scenarios. As a proof-of-concept for this application, we used pressure data from a healthy partic-

ipant during walking, collected with a pressure-sensitive shoe insole (see STAR Methods for details). We

averaged the spatiotemporal pressure profiles from multiple steps to create an average step profile and

used this as an input to the model.

We present example frames of the input and the FootSim response in three different phases of the step—

heel strike, mid-step, and toe push-off—in Figure 8A. The simulated neural responses are color-coded de-

pending on the afferent fiber type, and the size of the marker is correlated with the simulated firing rate. As

the heel region has the highest skin hardness, propagation of stimuli is strong at the heel, and it provokes

the response of even some afferents in the metatarsal area or toes. In line with previous research,25,26 we

noted that pressure increases rapidly during initial contact when the heel strikes the ground, then de-

creases and plateaus while the foot is flat on the ground, and finally increases again, mostly around the

metatarsal area, during push-off, before decaying as the foot lifts off (Figure 8B, black line). FootSim simu-

lation responses for each afferent class were averaged across all afferents of that class that occur in the foot

sole, with a time bin of 25 ms, and they are color-coded for different afferent types (Figure 8B). Across the

four afferent populations, the largest responses were observed during heel strike, with smaller responses

during push-off, while the mid-stance elicited the smallest responses. This result mirrors similar findings on

the hand, where the population response is the strongest during transient events and small during sus-

tained forces.27 Averaged firing rate curves (Figure 8B) show differences in the response profiles for the

different afferent types during the walking cycle, implying potentially varied and specific roles during

different moments of the gait cycle. Differences in the overall activity levels of the different afferent types

partly reflect differences in local innervation densities but might also be a consequence of the extrapolation

from the relatively small probe used in data acquisition to the much larger contact areas simulated here.

Future validation with experimental data is needed to validate such differences in responsiveness.

Tactile feedback during walking is likely also employed in determining which part of the foot is in contact with

the ground at any given moment. Indeed, afferent populations innervating different regions on the foot sole

responded with different intensities and temporal profiles to the step (see responses for the heel, lateral arch,

middle metatarsal, and great toe in Figure S4), signaling local time-varying pressure at different skin sites.
iScience 26, 105874, January 20, 2023 9
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Figure 8. FootSim can reveal dynamics of activation during the walking cycle

(A) The spatial indentation profile and the population response. Each afferent’s marker is scaled by its firing rates during

heel strike (pink box), mid-step (light blue box), and toe push-off (light green box).

(B) Total pressure during an average step as a function of time (black line). Shaded areas denote the three time periods

depicted in panel B. We simulated average population responses divided by afferent class. Average firing rates for each

class were divided by the number of fibers of the corresponding type that exist in the foot sole. Since FA1 and SA2 afferent

have lower responses compared to the other afferents, we zoomed the view for better understanding of changes in

activation of specific afferent type during walking cycle.

See also Figure S4.
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Finally, neural responses also varied across different types of steps. The FootSim model responded consis-

tently to similar pressure profiles (Figures S4A, S4B, and S4C), while producing markedly different responses

to different spatiotemporal pressure patterns, as present for example during jogging (Figure S4D).

Specifically, responses from different regions of the foot during walking and jogging were notably different.

Afferents from the heel responded more during walking than in jogging, reflecting the differences in the pres-

sure profile of the two activities, and specifically the decreased use of heel strikes during jogging. Conversely,

afferents on the metatarsal location showed higher levels of activity in the jogging scenario as this region is

involved much more than while walking. Unlike when the person is walking, there is no second peak in SA1 ac-

tivity, since SA1 are activatedmostly during the slow change from the lateral to themetatarsal area of the foot.

