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Abstract 

Human immunodeficiency virus 1 (HIV-1) is a rapidly evolving virus able to evade host immunity through rapid adaptation during 
chronic infection. The HIV-1 group M has diversified since its zoonosis into several subtypes at a rate of the order of 10−3 changes 
per site per year. This rate varies between different parts of the genome, and its inference is sensitive to the timescale and diversity 
spanned by the sequence data used. Higher rates are estimated on short timescales and particularly for within-host evolution, while 
rate estimates spanning decades or the entire HIV-1 pandemic tend to be lower. The underlying causes of this difference are not well 
understood. We investigate here the role of rapid reversions toward a preferred evolutionary sequence state on multiple timescales. We 
show that within-host reversion mutations are under positive selection and contribute substantially to sequence turnover, especially at 
conserved sites. We then use the rates of reversions and non-reversions estimated from longitudinal within-host data to parameterize 
a phylogenetic sequence evolution model. Sequence simulation of this model on HIV-1 phylogenies reproduces diversity and apparent 
evolutionary rates of HIV-1 in gag and pol, suggesting that a tendency to rapidly revert to a consensus-like state can explain much of 
the time dependence of evolutionary rate estimates in HIV-1.

© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction
RNA viruses have low-fidelity polymerases, resulting in rapidly 
diversifying virus populations, which, in turn, facilitate the adap-
tation to changing environments. The human immunodeficiency 
virus 1 (HIV-1) is a prime example of such a rapidly evolving 
virus. The life-long infections it causes are characterized by a 
large viral population that accumulates diversity at a high rate 
to constantly evade host immunity (Coffin and Swanstrom 2013). 
This continuous evolution has led to a diverse viral population 
on the pandemic scale that is categorized into several viral sub-
types (Brian Foley 2018; Li et al. 2015). Different lineages have 
accumulated diversity at a rate of about one substitution in 1,000 
sites per year since its jump to human hosts at the turn of 
the 20th century (McCutchan 2006; Sharp, Hahn 2011; Korber
et al. 2000).

Quantifying the rate of viral evolution, however, is surprisingly 
difficult and different approaches yield different answers. Most 
importantly, the timescale across which sequences are compared 
strongly affects the estimates, sometimes by orders of magnitude: 
the longer the timescale, the lower the estimate (Aiewsakun and 
Katzourakis 2016; Hanada et al. 2004; Worobey et al. 2010; Gilbert 
and Feschotte 2010; Ghafari et al. 2021). These discrepancies sug-
gest that we lack a good understanding of how microevolutionary 
within-host (WH) processes—on the scales of days, months, and 
years—give rise to the diversity observed on longer timescales 

across hosts. In the case of chronic infections such as HIV-1, these 
microevolutionary processes are driven by selection to evade the 
host immune selection and mutations that reduce recognition 
can spread even if they reduce replication fitness. The pattern of 
immune selection changes at each transmission events and pre-
viously adaptive changes can become deleterious in the new host 
and sometimes revert (Leslie et al. 2004).

HIV-1 is an ideal system to study these effects in detail as 
the rate discrepancies among the WH, pandemic, and broader 
scales are well documented (Alizon and Fraser 2013; Worobey 
et al. 2010), the pandemic is well sampled, and high-resolution 
WH data exist. The evolutionary rate estimated on the pandemic 
scale is around two to five times lower than the one observed on 
the WH scale (Alizon and Fraser 2013). Several hypotheses have 
been put forward to explain this phenomenon. Two of the main 
hypotheses are the preferential transmission of ancestral HIV-1 
variants, i.e. the ‘store and retrieve’ hypothesis (Lythgoe and Fraser 
2012), and rapid reversion toward an ancestral-like state, i.e. the 
‘adapt and revert’ hypothesis (Redd et al. 2012; Zanini et al. 2015; 
Leslie et al. 2004; Boutwell et al. 2010; Herbeck et al. 2006; Illing-
worth et al. 2020). The relative importance of these and possibly 
other processes for the discrepancy of rate estimates is not well 
understood (Raghwani et al. 2018).

We use WH longitudinal deep-sequencing data to explore how 
the rapid evolutionary processes within hosts can give rise to 
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apparently lower rates on longer timescales. These results sug-
gest that the ‘adapt and revert’ mechanism can explain most of 
the rate mismatch observed at different timescales of the HIV-1 
pandemic. We, firstly, show that HIV-1 sequence evolution shows 
strong signs of site saturation while distance relative to the root 
of the tree increases much more slowly than expected based on 
the rate of evolution. Similar signatures are observed in longi-
tudinal WH data, suggesting that this saturation is independent 
of whether evolution is quantified along transmission chains or 
within hosts. Secondly, we investigate the cause of this satura-
tion and find that WH reversion toward the HIV-1 consensus is 
more common than expected and that such reversions are posi-
tively selected. Lastly, we use simulations of evolution to quantify 
the impact of rapid reversions on rate estimates for timescales of 
decades or more. These simulations show that the degree of rever-
sion observed within hosts can explain the phylogenetic patterns 
observed in the pandemic. More generally, our results highlight 
the evolutionary bias of viruses toward a state of high intrinsic 
fitness in a changing environment.

