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Abstract

Prospective gains and losses influence cognitive processing, but it is unresolved how they 

modulate flexible learning in changing environments. The prospect of gains might enhance 

flexible learning through prioritized processing of reward-predicting stimuli, but it is unclear how 

far this learning benefit extends when task demands increase. Similarly, experiencing losses might 

facilitate learning when they trigger attentional re-orienting away from loss-inducing stimuli, but 

losses may also impair learning by increasing motivational costs or when negative outcomes are 

overgeneralized. To clarify these divergent views, we tested how varying magnitudes of gains and 

losses affect the flexible learning of feature values in environments that varied attentional load by 

increasing the number of interfering object features. With this task design we found that larger 

prospective gains improved learning efficacy and learning speed, but only when attentional load 

was low. In contrast, expecting losses impaired learning efficacy and this impairment was larger at 

higher attentional load. These findings functionally dissociate the contributions of gains and losses 

on flexible learning, suggesting they operate via separate control mechanisms. One mechanism is 

triggered by experiencing loss and reduces the ability to reduce distractor interference, impairs 

assigning credit to specific loss-inducing features and decreases efficient exploration during 

learning. The second mechanism is triggered by experiencing gains which enhances prioritizing 

reward-predicting stimulus features as long as the interference of distracting features is limited. 

Taken together, these results support a rational theory of cognitive control during learning 

suggesting that experiencing losses and experiencing distractor interference impose costs for 

learning.
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Introduction

Anticipating gains or losses have been shown to enhance the motivational saliency 

of information (Berridge & Robinson, 2016; Failing & Theeuwes, 2018; Yechiam & 

Hochman, 2013b). Enhanced motivational saliency can be beneficial when learning about 

the behavioral relevance of visual objects. Learning which objects lead to higher gains 

should enhance the likelihood choosing those objects in the future to maximize rewards, 

while learning which objects lead to loss should enhance avoiding those objects in the future 

to minimize loss (Collins & Frank, 2014; Maia, 2010). While these scenarios are plausible 

from a rational point of view, empirical evidence suggests more complex consequences of 

gains and losses for adaptive learning.

Prospective gains are generally believed to facilitate learning and attention to reward 

predictive stimuli. But most available evidence is based on tasks using simple stimuli, 

leaving open whether the benefit of gains generalizes to settings with more complex 

multidimensional objects that have high demands on cognitive control. With regard to 

losses, there is conflicting evidence with some studies showing benefits and others showing 

deterioration of performance when subjects experience or anticipate losses (see below). It 

is not clear whether these conflicting effects of loss are due to a u-shaped dependence of 

loss effects on performance with only intermediate levels having positive effects (Yechiam, 

Ashby, & Hochman, 2019; Yechiam & Hochman, 2013a), or whether experiencing loss 

might lead to a generalized re-orientation away from loss-inducing situations which in 

some task contexts impairs the encoding of the precise features of the loss-inducing event 

(Barbaro, Peelen, & Hickey, 2017; Laufer, Israeli, & Paz, 2016; McTeague, Gruss, & Keil, 

2015).

Distinguishing these possible effects of gains and losses on flexible learning therefore 

requires experimental designs that vary the complexity of the task in addition to varying 

the amount of gains and losses. Such an experimental approach would allow to possibly 

discern an inverted u-shaped effect of the magnitude of gains and losses on learning, while 

also clarifying limitations of gains and losses in supporting flexible learning at higher levels 

of task complexity. Here, we propose such an experiment to identify how gains and losses 

improve or impair flexible learning at systematically increasing attentional demands.

It is widely believed that prospective gains improve attention to reward predicting 

stimuli, which predicts that learning about stimuli should be facilitated by increasing 

their prospective gains. According to this view anticipating gains acts as an independent 

‘top-down’ mechanism for attention, which has been variably described as value-
based attentional guidance (Anderson, 2019; Bourgeois, Chelazzi, & Vuilleumier, 2016; 

Theeuwes, 2019; Wolfe & Horowitz, 2017), attention for liking (Gottlieb, 2012; Hogarth, 

Dickinson, & Duka, 2010), or attention for reward (San Martin, Appelbaum, Huettel, & 
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Woldorff, 2016). These attention frameworks suggest that stimuli are processed quicker 

and with higher accuracy when they become associated with positive outcomes (Barbaro 

et al., 2017; Hickey, Kaiser, & Peelen, 2015; Schacht, Adler, Chen, Guo, & Sommer, 

2012). The effect of anticipating gains can be adaptive when the gain-associated stimulus 

is a target for goal-directed behavior, but it can also deteriorate performance when the 

gain-associated stimulus is distracting or task irrelevant in which case it attracts attentional 

resources away from more relevant stimuli (Chelazzi, Marini, Pascucci, & Turatto, 2019; 

Noonan, Crittenden, Jensen, & Stokes, 2018).