DISCUSSION

We assembled an in silico model of the foot sole, which reconstructs the neural responses of individual

tactile afferents innervating the foot sole in humans. It uses a mechanical part of the model to convert
10 iScience 26, 105874, January 20, 2023
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indentations into stress patterns, followed by firing models that reproduce the response properties of in-

dividual afferents. The model is fitted on a dataset of tactile afferents exposed to a wide range of vibrotac-

tile stimuli at different frequencies and amplitudes, recorded in humans using microneurography. We

showed that the model can reproduce the response properties of these neurons accurately, as determined

by firing rates, firing thresholds, and RF sizes. Characteristic response behaviors of different afferent types

to ramp-and-hold stimuli are commonly taken as their specific feature. We confirmed that FootSim can

replicate these features even though the models were not fit this type of stimuli, proving that the model

can generalize to novel stimuli. Finally, we showed how the model can be used to reconstruct approximate

population activity during natural dynamic conditions, such as walking, which is difficult to measure exper-

imentally (e.g. through microneurography). The model has direct possible neuroscientific and neuropros-

thetic applicability.
FootSim emulates and reveals the role of specific tactile afferents for balance and gait

For bipeds, such as humans, the soles of the feet are the only interface with the ground. Forces acting at this

interface are sensed through the foot sole skin, and this feedback is then used to aid in the control of body

orientation and to manipulate the body center of mass (COM).28,29 Consequently, a reduction of plantar

cutaneous information results in an increase in postural sway30,31 and compensatory stepping reactions

to postural perturbations.32 The importance of cutaneous feedback from the foot sole is also highlighted

in patients with peripheral neuropathy, which causes a loss or degradation of tactile feedback, leading to

concomitant decreased balance, distorted gait, and even falls. Conversely, increasing cutaneous feedback

from the foot sole border has been shown to increase gait stability in older adults.8

Mechanoreceptors in the skin of the foot sole contribute to the representation of the COM with respect to

the base of support28 and are able to initiate postural reflexes that result in increased standing stability.33

The toes, the heel, and the lateral border of the sole represent the physical limits of the base of support.

Receptor densities in the toes are higher than in the rest of the foot sole, suggesting the significance of

feedback from the toes in maintaining balance.12 FootSim simulation of activation during the walking cycle

reveals an important increase of afferent activation in the heel and toes (Figures 8 and S4). The density of

mechanoreceptors on the lateral side of the foot is also larger than that on the medial, and again this might

afford fast and reliable feedback to react to balance loss. Specifically, if the COMmoves beyond the base of

support in the lateral direction, there is a need for a stepping reaction to prevent a fall,34 while the medial

movement of the COM can be compensated with the other leg and is, therefore, less critical. In addition,

themedial region of the foot sole is arched upwards, and it is therefore less often in contact with the ground

compared to the lateral part, which provides an additional possible explanation for the low density of af-

ferents in this region and their lower activity during walking (Figures 8 and S4). Furthermore, activation of

specific skin regions on the sole of the foot through electrical stimulation has been shown to modulate the

muscles of the lower limb to facilitate gait.35 This very direct evidence and direct measures of afferent

coupling36 support the notion that feedback from specific mechanoreceptive subpopulations plays a sig-

nificant role in spinal reflexes to control the magnitude of muscle activation for successful ambulation.

Apart from the location where an afferent terminates, its class also influences responsiveness to different

types of stimuli, and FootSim can help us understand the dynamics of afferent activation (Figures 6, 8,

and S4). Fast-adapting afferents are especially important in assisting balance control during human loco-

motion. They are likely responsive to the unevenness of the ground and unexpected slips and will serve as a

feedback mechanism for balance maintenance and/or recovery. They are considered motion and velocity

detectors, which explains their increased activity during transient events, such as foot-off and foot contact.

Because FA2 afferents are the most sensitive to perpendicular light touch and have the biggest RFs which

can cover up to the entire foot sole,12 it is expected that activity of these afferents is present during the

whole gait cycle and especially high during the initial gait stance (Figure 8). Merkel cells and Ruffini endings,

corresponding to slow-adapting tactile afferent units type 1 and 2, respectively, participate in postural

regulation, which generally involves movements and forces at frequencies below 5 Hz.32 SA1 afferents

are mostly associated with the maintained contact of the foot on support, and they show high activity dur-

ing the end of mid-stance when the metatarsal part of the foot is mostly on the ground and terminal gait

stance when the subject is leaning on his toes. FA1 afferents and their connected Meissner corpuscles are