2. Results
We use (1) a set of sequences representative of the HIV-1 pandemic 
spanning multiple decades and (2) a longitudinal data set follow-
ing the evolution of the virus within individual hosts to investigate 
patterns of evolution on multiple timescales. The former between-
host (BH) data set contains 1,000 HIV-1 group M sequences from 
the Los Alamos National Laboratory (LANL) HIV database (Foley 
et al. 2013). This subsampling was performed to have the same 
number of sequences for each year to avoid sampling biases 
(except for early years, where fewer sequences are available) but 
otherwise randomly picked from the full data set. The phylo-
genetic tree was inferred using an IQ-TREE GTR+F+R10 model 
(Tavaré and others 1986; Yang 1995; Minh et al. 2020), which was 
found to be the best model according to the IQ-TREE ModelFinder 
and allows for rate variation (Kalyaanamoorthy et al. 2017). For 
more details on the phylogenetic analysis and the estimates of 
rates, see Sections 4.2 and 4.3.

Our WH analysis is based on the HIVEVO data set (Zanini et al. 
2015), a whole-genome deep sequencing of HIV-1 populations in 
eleven patients during a 4–16-year follow-up without treatment. 
Between six and twelve samples are available per patient, which 
typically cover 5–7 years of infection. Sequencing depth and tem-
plate input of all samples in this data set have been assessed and 
most samples allow a confident calling of frequencies of minor 
variation down to a few per cent (Zanini et al. 2016). See Section 4.1 
for details.

We analyze the evolution of the env, pol, and gag genes of HIV-1 
Section 2.1 to 2.4. They code for surface proteins, viral enzymes, 
and capsid proteins, respectively (Freed 2001). When combined, 
they cover approximately 80 per cent of the genome. We focus on 
the pol region in the main text and present analogous results for 
the env and gag regions in the Supplementary Materials.

2.1 Saturation and reversion effects are 
comparable between and within hosts
The ‘adapt-and-revert’ mechanism to explain the rate mismatch 
within and between hosts assumes that reversions during WH 
evolution ‘shadow’ previous changes, resulting in very low rate 
estimates. The ‘store-and-retrieve’ mechanism postulates that 
many WH changes are not transmitted and thus irrelevant for the 
evolution on longer timescales (Lythgoe and Fraser 2012). To look 
for such discrepancies between WH and BH evolutionary patterns, 

we compared the rates at which sequences diverge away from the 
root of the HIV-1 tree or their subtypes at the BH and WH scales, 
see Fig. 1A. 

The rate at which divergence between sequences increases 
decreases with distance as more and more sites are hit mul-
tiple times by mutations (Felsenstein, 2004). For very similar 
sequences multiple hits are negligible and divergence increases 
linearly in time with a slope given by the evolutionary rate. If all 
sites evolve at the same speed, such saturation effects are only 
important once distances between sequences are large (the size 
of correction is proportional to the distance squared and thus 
substantial if distances are 0.25 or larger). However, if differ-
ent sites evolve at drastically different rates, or reversions to 
a preferred state are common, such saturation effects set in 
much earlier and can lead to significant deviations even when 
sequences are still very similar (Puller et al. 2020; Ghafari et al. 
2021). The ‘adapt-and-revert’ mechanism thus posits strong sat-
uration effects of similar magnitude both within and between 
hosts when compared to distant references such as the root of the
HIV-1 M tree.

Sequences in the HIV-1 pandemic differ from each other at 
about 10–20 per cent of sites and we would naively expect 
that saturation effects are small unless rate variation is very 
strong or reversion is a substantial contribution to evolution. 
Figure 1B explores the observable consequences of such satura-
tion on the scale of the HIV pandemic for a simple substitution 
model with gamma-distributed rate variation. The panel shows 
the evolutionary distance to the root of the tree corrected for 
saturation effects in blue. The latter is simply the evolutionary 
rate times time and increases thus linearly with time. In addi-
tion, it shows the Hamming distance to the root of the tree in 
orange. Saturation effects are visible as reduced Hamming dis-
tances that increase more slowly over time, but the effects are 
small. As expected, saturation effects are even less pronounced 
when comparing sequences to the root of the subtypes (here 
assumed to be in 1965, compare Fig. 1A) or a ‘founder’ sequence
in 1980.

Figure 1C shows the analogous patterns for HIV-1. The Ham-
ming distance of HIV-1 sequences from the inferred root of the 
HIV-1 group M tree (orange) is substantially lower than the RTT 
distance (blue) and increases only at about half the rate, suggest-
ing substantial saturation. Similarly, the Hamming distances to 
the subtype consensus (only done for Subtypes B and C) increase 
less rapidly than the RTT distance, despite the fact that at 2–5 
per cent sequence divergences from the subtype root saturation 
effects are unexpected. Such rapid saturation can arise through 
rate variation (Soubrier et al. 2012) or heavily skewed site-specific 
equilibrium frequencies resulting in rapid reversion (Halpern and 
Bruno, 1998; Hilton and Bloom 2018; Puller et al. 2020; Ho et al. 
2005; Wertheim and Kosakovsky Pond 2011).

We then performed a similar analysis on WH data on a 5-year 
timescale to determine whether similar rates and saturation 
effects exist within hosts. We compute WH evolutionary rates by 
measuring the divergence over time in Fig. 2D. Specifically, we cal-
culate the divergence d(t) relative to a reference sequence, such as 
the root of the tree, according to: 