Compared to gains, the behavioral consequences of experiencing or anticipating loss are 

often described in affective and motivational terms rather than in terms of attentional 

facilitation or impediment (Dunsmoor & Paz, 2015). An exception to this is the so-called 

‘loss attention’ framework that describes how losses trigger shifts in attention to alternative 

options and thereby improve learning outcomes (Yechiam & Hochman, 2013a, 2014). The 

loss attention framework is based on the finding that experiencing loss causes a vigilance 

effect that triggers enhanced exploration of alternative options (Lejarraga & Hertwig, 2017; 

Yechiam & Hochman, 2013a, 2013b, 2014). The switching to alternative options following 

aversive loss events can be observed even when the expected values of the available 

alternatives are controlled for and the switching away is not explained away by an affective 

loss aversion response as subject with higher or lower loss aversion both show loss-induced 

exploration (Lejarraga & Hertwig, 2017). According to these insights, experiencing loss 

should improve adaptive behavior by facilitating avoidance of bad options. Consistent with 

this view humans and monkeys have been shown to avoid looking at visual objects paired 

with unpleasant consequences (such as a bitter taste or a monetary loss) (Ghazizadeh, 

Griggs, & Hikosaka, 2016a; Raymond & O’Brien, 2009; Schomaker, Walper, Wittmann, & 

Einhauser, 2017).

What is unclear, however, is whether loss-triggered shifts of attention away from a stimulus 

reflects an unspecific re-orienting away from a loss evoking situation or whether it also 

affects the precise encoding of the loss-inducing stimulus. The empirical evidence about 

this question is contradictory with some studies reporting better encoding and memory 

for loss-evoking stimuli, while other studies reporting poorer memory and insights about 

the precise stimuli that triggered the aversive outcomes. Evidence of a stronger memory 

representation of aversive outcomes comes from studies reporting increased detection speed 

of stimuli linked to threat-related aversive outcomes such as electric shocks (Ahs, Miller, 

Gordon, & Lundstrom, 2013; Li, Howard, Parrish, & Gottfried, 2008), painful sounds 

(McTeague et al., 2015; Rhodes, Ruiz, Rios, Nguyen, & Miskovic, 2018), threat-evoking 

air puffs (Ghazizadeh, Griggs, & Hikosaka, 2016b), or fear-evoking images (Ohman, Flykt, 

& Esteves, 2001). In these studies, subjects were faster or more accurate in responding 

to stimuli that were associated with aversive outcomes. The improved responding to these 

threat-related, aversive stimuli indicates that those stimuli are better represented than neutral 

stimuli and hence can guide adaptive behavior away from them. Notably, such a benefit 

is not restricted to threat-related aversive stimuli but can also be seen in faster response 

times to stimuli associated with the loss of money, which is a secondary ‘learned’ reward 

(Bucker & Theeuwes, 2016; Small et al., 2005; Suarez-Suarez, Holguin, Cadaueira, Nobre, 

& Doallo, 2019). For example, in an object-in-scene learning task attentional orienting to 
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the incorrect location was faster when subjects lost money for the object at that location 

in prior encounters compared to a neutral or positive outcome (Doallo, Patai, & Nobre, 

2013; Suarez-Suarez et al., 2019). Similarly, when subjects are required to discriminate a 

peripherally presented target object they detect the stimulus faster following a short (20ms) 

spatial pre-cue when the cued stimulus is linked to monetary loss (Bucker & Theeuwes, 

2016). This faster detection was similar for monetary gains indicating that gains and losses 

can have near-symmetric, beneficial effects on attentional capture. A similar benefit for 

loss- as well as gain- associated stimuli has also been reported when stimuli are presented 

briefly and subjects have to judge whether the stimulus had been presented before (O’Brien 

& Raymond, 2012). The discussed evidence suggests that loss-inducing stimuli have a 

processing advantage for rapid attentional orienting and fast perceptual decisions even when 

the associated loss is a secondary reward like money. However, whether this processing 

advantage for loss-associated stimuli can be used to improve flexible learning and adaptive 

behavior is unresolved.