associated with information related to foot contact,11 and their density is the highest in the toes,12 which

explains their increased firing during the terminal, toe-off phase of the gait. FA1 afferents are also strongly

coupled to motor neurons in the lower36 and upper5 limbs highlighting their reflexive role in standing
iScience 26, 105874, January 20, 2023 11



ll
OPEN ACCESS

iScience
Article
balance. As shear was not experimentally tested or modeled, FA1 show lower activation as they respond a

great deal to tangential forces along the skin. Low activity of SA2 is expected as they are stretch receptors

and have a high threshold to orthogonal load and are characteristically the least-sensitive type.

Importance of specific FootSim features

Differences in skin hardness across the foot sole produce nonlinear changes in skin stiffness, and, conse-

quently, stress calculation and propagation are highly nonlinear. Even though this variability does not

correlate highly with single afferent firing rates,15 it influences the number of recruited fibers due to the dif-

ferential spread of the mechanical stimuli through the skin of the foot sole. If stimuli with equal indentation

amplitude are applied to a region of the skin with increased hardness, stress values will be higher and the

dynamic component will propagate further on the skin of the foot sole, activating more afferents than when

stimuli are applied to the region with low hardness values (Figures 2B, 8A, and S1). This effect is of impor-

tance for understanding the dynamics of afferent activation and translation of observed results for defining

the biomimetic stimulating patterns for neuroprosthetic application. In addition, the ability to implement

modular values of skin hardness in FootSim is necessary when adapting the model for different groups of

patients. For example, patients with diabetic neuropathy, as one of the conditions, develop increased skin

hardness.37 In addition, afferent units from the foot sole lose their ability to transmit tactile information. In

the FootSimmodel, the number of afferents can easily be modified. Therefore, we believe that the FootSim

model design is suitable to be adapted for different groups of patients. The robustness of model param-

eters is very important as it is validating the strength of the designed model and its fitted values. Slight

changes of parameter values in FootSim afferent models will not significantly change the neural response,

therefore indicating that FootSim can be used as a unique, robust tool for simulating the neural responses

of foot sole afferents.

The number of constructed afferents is restricted by the relatively small amount of experimentally recorded

data. Hence, the FootSim model has a limited number of afferent replications and limited diversity of

afferent responses. This variability, which is one of the natural features and important for a realistic repre-

sentation of foot sole afferent responses, could be accomplished by changing the fitted model parameter

values on a small scale. Newly created models will not completely replicate the recorded afferent but could

conceivably portray information from different regions of the foot.

FootSim model application in neuroprosthetics

Lower-limb amputees are dealing with the loss of natural information about the interaction with the

ground, and currently available prostheses are not able to restore missing sensations.38 This leads to

reducedmobility, asymmetrical walking, lower embodiment, higher risk of falls, and numerous consequent

health issues.39 Electrical nerve stimulation shows promising results in restoring sensory feedback and

improving amputees’ condition.39–41 Multiple research groups are working on finding the best way to stim-

ulate the nerve10 and have achieved distinct and spatially selective sensations that significantly improved

motor tasks as well as the way the subject is perceiving the prostheses.40,42 Most often, artificial encoding of

linear stimulation has been tested, which has resulted in a range of perceived sensations: from undesirable

paresthesia, tingling, or prickling tomore pleasant like touch and pressure, with limited reported perceived

naturalness.10 Because naturalness is among the features of the highest importance for prosthesis accep-

tance,43 generating close-to-natural information for the nervous system44 represents a critical clinical need.

While hybrid modeling45 can help tackle the design of an optimal device to implant,46 we envisage the use

of the FootSim model for defining the ‘‘biomimetic language’’: stimulation patterns to mimic the natural

signals from the periphery. Indeed, the model has been designed to be effortlessly included in closed

loop neuroprosthetics (Figure 9).