where N is the length of the region and 𝑓𝑖(𝑡) is the frequency 
of the founder nucleotide at position i and time t in the viral 
population. This founder nucleotide at each position i is approx-
imated as the majority nucleotide at the first time point t0, and
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Figure 1. Divergence over time in the pol gene. (A) Sketch of the HIV-1 group M phylogenetic tree and its subtypes. Dots correspond to the position of 
the references used to compute distances in the other panels. WH evolution is indicated by red triangles. (B) Expected Hamming distances under a 
Jukes–Cantor (Jukes et al., 1969) evolution model with rate variation (gamma distributed, Parameter 2). Different curves show expected distance to the 
root of the tree (orange), subtype root (green), and WH founder (red). The blue and gray indicate linear growth of distance without saturations with a 
rate equal to the estimate from the root-to-tip (RTT) distance in Panel C. As expected, saturation effects are small since distances are around 10 
per cent and multiple hits are rare. (C) Average Hamming distance from the root of the HIV-1 group M tree (orange), from the respective subtype 
(green, see dots in Panel A), or RTT distance in a phylogeny as a function of time. Each data point is the average of sequences from one year, lines are 
linear fits, and the shaded area indicates the 10–90 per cent range. (D) The WH divergence over time relative to the putative founder genotype, the 
HIV-1 group M root, and the subtype consensuses, averaged over all patients in the HIVEVO data set. Divergence is computed according to 
Equations (1) and (2). Standard estimates for the evolution rates BH and WH are the slopes of the RTT distance (blue) and divergence from founder 
sequence (red). There is an approximately 50 per cent difference between the evolution rates estimated while sequence distance is only a couple per 
cent. Comparing to the expectation (B), we can see that significant saturation of comparable magnitude can be seen on both BH (C) and WH (D) scales. 
Results for regions env and gag are shown in Supplementary Figs. S1 and S2.

Figure 2. Divergence from founder sequence over time in the pol gene. (A) Divergence from founder overall and split for sites initially in consensus and 
non-consensus states. The reference used to define consensus and non-consensus sites is the HIV-1 group M consensus. Colored percentages are the 
fraction of sites corresponding to the related curve. Non-consensus sites represent only 6 per cent of the gene but diverge faster over time. Overall, 87 
per cent of this divergence are due to reversions, while only 13 per cent are mutations toward another non-consensus nucleotide. (B) The data set from 
Panel A further split among the first, second, and third codon positions. The difference in evolution speed is greatest for nucleotides in the second 
position. (C) Ratio of non-consensus to consensus evolution rates computed from the curves in Panel B (Supplementary Figs. S3 and S4 for env and 
gag). The ratio is highest for second positions (triangles), where mutations can not be synonymous, followed by first and third positions.

its frequency at each time point t is used to compute d(t). Details 
about the computation of the founder sequence can be found 
in Section 4.4. The Boolean 𝛿𝑟𝑒𝑓

𝑖  is such that 𝛿𝑟𝑒𝑓
𝑖 = 1 if the founder 

nucleotide at position i is the same as in the reference sequence 
and 𝛿𝑟𝑒𝑓

𝑖 = 0 otherwise. The first term 𝛿𝑟𝑒𝑓
𝑖 ⋅ (1 − 𝑓𝑖(𝑡)) in Equation (1) 

accounts for the change away from the founder at positions where 
the founder sequence equals the reference sequence. The term

(1 − 𝛿𝑟𝑒𝑓
𝑖 ) ⋅ 𝑓𝑖(𝑡) accounts for the change at positions where the 

founder sequence differs from the reference sequence. In most 
cases, the founder nucleotide is replaced by the reference 
nucleotide and the population is getting more similar to the ref-
erence, and mutations to other states are ignored in this calcula-
tion (see below). When measuring the divergence relative to the 
founder sequence, Equation (1) simplifies to:
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In all cases, the quantity d(t) measures the Hamming dis-
tance to the reference sequence expected for a randomly chosen 
sequence from the viral population of a sample. We then averaged 
the divergence trajectories of different patients and estimated 
uncertainty by bootstrapping groups of samples from the same 
patient with replacement. In analogy to the BH analysis, we use 
the root of the HIV-1 group M tree and subtype consensuses as 
reference sequences, supplemented by the founder sequence of 
each patient. Results are shown in Fig. 1D over a period of 5.5 
years as the follow-up of most patients stopped after this dura-
tion. The filled areas represent one standard deviation of the 
bootstrap replicates. For more details about the methodology, 
see Sections 4.2 and 4.3.

Figure 1D shows that the divergence increases the fastest rel-
ative to the founder sequence at approximately (16.1 ± 1.1) ⋅ 10−4

mutations per site per year. This rate is significantly and substan-
tially higher than the rate at which RTT distance increases on the 
pandemic scale in line with previous observations that WH rate 
estimates tend to be higher (Alizon and Fraser 2013). Hamming 
distances to the subtype consensus or the root of the HIV-1 (M) tree 
increase significantly more slowly. In fact, these rates are com-
patible with their corresponding estimates at the pandemic scale 
(compare Panels C and D).

A ‘store-and-retrieve’ mechanism to explain the discrepancy 
between rate estimates should not only result in differences 
between BH and WH rate estimates (the rates at which the RTT 
distance and the distance to the founder sequence increase), 
but also for the rates at which Hamming distances to HIV-1 
root or subtype consensuses increase. Since divergence to refer-
ence sequences decades in the past is increasing at compatible 
rates within and between hosts, these analyses suggest similar 
modes of divergence accumulation and do not support ‘store-
and-retrieve’ as a primary mechanism to explain the discrepancy 
in rate estimates. In contrast, rate variation or rapid reversion 
is not expected to affect Hamming distance dynamics to fixed 
reference sequences like the HIV-1 (M) root. RTT distance esti-
mates, however, are expected to be biased downward since rapid 
back-and-forth mutations are unaccounted for by the substitution 
models and do not contribute to the RTT distance. The obser-
vations in Fig. 1, and analogous results for env and gag regions 
shown in Supplementary Figs. S1 and S2, are thus compatible 
with saturation effects not captured by substitution models. We 
will now investigate WH dynamics of polymorphisms to show that 
rapid reversion to consensus states is a major contributor to this 
saturation.