An alternate set of studies contradicts the assumption that experiencing loss entails 

processing advantages by investigating not the rapid orienting away from aversive stimuli 

but the fine perceptual discrimination of stimuli associated with negative outcomes (Laufer 

et al., 2016; Laufer & Paz, 2012; Resnik, Laufer, Schechtman, Sobel, & Paz, 2011; 

Schechtman, Laufer, & Paz, 2010; Shalev, Paz, & Avidan, 2018). In these studies, 

anticipating the loss of money did not enhance but systematically reduced the processing of 

loss-associated stimuli, causing impaired perceptual discriminability and reduced accuracy, 

even when this implied losing money during the experiment (Barbaro et al., 2017; Laufer et 

al., 2016; Laufer & Paz, 2012; Shalev et al., 2018). For example, losing money for finding 

objects in natural scenes reduces the success rate of human subjects to detect those objects 

compared to searching for objects that promises gains (Barbaro et al., 2017). One important 

observation in these studies is that the detrimental effect of losses is not simply explained 

away by an overweighting of losses over gains, which would be suggestive of an affective 

loss aversion mechanism (Laufer & Paz, 2012). Rather, this literature suggests that stimuli 

linked to monetary loss outcomes are weaker attentional targets compared with neutral 

stimuli or gain-associated stimuli. This weaker representation can be found with multiple 

types of aversive outcomes including when stimuli are associated with monetary loss (Laufer 

et al., 2016; Laufer & Paz, 2012), unpleasant odors (Resnik et al., 2011), or electric shock 

(Shalev et al., 2018). One possible mechanism underlying this weakening of stimulus 

representations following aversive experience is that aversive outcomes are less precisely 

linked to the stimulus causing the outcome. According to this account, the credit assignment 

of an aversive outcome might generalize to other stimuli that share attributes with the actual 

stimulus whose choice caused the negative outcome. Such a generalized assignment of loss 

can have positive as well as negative consequences for behavioral performance (Dunsmoor 

& Paz, 2015; Laufer et al., 2016). It can lead to faster detection of stimuli associated with 

loss, including monetary loss, in situations that are similar to the original aversive situation 

without requiring recognizing the precise object instance that was causing the initial loss. 

This may lead to enhanced learning in situations in which the precise stimulus features 

are not critical. However, the wider generalization of loss outcomes will be detrimental in 

situations that require the precise encoding of the object instance that gave rise to loss.
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In summary, the surveyed empirical evidence suggests a complex picture about how losses 

may influence adaptive behavior and flexible learning. On the one hand, experiencing or 

anticipating loss may enhance learning, when it triggers attention shifts away from the 

loss-inducing stimulus and when it enhances fast recognition of loss-inducing stimuli to 

more effectively avoid them. But on the other hand, evidence suggests that associating loss 

with a stimulus can impair learning when the task demands require precise insights about 

the loss-inducing stimulus features, because these features may be less well encoded after 

experiencing losses than gains, which will reduce their influence on behavior or attentional 

guidance in future encounters of the stimulus.

To understand which of these scenarios hold true, we designed a learning task that varied 

two main factors. First, we varied the magnitude of gains and losses to understand whether 

the learning effects depend on the actual gain/loss magnitudes. This factor was only rarely 

manipulated in the discussed studies. To achieve this, we used a token reward system in 

which subjects received tokens for correct and lost tokens for incorrect choices. Secondly, 

we varied the demands of attention (attentional load) by requiring subjects to search for 

the target feature in objects that varied non-rewarded, i.e. distracting features in either only 

one dimension (e.g. different colors), or in two or three dimensions (e.g. different colors, 

body shapes and body pattern) when searching for the rewarded feature. The variation of the 

object feature dimensionality allows testing whether losses and gains differentially facilitate 

or impair learning at varying attentional processing load.

With this task design we found across four rhesus monkeys first, that expecting larger 

gains enhanced the efficacy of learning targets at lower attentional loads, but not at the 

highest attentional load. Secondly, we found that experiencing loss generally decreased 

flexible learning, that larger losses exacerbate this effect, and that the loss induced learning 

impairment is worse at high attentional load.

Our study uses nonhuman primates as subjects to establish a robust animal model for 

understanding the influence of gains and losses on learning in cognitive tasks with 

translational value for humans as well as other species (for a recent review see e.g., Yee et 

al., 2022). Establishing this animal model will facilitate future studies about the underlying 

neurobiological mechanisms. Leveraging this animal model is possible because nonhuman 

primates readily understand a token reward/punishment system similar to humans and can 

track sequential gains and losses of assets before cashing them out for primary (e.g. juice) 

rewards (Rich & Wallis, 2017; Seo & Lee, 2009; Shidara & Richmond, 2002; Taswell, 

Costa, Murray, & Averbeck, 2018).

Methods

Experimental Procedures.