Such a system is comprised of a sensorized insole that is able to record the pressure under the artificial foot

sole, sending a reconstructed pressure profile as an input to the FootSimmodel, which simulates the neural

responses of the fiber population. For an engineer, constructing the neuromodulation system, FootSim can

be considered as a ‘‘plug & play’’ tool, able to reconstruct the afferent activity and not requiring any specific

expertise for use. As an output, the model is producing the quasi-continuous dynamics of afferent activa-

tion during any activity (e.g., walking or running) of the subject, which can be used as a trigger for biomi-

metic stimulation policies. To do so, the function of transformation from the computed units’ activities to

the neurostimulator commands has to be assumed. We hypothesize a plausible option for such a transfor-

mation (Figure 9): the frequency of stimulation is defined directly from the summation of spike trains of all
12 iScience 26, 105874, January 20, 2023
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Figure 9. FootSim possible contribution to biomimetic stimulation patterns for tactile feedback restoration in

future neuroprosthetics

In a possible scenario, the user will be fitted with a leg prosthesis collecting real-time spatiotemporal pressure data via a

sensorized insole (bottom left). This data will be provided as an input to the FootSimmodel. The model would convert the

artificial pressure profiles into realistic neural response patterns (top, blue shaded box). FootSim output could be

potentially used for generating biomimetic stimulation policies (bottom right). Neurostimulator would generate these

paradigms, and this type of stimulation could be used to transmit to the subject the information recorded with the insole

in a future possible scenario.
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activated afferents, while the charge profile is coded in the number of recruited fibers.47 A direct translation

of FootSim to biomimetic policy creation needs to be investigated further in light of the limitations of avail-

able neurostimulating technologies.48 Finally, developed stimulating paradigms could be transmitted

to the neurostimulator through an appropriate transfer function. Potentially, such a biomimetic code en-

coded to nerves, through the neural implant, would be transmitted to the spinal cord and somatosensory

cortex, enabling the transfer of the information about contact with the ground. In this manner, we could

potentially restore to a disabled subject close-to-natural sensation coming from the artificial foot. Yet,

this use of FootSim needs to be investigated and validated in eventual future experiments.
Limitations of the study

The importance of spike timing is well known in tactile coding.49,50 However, due to limitations in how pre-

cisely spike trains could be aligned with the precise stimulation profile, the fitting of the FootSim model

relied on average firing rates, limiting the accuracy of predicting precise timings of generated action po-

tentials. Still, when precise alignment of spike trains with skin oscillations is not required (and it is not clear

whether precise spike timing at such fine temporal resolutions is behaviorally relevant on the foot), the

model should reproduce time-varying firing rates on the order of around 100 ms with relatively high

accuracy.

Second, we are simulating the stress propagation as quasi-continuous, without incorporating lateral

sliding and shear forces. This is, together with the lack of experimentally recorded neural activity,
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one of the biggest reasons for the limited accuracy of SA2 responses. Yet, this simplification is not

expected to significantly impact model accuracy, since a high correlation between tangential and

normal forces is typically observed during sliding.51 Still, future models should incorporate more

complex skin mechanics. In a related issue, we are approximating the skin as a two-dimensional

surface, since 3D modeling of the involved tissues would drastically increase the complexity of

the model, as well as limit the possibility of FootSim use in real time. Lastly, and importantly, our exper-

imental dataset is obtained by applying passive vibrotactile sinusoidal stimuli through a single rela-

tively small probe over the RF of individual mechanoreceptor endings. For the simulation of neural

responses during walking, we are predicting afferent responses in a dynamically loaded condition,

where large parts of the foot are in contact with the ground and forces are high. Therefore, the

model may be limited in its ability to accurately predict firing under high loads and with large

contact areas, as well as when tangential forces are applied. Future experimental work should test

and validate these predictions, within the limits of current technical capabilities, to improve future

iterations of the model.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Insole data for recreating step simulation This paper https://github.com/LClel/FootSim_insole_demonstration

and Zenodo (https://doi.org/10.5281/zenodo.7457045)

Software and algorithms

FootSim model code This paper https://github.com/ActiveTouchLab/footsim-python

and Zenodo (https://doi.org/10.5281/zenodo.7456827)

Code for recreating step simulation This paper https://github.com/LClel/FootSim_insole_demonstration

and Zenodo (https://doi.org/10.5281/zenodo.7457045)
RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to the lead contact: Stanisa Raspopovic (stanisa.

raspopovic@hest.ethz.ch).
Materials availability

This study did not generate any new materials.