2.2 Non-consensus sites diverge faster
Next, we explored the evolution toward and away from consensus 
within hosts in Fig. 2. Panel A shows the WH divergence separately 
at sites where the founder sequence agrees with the HIV-1 group M 
consensus and where it differs from it. Filled areas show the stan-
dard deviation of the bootstrap estimate. The divergence at sites 
where the founder sequence differs from the global consensus 
increases approximately seven times faster than in the rest of the 
sequence. A mutation at a site that initially differs from consensus 
could either be a reversion to consensus or a mutation to one of 
the two remaining nucleotides. We found that 87 and 85 per cent 
of mutations at these sites are reversion toward consensus for pol
and gag, while this figure is 76 per cent for env. Mutations to a third 

state are thus a minor contribution. The sevenfold increased rate 
at 6 per cent of the sites that are initially non-consensus (in pol) 
implies that about one in three mutations bring the sequence 
closer to the HIV-1 root sequence (the number of reversion muta-
tions divided by the total number of mutations: 7⋅0.06⋅𝜇

(0.94+7⋅0.06)𝜇 ≈ 1
3

where 𝜇 is the observed evolution rate.). This strong tendency to 
revert can explain the difference in evolutionary rates observed on 
WH and BH scales and is consistent with the threefold difference 
in slope between the divergence relative to the founder or HIV-1 
group M root shown in Fig. 1D.

This accelerated evolution could be due to (1) reversion to an 
ancestral state to increase fitness or (2) reduced purifying selec-
tion at sites with high levels of diversity in global HIV-1 population. 
In order to differentiate between these possibilities, Fig. 2B shows 
the divergence by codon position. The degree to which divergence 
is accelerated differs among the first, second, and third positions 
in a codon. In particular, sites in the second position diverge the 
fastest when in a non-consensus state, while they diverge the 
slowest in a consensus state. This is consistent with the fact that 
second positions tend to be most conserved as only 2 per cent of 
such sites differ from the consensus sequence in pol.

Figure 2C quantifies the ratio of divergence rates at sites ini-
tially in a consensus or non-consensus state for pol, env, and 
gag. Details on the computation of these rates can be found 
in Section 4.3. In all cases, evolution rates of non-consensus sites 
are higher than consensus ones. The difference is greatest for sec-
ond codon position sites, followed by first codon position sites 
(see Supplementary Figs. S3 and S4 for divergence plots for other 
genes). Mutations at second codon position sites are always non-
synonymous and often cause drastic amino acid changes, while 
mutations at third codon position sites are often synonymous 
and generally less impactful. Mutations at first position sites can 
be both synonymous and non-synonymous. The observation that 
divergence is fastest at non-consensus but otherwise strongly con-
served sites suggests that reversion mutations are selected to 
increase fitness and are not the result of reduced purifying selec-
tion at sites of high diversity. These results are consistent with 
previous observations showing that conserved sites tend to revert 
more quickly (Zanini et al. 2015) and the notion that selection for 
reversion is probably driven by the fitness costs of mutations that 
enabled immune escape in a previous host (Leslie et al. 2004). 
Such rapid reversion is an example of adaptation within hosts, 
but the combined escape-reversion dynamics on timescales span-
ning several transmission events looks like purifying selection at 
conserved sites.

2.3 Reversion mutations are positively selected
If a lot of reversions are driven by selection, as the codon-position-
specific analysis above suggests, effects of selection should be 
detectable in the dynamics of intra-host single nucleotide vari-
ants (iSNVs). Specifically, we expect to see a tendency of reversion 
mutations to increase in frequency and fix. We analyzed the fre-
quency trajectories of iSNVs to look for such features. Similar to 
the previous analysis, we separate all trajectories into reversion 
and non-reversion groups and compare their evolutionary dynam-
ics in Fig. 3. We select trajectories with at least one data point in a 
frequency interval [𝑓𝑚𝑖𝑛,𝑓𝑚𝑎𝑥] for each group. We offset these tra-
jectories in time so that t = 0 corresponds to their first data point 
seen in the frequency interval and compute the mean frequency of 
the trajectory group over time. The small minority of trajectories 
where both the initial nucleotide and the target nucleotide differ 
from the consensus sequences are classified as ‘non-reversions’ in
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Figure 3. Positive selection on reversion mutations. (A) Frequency of reversion mutations seen between 0.4 and 0.6 frequency at one time point (offset 
to be t = 0) and their average over time. (B) Mean frequency over time for reversion (full lines) and non-reversion mutations (dashed lines) for different 
frequency windows (colors). Reversion trajectories are strongly selected for as their mean frequency increases over time. Non-reversion trajectories 
evolve close to the neutral expectation. The reference sequence used to define reversion mutations is the HIV-1 group M consensus. The solid orange 
line is the same in both panels.

this analysis. More details about the definition of trajectories and 
the methodology are in Supplementary Fig. S5 and Sections 4.5 
and 4.6. We use the HIV-1 group M consensus sequence as a 
reference to define reversion mutations, but results are qualita-
tively similar when using subtype consensus or root sequence as 
a reference. 