All animal related experimental procedures were in accordance with the National Institutes 

of Health Guide for the Care and Use of Laboratory Animals, the Society for Neuroscience 

Guidelines and Policies, and approved by the Vanderbilt University Institutional Animal 

Care and Use Committee.
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Four pair-housed male macaque monkeys (8.5–14.4 kg, 6–9 years of age) were allowed 

separately to enter an apartment cage with a custom build, cage-mounted touchscreen 

Kiosk-Cognitive-Engagement Station to engage freely with the experimental task for 90–

120 min per day. The Kiosk-Cognitive-Engagement Station substituted the front panel of an 

apartment cage with a 30 cm recessed, 21’ touchscreen and a sipper tube protruding towards 

the monkey at a distance of ~33 cm and a height that allows animals sitting comfortably 

in front of the sipper tube with the touchscreen in reaching distance. Details about the 

Kiosk Station and the training regime are provided in (Womelsdorf et al., 2021). In brief, all 

animals underwent the same training regimes involving learning to touch, hold and release 

touch in a controlled way at all touchscreen locations. Then animals learned visual detection 

and discrimination of target stimuli among increasingly complex non-rewarded distracting 

objects, with correct choices rewarded with fluid. Objects were 3-dimensionally rendered 

so called Quaddles that have a parametrically controllable feature space, varying along 

four dimensions, including the color, body shape, arm types and surface pattern (Watson, 

Voloh, Naghizadeh, & Womelsdorf, 2019). Throughout training, one combination of features 

was never rewarded and hence termed ‘neutral’, which was the spherical, uniform, grey 

Quaddle with straight, blunt arms (Figure 1C). Relative to the features of the neutral object 

we could then increase the feature space for different experimental conditions by varying 

from trial-to-trial features from only one, two, or three dimensions relative to the neutral 

object. After monkeys completed the training for immediate fluid reward upon a correct 

choice, a token history bar was introduced and shown on the top of the monitor screen and 

animals performed the feature learning task for receiving tokens until they filled the token 

history bar with five tokens to cash out for fluid reward (Figure 1A). All animals effortlessly 

transitioned from immediate fluid reward delivery for correct choices to the token-based 

reward schedules.

The visual display, stimulus timing, reward delivery and registering of behavioral responses 

was controlled by the Unified Suite for Experiments (USE), which integrates an IO-

controller board with a unity3D video-engine based control for displaying visual stimuli, 

controlling behavioral responses, and triggering reward delivery (Watson, Voloh, Thomas, 

Hasan, & Womelsdorf, 2019).

Task Paradigm.

The task required monkeys to learn a target feature in blocks of 35–60 trials by choosing one 

among three objects, each composed of multiple features (Figure 1A–C). At the beginning 

of each trial, a blue square with a side length of 3.5 cm (3° radius wide) appeared on the 

screen. To start a new trial, monkeys were required to touch and hold the square for 500 

ms. Within 500 ms after touching the blue square, three stimuli appeared on the screen at 

3 out of 4 possible locations with an equal distance from the screen center (10.5 cm, 17° 

eccentricity). Each stimulus had a diameter of 3 cm (~2.5° radius wide) and was horizontally 

and vertically separated from other stimuli by 15 cm (24°). To select a stimulus, monkeys 

were required to touch the object for a duration longer than 100 ms. If a touch was not 

registered within 5 seconds after the appearance of the stimuli, the trial was aborted and a 

new trial was started with stimuli that differed from those of the aborted trial.
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Each experimental session consisted of 36 learning blocks. Four monkeys (B, F, I, and S) 

performed the task and completed 33/1166, 30/1080, 30/1080, and 28/1008 sessions/blocks, 

respectively. We used a token-reward based multi-dimensional attention task in which 

monkeys were required to explore the objects on the screen and determine through trial 

and error a target feature while learning to ignore irrelevant features and feature dimensions. 

Stimuli were multi-dimensional 3-D rendered Quaddles which varied in 1 to 3 features 

relative to a neutral Quaddle objects (Figure 1C) (Watson, Voloh, Naghizadeh, et al., 2019). 

The objects were 2D-viewed and had the same 3D view orientation across trials. Four 

different object dimensions/features were used in the task design (Shape, Color, Arm, and 

Pattern). For each session features from 1, 2 or 3 feature dimensions were used as potential 

target and distractor features. In each learning block one feature was selected to be the 

correct target. Attentional load was varied by increasing the number of features that varied 

from trial to trial to be either 1 (e.g. objects varied only in shape), 2 (e.g. objects varied in 

shape and patterns), or 3 (e.g. objects varied in shape, patterns and color). The target feature 

was un-cued and had to be searched for through trial and error in each learning block. The 

target feature remained the same throughout a learning block. After each block, the target 

feature changed, and monkeys had to explore again to find out the newly rewarded feature. 