Data and code availability

d No new data for model fitting and validation was generated for this study. It has been published previ-

ously1 (see STAR Methods, microneurography section). Insole data for recreating step simulation have

been deposited at Zenodo and are publicly available as of the date of publication. DOI is listed in the

key resources table.

d The full model code has been deposited on GitHub at https://github.com/ActiveTouchLab/

footsim-python and is publicly available. The current version described in this paper has been

archived on Zenodo. Code for recreating the step simulation is available at https://github.com/

LClel/FootSim_insole_demonstration and has been archived on Zenodo. DOIs are listed in the key

resources table.

d Any additional information required to run or validate the model reported in this paper is available from

the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study used a previously published dataset1 that contained microneurography recordings (see below

for a summary of experimental procedures) from 21 healthy subjects (12 males, 9 females; mean age 24,

range 20–27 years). All participants gave written informed consent to participate in the experiment. The

protocol was approved by the University of Guelph Research Ethics Board.
METHOD DETAILS

Microneurography

Neural responses of single cutaneous afferents were obtained through recordings in the tibial nerve while

vibrations of different frequencies and amplitude were delivered through the probe centered on the hot-

spot of the respective afferent. The dataset includes 59 recording sessions across 21 healthy subjects for a

total of 52 identified single afferents recorded in a prone, unloaded position.1 Two-second bursts of sinu-

soidal stimuli were applied at varied frequency (3–250 Hz) and amplitude (0.001–2 mm) combinations. Vi-

bration was applied using a 6 mm diameter probe driven by a mini vibration exciter (mini-shaker type 4810,

Power Amplifier Type 2718; Bruel & Kjaer, Naerum, Denmark). Receptive field size, monofilament firing

threshold and hotspot location were measured using Semmes-Weinstein monofilaments (Touch Test;

North Coast Medical, Gilroy, CA). Receptive fields were mapped by applying a force 4–5 times greater
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than the afferent firing threshold (defined as the minimum monofilament force that reliably elicited an

afferent firing response).
Fitting procedure

Firing models were fitted to replicate the spiking responses of a single recorded afferent on the applied

mechanical stimuli. Each firing model was governed by a set of 11 parameters, whose role is explained

in the results section, similarly as in TouchSim.16 We searched for the best combination of these parameter

values by using metaheuristic search algorithm52 that would result with the realistic simulation of afferent

neural responses. We excluded from the dataset all afferents that were stimulated experimentally with less

than 3 different frequencies (9 of them were discarded). Our goal was to find a realistic replication of every

afferent recorded during the microneurography experiment. That would ensure the enough variety of

simulated afferent neural responses that is observed in different experiments. We applied a differential

evolution algorithm,53 implemented in Python, for finding the sets of 11 parameter values that represent

single afferents. The procedure follows several steps: within the FootSim environment, we place an afferent

within the corresponding region where it was recorded during the experiment, ensuring that the mechan-

ical parameters of this patch of skin matched those commonly observed for this region. Then we start the

searching process by initializing the population of 11 parameters randomly. We generate the set of sinu-

soidal stimuli with all frequency-amplitude combination pairs applied experimentally and excite the

afferent model. The cost function is defined as a sum of: i) errors between the simulated and recorded firing

rate for each stimulus and ii) error in the simulated and recorded threshold value. The differential evolution

algorithm was then used to tune the parameters of the afferent models while minimizing this cost function.