Figure 3A shows individual trajectories shifted to pass through 
the frequency interval [0.4, 0.6] at t = 0 along with their average. 
The mean frequencies for different initial conditions and groups of 
trajectories are shown in Fig. 3B. Since we condition the set of tra-
jectories to start as minor variants and pass through a frequency 
interval at t = 0, we expect that trajectories tend to rise for t < 0, as 
is indeed observed. The dynamics at t > 0, i.e. after the time of con-
ditioning, are informative about the selection of the iSNV. We do 
not expect any consistent trend to rise or fall in frequency for neu-
tral mutations, hence their average frequency should be constant 
for t > 0. Contrary to that, we show in Fig. 3B that the frequency 
of reversion mutations increases on average over time. This sug-
gests that these reversion mutations are beneficial on average and 
fix preferentially in the population, with probability given by the 
end point of the curves for each group of trajectories. This finding 
is consistent with the notion that the HIV-1 consensus sequence 
approximates a fitness optimum of HIV-1 (Zanini et al. 2017). On 
the other hand, non-reversion curves are flat or slightly decreas-
ing for t > 0, suggesting that such mutations tend to be slightly 
selected against or are neutral—at least those that reach high 
frequency in the first place.

We note that the selection for reversion mutations is strongest 
for the gag region, see Fig. S6 for details. When splitting 
trajectories into synonymous and non-synonymous changes 
(irrespective of reversion/non-reversion), we observe that synony-
mous mutations tend to decrease in frequency for t > 0, while 
on average non-synonymous mutations increase, see Fig. S7. 
This suggests that high-frequency non-synonymous mutations 
tend to be beneficial, while synonymous mutations are slightly 
deleterious, consistent with earlier results (Zanini and Neher 
2013). Common synonymous reversions, on the other hand, 
tend to further increase in frequency and fix preferentially, see
Fig. S8.

2.4 Reversions can explain the rate mismatch
Over longer timescales, the rapid reversions we observe within 
hosts will lead to undetected substitutions along branches of the 
phylogeny whenever a mutation and its corresponding reversion 
happen on the same branch. When such reversion dynamics are 
not captured by the substitution models, the evolutionary rate 
inferred by phylogenetic methods will be too low (Halpern and 
Bruno 1998; Hilton and Bloom 2018; Puller et al. 2020). Here 
we explore how much of the discrepancy between evolution-
ary rates estimates at the WH and BH scales can be attributed 
to rapid reversions not being properly captured by substitution
models.

We quantify the impact of reversions on the BH evolution rate 
using an evolutionary model that accounts for the reversion bias 
we observed within hosts. We use the TreeTime library (Sagulenko 
et al. 2018) to define a site-specific general time-reversible (GTR) 
model (Puller et al. 2020). We parameterize the mutation rate from 
nucleotide j to i at position 𝛼 as: 

where 𝜇 is the mean mutation rate per site per year, 𝑝𝛼
𝑖  describes 

the equilibrium probability of finding nucleotide i at site 𝛼, and 
Wij accounts for the overall variation in rate between different 
nucleotide pairs i and j independent of position (i.e. the differences 
between transitions and transversions). We use 𝜇 = 16.1 ⋅ 10−4, the 
overall WH evolution rate observed in Fig. 1D. In this model, 
the bias for reversion is introduced via the equilibrium frequen-
cies 𝑝𝛼

𝑖 . These depend on the genome position 𝛼, enabling us to 
skew the frequencies toward the consensus nucleotide at each 
position. Contrary to common evolutionary models that include 
rate variation between sites, we keep the evolutionary rate con-
stant across positions and vary 𝑝𝛼

𝑖  instead. However, our results 
show little change if a gamma-distributed rate variation is incor-
porated, especially when the shape parameter is greater than 
2. We choose 𝑝𝛼

𝑖  such that the model reproduces the WH rates 
of reversions and evolution away from consensus. Specifically,
we use
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where 𝜇𝛼
+ and 𝜇𝛼

− are the consensus and non-consensus divergence 
rates, respectively, computed from WH data shown in Fig. 2B. 
These rates reproduce the equilibrium frequencies in a model with 
two states (consensus and non-consensus). These rates are codon 
position-specific, meaning for every 𝛼 that is a first codon posi-
tion 𝜇𝛼

+ = 𝜇1𝑠𝑡
+  and 𝜇𝛼

− = 𝜇1𝑠𝑡
−  and analogously for the second and 

third codon positions. The parameter 𝑟𝛼
𝑖  is used to specify the 

relative proportions of the three non-consensus nucleotides. It is 
chosen so that 85 per cent of the non-consensus nucleotides are 
the transitions from the consensus, while the two transversions 
contribute 7.5 per cent each. These values were inferred from 
the BH alignment and are consistent with the WH observations, 
see Section 2.2. Otherwise, this GTR model is purely informed by
WH rates.

We then used this model to simulate evolution along an HIV-
1 phylogeny and generate a multiple sequence alignment (MSA) 
using TreeTime and the inferred HIV-1 root sequence (as used 
in Fig. 1). We then inferred a tree from the MSA generated using 
IQ-TREE, as we did for the real data.

Figure 4 compares the diversity of original and generated MSAs 
and the length of the inferred trees to quantify the impact of rever-
sions on phylogenetic inference. A model that does not account 
for reversions, i.e. where 𝑝𝑖 = 0.25 for 𝑖 ∈ A,C,G,T for all sites, was 
included for comparison and is referred to as the naive GTR model. 
Figs. 4A and 4B show a comparison of the real and generated MSA 
characteristics. The MSA generated using our WH-informed GTR 
model (green) has a similar nucleotide content and distance to 
the root as the real BH data (blue). On the contrary, the naive GTR 
model that does not take reversions into account (orange) results 
in a more diverse MSA and overall nucleotide content that is less 
similar to the BH data.

Figure 4C shows that the evolutionary rate estimated from the 
RTT regression of the tree reconstructed from the MSA simulated 
using the naive GTR model is, as expected, very close to the WH 
evolution rate of 𝜇 = 16.1 ⋅ 10−4 mutation per site per year we input 
into the model. Our custom GTR model, which uses the same 𝜇 but 

accounts for reversions, results in a RTT regression with a slope 
of 11.9 ⋅ 10−4, substantially lower than the true rate and within 
10 per cent of the rate estimate from the RTT regression for the 
original phylogenetic tree. This suggests that a substitution model 
parameterized by rates and reversion propensity of WH evolution 
can largely reconcile the discrepancy of rate estimates at different 
scales, even if it does not include rate variation between different 
sites.