The beginning of a new block was not explicitly cued but was apparent as the objects in 

the new block had different feature values than the previous block. Block changes were 

triggered randomly after 35–60 trials.

Each correct touch was followed by a yellow halo around the stimulus as visual feedback 

(for 500 ms), an auditory tone, and a fixed number of animated tokens traveling from 

the chosen object location to the token bar on top of the screen (Figure 1A). Erroneously 

touching a distractor object was followed by a blue halo around the touched objects, a 

low-pitched auditory feedback, and in the loss conditions travelling of one or three empty 

(grey) tokens to the token bar where the number of lost tokens were removed from the 

already earned tokens as an error penalty (feedback timing was the same as for correct 

trials). To receive a fluid reward, i.e., to cash out the tokens, monkeys had to complete 5 

tokens in the token bar. When five tokens were collected the token bar flashed red/blue three 

times, a high pitch tone was played as auditory feedback and fluid was delivered. After 

cashing out the token bar was reset to five empty token placeholders. Monkeys could not go 

in debt, i.e. no token could be lost when there was no token on the token bar, or carry over 

tokens when gained tokens were more than what they needed to complete a token bar. Every 

block began with an empty token bar. To make sure subjects did not carry over collected 

tokens in the bar when there was a block change, the block change only occurred when the 

token bar was empty.

Experimental design.

In each learning block one fixed token reward schedule was used, randomly drawn from 

seven distinct schedules (see below). We simulated the token schedules to reach a nearly 

evenly spaced difference in reward rate while not confounding the number of positive or 

negative tokens with reward rate (Figure 1D,E). For simulating the reward rate with different 

token gains and losses we used a tangent hyperbolic function to simulate a typical learning 

curve by varying the number of trials needed to reach ≥75% accuracy from 5 to 25 trials (the 
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so called ‘learning trials’ in a block). This is the range of learning trials the subjects showed 

for the different attentional load conditions in 90% of blocks. We simulated 1000 blocks 

of learning for different combinations of gained- and lost- tokens for correct and erroneous 

choices, respectively. For each simulated token combination, the reward rate was calculated 

by dividing the frequency of the full token bar to the block length. The average reward 

rate was then computed as the average reward rate over all simulation runs for each token 

condition. The reward rate showed on average what is the probability of receiving reward per 

trial. Seven token conditions were designed with a combination of varying gain (G; 1, 2, 3, 

and 5) and loss (L; 3, 1, and 0) conditions (1G 0L, 2G −3L, 2G −1L, 2G 0L, 3G −1L, 3G 

0L, and 5G 0L). The 5G/0L condition entailed providing 5 tokens for a correct choice and 

no tokens lost for incorrect choices. This condition was used to provide animals with more 

opportunity to earn fluid reward than would be possible with the conditions that have lower 

reward rate. Since gaining 5 tokens was immediately cashed out for fluid delivery, we do not 

consider this condition for the token-gain and token-loss analysis as it confounds secondary 

and primary reinforcement in single trials. We also did not consider for analysis those blocks 

in which there could be a loss of tokens (conditions with 1L or 3L), but the loss of tokens 

was not experienced because the subjects did not make erroneous choices that would have 

triggered the loss.

Overall, the subject’s engagement in the task was not affected by token condition with 

monkeys performing all ~36 blocks that were made available to them in each daily session 

and requiring on average ~90 min to complete ~1200 trials. On rare occasions, a monkey 

took a break from the task as evident in an inter-trial interval of >1 min. in which case 

we excluded the affected block from the analysis. This happened in less than 1% of 

learning blocks. There were no significant differences between mean inter-trial intervals 

across different token conditions.

Analysis of learning.

The improvement of accuracy over successive trials at the beginning of a learning block 

reflects the learning curve, which we computed with a forward-looking 10-trial averaging 

window in each block (Figure 3A,C,E). We defined learning in a block as the number of 

trials needed to reach criterion accuracy of ≥75% correct trials over 10 successive trials. 

Monkeys on average reached learning criterion in >75% of blocks (B=67%, F=75%, I=83%, 

and S=74%, see Figure 4). We computed post-learning accuracy as the proportion of correct 

choices in all trials after the learning criterion was reached in a block (Figure 8).

Statistical analysis.