Initial parameters (starting values of the 11-parameter set) were changed based on the best set of values

obtained in the previous optimization run and the procedure was repeated until the cost function did not

decrease further over several consecutive runs. An individual optimization run was stopped when it ap-

proached the maximum number of iterations (500) or when the difference between the two populations

of 11 parameters was less than 1%. For every recorded afferent, a separate model was fit. Models that failed

a minimum performance threshold (set as a correlation between predicted and recorded firing rates less

than 0.7) were excluded from the final model set. In total, we fit 5 SA1, 6 SA2, 15 FA1 and 5 FA2 individual

afferent models that are the best-modeled replication of realistic afferents recorded during experimental

procedure.
Fitting accuracy and model validation

In order to investigate the behavior of the fitted afferents, a Python toolbox was developed to perform vali-

dation of themodel. We chose key metrics to investigate such as firing rate responses, absolute thresholds,

response to ramp-and-hold stimuli and receptive field areas. In all tests, afferents generated with FootSim

were placed on the foot sole following previously published afferent densities for each of the foot sole

regions that have different mechanical properties and tactile innervation.12 A detailed description of the

validation assessment will follow.

Firing rate responses

To analyze the responses of the fitted models to a given set of stimuli, we subjected the afferent models to

an equivalent experiment to the one that generated our in vivo dataset.1 An initial challenge to reproduc-

ing such experiments was that not all afferents in the in vivo dataset received the whole range of stimuli. In

turn, an individualized stimulus set was required for each fitted model.

The modeled firing rates were compared with the experimentally recorded ones for the same frequency

and amplitude of stimulation received by the empirical counterpart. Sinusoidal waves of stimulation

were modeled in FootSim indentation of a circular probe with 3 mm radius, which was indented and

vibrated for 2 s. Firing rates were computed for each frequency-amplitude pair and compared with the

empirical ones.

Afferent firing thresholds

Afferent firing thresholds (AFTs) were also compared with their empirical counterparts, a set of stimuli

emulating the empirically given ones was applied to each of the fitted afferent models. In an effort to

closely reproduce response thresholds, the minimum amplitude necessary to elicit a firing rate response

of 1 Hz was classed as the model’s afferent firing threshold as displayed in Figure 5.
18 iScience 26, 105874, January 20, 2023
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Receptive fields

Receptive field sizes were calculated analogous to the procedure established in.16 In short, we found the

largest distance from the contact point of a simulated small probe (1-mm radius) at which an afferent model

still responded to a short vibratory stimulus with an amplitude of several times the absolute threshold. This

procedure was intended to mimic experimental determination of receptive fields. Empirically, afferent

receptive fields were measured with monofilaments that applied a force 4–5 times greater than the abso-

lute threshold.

Ramp-and-hold responses

Each afferent class exhibits well-known stereotypical responses to ramp-and-hold indentations. Aiming to

interrogate these responses in our model we subjected each of the fitted models to a ramp-and-hold stim-

ulus of 1 mm amplitude and 1 s of duration. The onset and offset of the stimulation lasted 0.2 s,

responses are described in Figure 6.
Simulation of neural responses during walking

TekScan� F-Scan� (TekScan Inc., South Boston, MA, USA) Sport Insoles were worn by a single healthy

participant (female, 19 years, shoe size UK 5) during a period of four 6 m walking bouts at a self-selected

speed. The insoles were cut to the size of the participant’s foot, inserted into the shoe, and calibrated

to the participant’s mass. The insoles consist of equally spaced pressure sensors with an area of

0.26 cm2, spaced 0.51 cm apart on a grid. During the trial, a total of 446 pressure sensors were active, sam-

pling the pressure signal at 100 Hz. We extracted 16 steps (average length: 817 ms, SD: 7.76) from straight

line walking. The jogging step is representative of the other steps in that trial (average length = 56.16 ms,

standard deviations = 14.97 ms). All steps are normalized to 100 time points. Pressure data for the left foot

from all steps taken was averaged to create the spatiotemporal pressure profile of an average step. Re-

corded pressure is mapped into the FootSim by taking into consideration Poisson’s ratio of the skin,

Young’s modulus of the skin and the radius of the flat-ended cylindrical indenter (radius equaling that of

the pressure sensors). Instances of the participant turning were removed so that only full steps in a forward

direction were processed. Each sensor input was represented by a separate simulated probe in the model,

whose indentation trace was calculated from the measured average pressure profile, by considering the

stiffness of each skin region as set in the model.
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using Python, and specific statistical tests used for each experiment

are described in the figure legends. Differences were considered significant if p < 0.05.
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