We find qualitatively similar results for the gag (see
Supplementary Fig. S10). In the case of env, the tree reconstructed 
from the data generated and subsequent analysis is unreliable due 
to excessive saturation in the model (see Supplementary Fig. S9).

3. Discussion
Evolutionary rate estimates depend strongly on the timescale 
over which they are measured (Ho et al. 2005; Aiewsakun and 
Katzourakis 2016). Here, we explored this effect on the scale 
of the HIV-1 pandemic, individual subtypes, and within hosts. 
We showed how observations on short timescales give rise to 
patterns on longer scales. Differences between rate estimates 
WH scale and on the pandemic scale can, to a substantial 
degree, be explained by a strong tendency to revert deleteri-
ous mutations to their preferred state. These unpreferred states 
are probably the result of escape from immune selection in a 
previous host, which gradually revert as the host-specific selec-
tion pressure is relaxed in future hosts. Microscopically, we thus 
observe evolutionary dynamics driven by the adaptation to a 
changing environment: both changes, escape and reversion, are 
beneficial in their respective environments. These transiently 
beneficial escape mutations are generally deleterious on longer 
timescales, such that the aggregate effect of this dynamic looks 
like slowly acting purifying selection (Wertheim and Kosakovsky
Pond 2011).

Substitution models commonly used to reconstruct phylo-
genies and infer evolutionary rates do not account for rapid 
reversions, which would require site-specific preferences for dif-
ferent states (Halpern and Bruno 1998; Hilton and Bloom 2018;

Figure 4. Substitution models that account for reversions can largely explain the rate mismatch. This figure shows the sequence diversity and RTT 
distances for simulated data generated with a substitution model that accounts for reversion, parameterized by WH data (WH reversion) and a model 
that does not account for reversion (WH naive) for the pol region. (A) Violin plot of the nucleotide content for the BH data and the MSAs generated. The 
naive model tends to equilibrate the nucleotide composition. (B) Histogram of Hamming distances to the root sequence. The reversion-informed 
model agrees well with the BH observations, while the naive one generates sequences very far from the root. (C) While the RTT distance estimated 
from data generated by the naive model is consistent with the evolution rate we used in the model (true value 16.1 ⋅ 10−4 per site and year), the data 
generated using the model with reversion results in much lower estimates, similar to the rate estimated from BH data. The results for env and gag are 
shown in Supplementary Figs. S9 and S10.
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Puller et al. 2020). We explored the effect of reversions on phylo-
genetic inference and rate estimates of HIV-1 by defining a simple 
site-specific model parameterized by reversion and non-reversion 
rate estimates from longitudinal data within hosts. Phylogenetic 
inference from data simulated using this model revealed that 
reversions during chronic infection can explain approximately 90 
per cent of the apparent slowdown of evolution for the pol gene 
of HIV-1. A similar selection for reversion mutations has also 
been observed during acute infection (Boutwell et al. 2010; Leslie 
et al. 2004) or the transmission bottleneck (Carlson et al. 2014). 
Such preferential transmission of consensus-like variants could 
amplify the overall effect of incomplete reversions during chronic 
infection. Together, these results suggest that, among the hypothe-
ses proposed to explain the difference in rates (Lythgoe and Fraser 
2012; Redd et al. 2012; Zanini et al. 2015; Leslie et al. 2004), ‘adapt 
and revert’ is the main mechanism.

The strongest effects of unaccounted reversions in phyloge-
netic inference are expected on long branches in the phyloge-
netic tree, where mutations are masked by their corresponding 
reversions (Hilton and Bloom 2018; Puller et al. 2020). The well-
known phenomenon of long-branch attraction can, in these cases, 
already set in for branches that are nominally quite short. A strong 
tendency to revert can lead to sites that are completely saturated, 
yet almost always are in the same state—an effect not captured 
well by rate variation.

Rapid reversions are probably essential to conserve global fit-
ness by purging costly immune escape mutations acquired in 
individuals earlier in the transmission chain (Carlson et al. 2014; 
Zanini et al. 2017). In addition to reversion, fitness costs of escape 
mutations can, of course, also be mitigated by compensatory 
mutations (Crawford et al. 2007; Carlson and Brumme 2008). 
Although such compensatory mutations presumably slow down 
many reversions, we still observe a marked difference in iSNV fre-
quency dynamics toward vs. away from consensus. In addition, 
compensatory evolution can change the preferred sequence to a 
new local fitness maximum to which mutations revert, adding an 
additional slow timescale to the evolutionary process. We expect 
the preferred sequence to slowly drift on timescales much longer 
than the typical serial interval along transmission chains. This 
effect has been observed in deep mutational scanning experi-
ments in influenza viruses (Hilton and Bloom 2018; Doud et al. 
2015). Such effects are also consistent with the ‘Prisoner of War’ 
model by Ghafari et al. (2021), where a slowly changing fitness 
landscape (through host switches, host adaptation, or compen-
satory evolution) gives rise to apparent rates of evolution that 
decrease with the timescale of observation over many orders of 
magnitude.

The star-like diversification of HIV-1 into multiple subtypes 
gives a clear notion of a consensus sequence that can be used 
to approximate a putative fitness peak toward which reversions 
occur. In other viruses, for example, influenza A viruses, the 
ladder-like or otherwise structured phylogenies do not allow a 
straightforward definition of a consensus sequence. Nevertheless, 
it is possible that adaptation to a changing immunity landscape 
and reversions contribute with a similar magnitude to sequence 
turnover.