We first constructed linear mixed effect models (Pinherio & Bates, 1996) that tested how 

learning speed (indexed as the ‘learning trial’ (LT) at which criterion performance was 

reached) and accuracy after learning (LT/Accuracy) over blocks are affected by 3 factors, 

attentional load (AttLoad) with three levels (1, 2, and 3 distractor feature dimensions), the 

factor feedback gain (FbGain) with 3 levels (Gaining tokens for correct performance: 1, 2, 

or 3), and the factor feedback loss (FbLoss) with 3 levels (Loss of tokens for erroneous 

performance: 0, −1, or −3). All three AttLoad, FbGain , FbLoss factors were entered in the 

LMEs as continuous measure (ratio data). We additionally considered as random effects the 
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factor Monkeys with 4 levels (B, F, I, and S), and the factor target features (Feat) with 4 

levels (color, pattern, arm, and shape). The random effects control for individual variations 

of learning and for possible biases in learning features of some dimensions better or worse 

than others. This LME had the form

LTorAccuracy = AttLoad + FbGains + FbLoss + 1 Monkey + 1 Feat + b +
ε (eq. 1).

The model showed significant main effects of all three factors and random effects were 

inside the 95% confidence interval. To test for the interplay of motivational variables and 

attentional load we extended the model with the interaction effects for AttLoad × FbGain and 

AttLoad × FbLoss. to:

LTorAccuracy = AttLoad + FbGain + FbLoss + AttLoad × FbGain + AttLoad
× FbLoss + 1 Monkey + 1 Feat + b + ε (eq. 2).

To compare the model with and without interaction terms we used Bayesian information 

criterion (BIC) as well as the Theoretical Likelihood Ratio Test (Hox, 2002) to decide which 

model explains the data best.

We also tested two additional models that tested whether the absolute difference of FbGain 

and FbLoss played a significant role in accounting for accuracy and learning speed using 

(DiffGain-Loss = FbGain - FbLoss) as predictor. Secondly, we tested the role of Reward Rate 

(RR) as a predictor. We calculated RR as the grand average of how many times a token bar 

was completed (reward delivery across all trials for each monkey) divided by the overall 

number of trials having the same attentional load and token condition. As an alternative 

estimation of RR we used the reward rate from our averaged simulation (Fig. 1E). LME’s as 

formulated in eq. 2 better fitted the data than models that included the absolute difference, 

or either of the two estimations of RR, as was evident in lower Akaike Information Criterion 

(AIC) and BIC when these variables were not included in the models (all comparisons are 

summarized in Table 1). We thus do not describe these factors further.

In addition to the block-level analysis of learning and accuracy (eq. 1–2), we also 

investigated the trial-level to quantify how accuracy and response times (Accuracy/RT) of 

the monkeys over trials are modulated by four factors. The first factor was the learning status 

(LearnState) with two levels (before and after reaching the learning criterion). In addition, 

we used the factor attentional load (AttLoad) with three levels (1, 2, and 3 distracting feature 

dimensions), the factor feedback gain (FbGain) on the previous trial with three levels (gaining 

tokens for correct performance: 1/2/3), and the factor feedback loss on the previous trial 

(FbLoss) with three levels (Loss of tokens for erroneous performance: 0/−1/−3).

AccuracyorRT = LearnState + AttLoad + FbGains + FbLoss + 1 Monkey
+ 1 Feat + b + ε (eq. 3).
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Eq. 3 was also further expanded to account for interaction terms AttLoad × FbGain and 

AttLoad × FbLoss..

In order to quantify the effectiveness of the token bar to modulate reward expectancy we 

predicted accuracy or RT of the animals by how many tokens were already earned and 

visible in the token bar, using the factor TokenState defined as the number tokens visible in 

the token-bar as formalized in eq. 4.

AccuracyorRT = TokenState + LearnState + AttLoad + 1 Monkey
+ 1 Feat + b + ε (eq. 4),

We compared models with and without including the factor TokenState. We then ran 

500 simulations of likelihood ratio tests and found that the alternative model which 

included the factor TokenState had a better performance than the one without the factor 

TokenState (p=0.009, LRstat=1073, BICToken_state= 198669, BICwithout Token_state= 199730, 

AICToken_state= 198598, AICwithout Token_state= 199670).

In separate control analyses we tested how learning varied when only conditions were 

considered that either only had variable gains at a fixed loss, or that had variable losses at the 

same, fixed gain (Figure 5). Similar to the above described models, these analyses resulted 

in statistically significant main effects of FbGain, FbLoss, and attention load on learning speed 

and reaction time (see Results). Also, models with separate gain and loss feedback variables 

remained superior to the models with RR or DiffGain-Loss (Table 1).

We also tested LMEs that excluded trials in which subjects experienced only a partial loss, 

i.e. when an error was committed in an experimental condition that involved the subtraction 

of 3 tokens (e.g. in the 2G-3L condition) but the subjects had accumulated only 2 tokens. 

We tested an LME model on trial-level performance accuracy but did not find differences in 

performance accuracy on trials following partial versus full loss.

Analyzing the interactions of motivation and attentional load.

To evaluate the influence of increasing gains and increasing losses on attentional load 

we calculated the Motivational Modulation Index (MMI) as a ratio scale indicating the 

difference in learning speed (the trials-to-criterion) in the conditions with 3 versus 1 token 

gains (MMIGain) or in conditions with 3 versus 0 token losses (MMILoss) relative to their 

sum as written in eq. 5:

MMIGain = LTG3 − LTG1
LTG3 + LTG1

MMILoss = LTL3 − LTL0
LTL3 + LTL0

eq. 5

Both MMILoss and MMIgain were controlled for variations of attention load. For each 

monkey, we fitted a linear regression model (least squares), with attention load regressor, 

and regressed out attention load variations on learning speed (trial-to-criterion). We then 

calculated MMIGain and MMILoss separately for the low, medium, and high attentional load 

condition. We statistically tested these indices under the null hypothesis that MMIGain or 
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MMILoss is not different from zero by performing pairwise t-tests on each gain or loss 

condition given low, medium, and high attentional load. We used false discovery rate (FDR) 

correction of p-values for dependent samples with a significance level of 0.05 (Benjamini & 

Yekutieli, 2005).

To further test the load dependency of MMIs, we used a permutation approach that tested 

the MMI across attentional load conditions. To control for the number of blocks, we 

first randomly subsampled 1000 times 100 blocks from each feedback gain/loss condition 

and computed the MMI for each subsample separately for the feedback gain and for the 

feedback loss conditions in each attentional load condition (MMIs in gain conditions for 3G 

and 1G, and in Loss conditions for 3L and 1L). In each attentional load condition and for 

the feedback gain and for the feedback loss conditions we separately formed the sampling 

distribution of the means (1000 sample means of randomly selected 100 subsamples). We 

then repeated the same procedure but this time across all attentional load conditions and 

sampled 1000 times to form a distribution of means while controlling for equal numbers of 

blocks per load condition). Using bootstrapping (DiCicio & Efron, 1996), we computed the 

confidence intervals on the sampling distributions across all loads with an alpha level of p 

= 0.015 (Bonferroni corrected for family-wise error rate) under the null hypothesis that the 

MMI distribution for each load condition is not different from the population of all load 

conditions. These statistics are used in Figure’s 6 and 7, for the interaction analysis of load 

and MMI on learning and accuracy, respectively.

Analyzing the immediate and prolonged effects of outcomes on accuracy.

To analyze the effect of token income on accuracy in both, immediate and prolonged time 

windows, we calculated the proportion of correct trials after a given token gained or lost 

on the next nth upcoming trials. We computed that for high/low gains (3G and 1G) and 

losses (−3 L and 0L). For each nth trial, we used Wilcoxon tests to separately test whether 

the difference of the proportion of correct responses between high and low gains (green 

lines in Figure 8F) and high and low losses (red lines in Figure 8F) were significantly 

different from zero (separately for low and high attentional load conditions). After extracting 

the p-values for all 40 trials (20 trials for each load condition), we corrected the p-values 

by FDR-correction for dependent samples with an alpha level of 0.05. Trials significantly 

different from zero are denoted by red/green horizontal lines for gain/loss conditions (Figure 

9F).

Results

Four monkeys performed a feature-reward learning task and collected tokens as secondary 

reinforcers to be cashed out for fluid reward when five tokens were collected. The task 

required learning a target feature in blocks of 35–60 trials through trial-and-error by 

choosing one among three objects composed of multiple different object features (Figure 

1A,B). Attentional load was varied by increasing the number of distracting features of these 

objects to be either only from the same feature dimension as the rewarded target feature 

(‘1-Dimensional’ load), or additionally from a second feature dimension (‘2-Dimensional’ 
load), or from a second and third feature dimension (‘3-Dimensional’ load) (Figure 1C). 
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Orthogonal to attentional load, we varied between blocks the number of tokens that were 

gained for correct responses (1, 2, or 3 tokens), or that could be lost for erroneous responses 

(0, −1, −3 tokens). We selected combinations of gains and losses so that losses were used in 

a condition with relatively high reward rate (e.g. the condition with 3 tokens gained and 1 

loss token), while other conditions had lower reward rate despite the absence of loss tokens 

(e.g. the condition with 1 gain and 0 loss tokens). This arrangement allowed studying the 

effect of losses relatively independent of overall reward rate (Figure 1D,E).