4. Materials and Methods
4.1 Data set and filtering steps
4.1.1 Between-host data sets
Our BH data sets come from the LANL HIV databases. All HIV-1 
group M sequences with exact sampling date were downloaded for 

the pol, env, and gag regions. Subtype O and N sequences were fil-
tered out. Sequences with ambiguous nucleotides and sequences 
labeled as ‘problematic’ on LANL website were removed. Only one 
sequence was kept per patient. The data sets were downloaded on 
14 July 2021. This gave us a total of 6,649 sequences for pol, 15,034 
for env, and 8,948 for gag.

Regarding each genomic region, we subsampled the data set 
to have 1,000 sequences in each case, with the same number of 
sequences for each year where sequences were available (except 
for early years where fewer sequences were available). For each 
region, Subtype B represents approximately 40 per cent of all 
sequences, Subtype C approximately 15 per cent, and the rest 
encompass the other subtypes or unlabeled subtypes. Subtype 
B sequences are more common in early years while Subtype C 
sequences represent a larger proportion in recent years. We then 
performed an MSA, including the reference HIV-1 HXB2 sequence, 
using Multiple Alignment using Fast Fourier Transform (Katoh 
and Standley 2013) and the Nextstrain framework (Huddleston 
et al. 2021). Insertions relative to the reference HXB2 sequence 
were removed. We removed all positions of the alignment where 
more than 10% of sequences have a gap as the alignment can be 
unreliable in such positions. The alignment for the pol, env, and 
gag regions are the data sets used for our BH analyses. See the 
section Code and data availability for access to the data sets.

4.1.2 Within-host data sets
Our WH analysis leverages the time resolution of the HIVEVO 
data set (Zanini et al. 2015). This data set is freely available 
with tools made available to facilitate the analysis. We use these 
tools to obtain a three-dimensional matrix of nucleotide fre-
quencies for each patient. The three axes of these tables are 
the HIV-1 genome position, the nucleotide, and the time since 
infection of the sample. Each entry in these matrices gives the 
frequency of a given nucleotide at a given position on the genome 
at this time point, relative to the total intra-patient HIV-1 pop-
ulation. These matrices form our WH data set. We excluded 
patients p7 and p10 from our analysis as their samples were very 
uneven in time or because there was evidence of multiple founder
sequences.

The estimates of nucleotide frequencies are unbiased in the 
[0.1,0.9] range, while coverage and depth are globally sufficient 
(Zanini et al., 2016). We applied several filtering steps prior to anal-
ysis to avoid biases in our results. We masked data points with 
sequencing coverage inferior to 100 and/or where the depth was 
low. We also removed genome positions that were not mapped to 
the consensus sequence and/or seen to be too often gapped in the 
MSA of BH sequences. The alignment and mapping of such sites 
can be unreliable; thus, we removed them from our analysis. This 
filtering procedure is mainly relevant for the env gene, which is the 
region with the most noise.

4.2 Distance and divergence over time
The first result section gives an overview of the method used 
to compute the distance and divergence over time in Fig. 1 
and Supplementary Fig. S1 and S2. Additional details are given
below.

Hamming distances were computed by counting the number of 
sites that do not match the reference sequence for each sequence 
in the data set. We then divide this number by the length of the 
sequence to obtain the relative distance to the reference. Ham-
ming distances were computed using three reference sequences. 
The first is the root sequence of the tree. The tree was inferred 
using the IQ-TREE GTR+F+R10 model (Minh et al. 2020), while the 
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root sequence was computed using TreeTime ancestral recon-
struction on this tree (Sagulenko et al. 2018). We chose to use 
the root sequence instead of the consensus sequence of the align-
ment in Figs. 1 and 4 to avoid biases due to over-representation 
of Subgroup B and C sequences. The second and third refer-
ence sequences are Subgroup B and C consensus sequences. 
See Section 4.4 for details on the computation of consensus and 
founder sequences. To compute the Hamming distances to the 
subtype consensus, we averaged the distances computed for Sub-
type B and C sequences relative to their consensus. The aver-
age was then weighted by the relative number of each subtype 
sequence in each year.

The RTT distances shown in Figs. 1 and 4 and Supplementary 
Figs. S1, S2, S9, and S10 are computed directly from the tree gen-
erated via IQ-TREE. Such distances were computed for every leaf 
of the tree (i.e. every sequence in our data set) and then averaged 
for sequences sampled in the same year for visualization. Taking 
into account the phylogenetic information allows the detection of 
some mutations that occur and then revert along the tree. Con-
sequently, the estimates of the RTT distance are higher than the 
Hamming distance ones.

4.3 Evolutionary rates
The evolutionary rates in Figs. 1 and 2C and Supplementary 
Figs. S1 and S2 are the slopes of linear fits of the data. For the BH 
plots (Fig. 1C and Supplementary Figs. S1A and S2A), the fit was 
done on the data from 1979 to 2022. For the WH plots (Figs. 1D 
and 2C and Supplementary Figs. S1B and S2B), we estimated a 
linear fit from 200 to 2,000 days in the infection. We removed 
the first 200 days from the fit as for most patients the first sam-
ple we have is in the 0–200 days window. This causes the small 
flat part of the founder curves near t = 0, which could bias our 
evolution rate estimates. Consequently, we decided to only use 
data starting from 200 days into the infection for the fit, which is 
more than enough to get an accurate estimate of the slope. For 
the WH rate estimates, we estimate the error by bootstrapping
patients.

Estimating confidence intervals for evolutionary rates at the 
level of the pandemic is challenging because of the phyloge-
netic relationship and shared ancestry of the sequences. Instead 
of using probabilistic phylogenetic models, which suffer from 
residual recombination and model inadequacies, we opted for 
phylogenetic boot-strapping procedure for the BH rate estimates. 
Specifically, we cut all branches of the time-scaled phyloge-
netic trees at the year 1980 and thereby obtain a collection of 
subtrees. Sequences in the same subtree are correlated, but 
they are not correlated with sequences on another subtree (as 
evolution happens on different branches of the original tree). 
We performed bootstrapping to estimate distances and rates 
by sampling with replacement from sequences in these sub-
clades. The errors provided for the rate estimates in Fig. 1 and 
Supplementary Figs. S1 and S2 are computed from these bootstrap 
estimates. The HIV-1 pandemic has undergone a large radia-
tion in 1960s and 1970s, which makes such bootstrap estimates
possible.

4.4 Consensus and founder sequence
Consensus sequences were computed from our BH data sets. We 
computed three consensus sequences for each region studied. The 
first is the HIV-1 group M global consensus, which is the major-
ity nucleotide of the alignment at each position. The second and 
third are the Subtype B and C consensus sequences. These were 

computed in the same way, using a subset of the alignment that 
contains only the sequences of the subtype in question.

The founder sequence is an approximation of the sequence of 
the virus at the time of infection in a patient. They are computed 
from our WH data set for each patient separately. The founder 
sequence is the majority nucleotide in each position from the first 
sample of each patient. In this sense, it is the consensus sequence 
obtained from the first sample of each patient. For most patients 
in our data set, the first sample is taken at approximately 90 days 
after infection and no data are available on the early phase of 
infection. Consequently, the founder sequence computed is an 
approximation of the original virus.

4.5 Trajectory extraction and metadata
A trajectory is a sequence of nucleotide frequencies and associ-
ated time. Each trajectory corresponds to one genome position 
and one nucleotide only. We extracted trajectories from our WH 
data set according to several criteria. Firstly, every trajectory must 
be extinct before the first point, i.e. we consider only new muta-
tions. This is to avoid biases that could be due to immune interac-
tion existing already. Secondly, frequencies must be between 0.01 
and 0.99 at all time points. The trajectory is considered extinct if 
it is below 0.01 and fixed if above 0.99. Lastly, we apply a mask to 
data points according to what is shown in Section 4.1. Trajectories 
that have their first and/or last points masked are removed from 
the analysis.

Every trajectory extracted according to the criteria above is 
coupled with its metadata. This contains all the relevant infor-
mation, such as whether the mutation is a reversion or not and 
whether it fixed or was lost. This information is used to create 
subgroups of trajectories. From these subgroups, one can study 
the impact of a trait associated with a mutation for WH evolution, 
as shown in Fig. 3 and Supplementary Fig. S5 for reversion and 
non-reversion trajectories.

4.6 Mean frequency in time
While looking at divergence values informs us about the global 
evolution of the WH population, it cannot tell us whether the 
mutations we see on non-consensus sites are actually rever-
sions to the consensus state or simply mutations to another 
nucleotide. This motivated us to look directly at the evolution of 
new mutations independently by observing their frequency trajec-
tories in time. Trajectories were extracted and filtered according 
to Sections 4.1 and 4.5. Despite these filtering steps, our data are 
inherently biased toward small and/or low-frequency trajectories 
which are more common. In order to alleviate this bias, we com-
pare reversion and non-reversion trajectories in the same manner. 
Accordingly, the resulting signal can be attributed to the effect of 
being a reversion (or not).

Due to the limited number of trajectories available and the 
often lack of information about trajectory fixation, for example, 
because it is still active at the last sample, the probability of fixa-
tion plots were not adequate for our analysis. We, thus, decided to 
pay attention to the evolution of the mean frequency in time for 
groups of trajectories. Trajectories were grouped in frequency bins, 
as described in the main text, to avoid bias toward positively or 
negatively selected trajectories. Supplementary Fig. S5 illustrates 
how this was done. Sometimes a trajectory’s first pass through the 
frequency window is missed and only caught on the second pass, 
which results in a few trajectories that enter the frequency win-
dow from above. This happens when the frequency of a mutation 
changes drastically from one sample to the next, i.e. the reported 
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frequency jumps directly from below to above the window. Never-
theless, these are ‘new’ mutations as they were not seen in the first 
sample of the patient. We kept these trajectories to avoid potential 
bias, but including or excluding them does not have a big impact 
on the final results.

We then created time bins of 400 days from 600 days before up 
to 3,000 days after a trajectory is seen in a frequency window. We 
compute the average frequency of all trajectories belonging to the 
same group in each time bin. A trajectory contributes its current 
frequency if a data point is available at this time and does not 
contribute if no data are available in that time bin. Trajectories 
that fixed in the population contribute with a frequency of f = 1 to 
time bins subsequent to their fixation. Similarly, lost trajectories 
contribute f = 0 to time bins subsequent to their disappearance in 
the viral population. Trajectories that are still active after their last 
data point (because the study stopped before it could fix or be lost) 
contribute the frequency of their last data point to the following 
time bins.

Code and data availability
The code and data used for the analysis can be found at https://
github.com/neherlab/HIVEVO_reversion. Due to issues with the 
data sets’ size, only intermediate BH and WH data files in a com-
pressed format are found in the github folder. A link to the full data 
set is available there. Scripts are present to reproduce the results 
shown in this paper.

Supplementary data
Supplementary data are available at Virus Evolution online.
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