During learning, monkeys showed slower choice response times the more tokens were 

already earned (Figure 2A,C). This suggests that they tracked the tokens they obtained and 

were more careful responding the more they had earned in those trials in which they were 

not yet certain about the rewarded feature. After they reached the learning criterion (during 

plateau performance) monkeys showed faster response times the more tokens they had 

earned (Figure 2B,D). LME models including the variable TokenState explained the response 

times better than those without “TokenState” variable, p=0.009, LRstat=1073, BICToken_state= 

198669, BICwithout Token_state= 199730, AICToken_state= 198598, AICwithout Token_state= 

199670) (Figure 2E).

On average, subjects completed 1080 learning blocks (SE ±32, range 1008–1166) in 30 test 

sessions (SE ±1, range 28–33). All monkeys showed slower learning of the target feature 

with increased attentional load (Figure 3 A,B) and when experiencing losing more tokens 

for incorrect responses (Figure 3 E,F), and all monkeys showed increased speed of learning 

the target feature the more tokens they could earn for correct responses (Figure 3 C,D). The 

same result pattern was evident for reaction times (Figure 4 A–C). The effects of load, loss, 

and gains were evident in significant main effects of linear mixed effects models (LME’s, 

see Methods, Att.Load: b= 4.37, p<0.001; feedbackLosses: b=1.39, p=<0.001; feedbackGains: 

b=−0.76, p=0.008). As control analyses, we compared token conditions with fixed losses (0 

or −1) and variable gains (Figure 5 B,D), and fixed gains (2G or 3G) and variable losses 

(Figure 5 A,C). We adjusted the LMEs for both reaction time and learning speed. Similar 

to our previous observations we found significant main effects of gain and loss feedback on 

both, reaction times and learning speed (all feedback variables had main effects at p<0.001). 

We also tested LMEs that included as factors the absolute differences of gains and losses, 

and the overall reward rate (estimated as the received reward divided by the number of trials) 

but found that models with these factors were inferior to models without them (Table 1).

In all linear mixed effects models the factors monkeys (numbered 1–4) and the target feature 

dimensions (arms, body shapes, color, and surface pattern of objects) served as random 

grouping effects. No significant random effects were observed unless explicitly mentioned. 

We interpret the main effects of attentional load, token gain and token loss as reflecting 

changes in the efficiency of learning (Figure 3B,D,F; Fig 5A,B). Not only did monkeys learn 

faster at lower loads, when expecting less losses, and when expecting higher gains, but they 

also had fewer unlearned blocks under these same conditions (Figure 6 A–C).

The main effects of prospective gains and losses provide apparent support for a valence-

specific effect of motivational incentives and penalties on attentional efficacy (Figure 7A). 

Because increasing losses impaired rather than enhanced learning, they are not easily 
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reconciled with a ‘loss attention’ framework that predicts that both gains and losses 

should similarly enhance motivational saliency and performance (Figure 7A) (Yechiam 

& Hochman, 2013b; Yechiam, Retzer, Telpaz, & Hochman, 2015). However, the valence-

specific effect was not equally strong at low/medium/high attentional loads. While the effect 

of the loss magnitude interacted with attentional load (b=−3.2 p=0.012; Figure 7B), gain 

magnitude and attentional load did not show a significant interaction effect on learning 

(b=−0.13, p=0.95, LMEs; Figure 7B). We found that linear mixed effects models with 

interaction terms described the data better than without them (Likelihood Ratio Stat. = 60.2, 

p=0.009, BIC 21156 and 21184, and AIC 21091, and 21143 for [Att.Load × (feedbackLosses 

+ feedbackgains)], and [Att.Load + feedbackLosses + feedbackgains], respectively). To visualize 

these interactions, we calculated the Motivational Modulation Index (MMI) as the difference 

in learning efficacy (avg. number of trials-to-criterion) when expecting to gain 3 vs. 1 token 

for correct choices [MMIGains = Lefficacy3G- Lefficacy1G], and when experiencing losing 3 

vs 0 token for incorrect choices [MMILoss = Lefficacy3L- Lefficacy0L]. By calculating the 

MMI for each attentional load condition we can visualize whether the motivation effect of 

increased prospective gains and losses increased or decreased with higher attentional load 

(Figure 7C). We found that the detrimental effect of larger prospective losses on learning 

increased with attentional load, causing a larger decrease in learning efficacy at high load 

(Figure 7D) (permutation test, p < 0.05). In contrast, expecting higher gains improved 

learning most at low attentional load and had no measurable effect at high load (Figure 

7D) (permutation test, p < 0.05). Pairwise t-test comparisons confirmed that MMILoss was 

significantly different from zero (p<0.001, df = 928, tstat = −3.83; p=0.007, df = 771, tstat = 

−2.70; and p<0.001, df=601, tstat=−3.95; for low, medium, and high load), while MMIGains 

was only significantly different from zero in the low load gain condition (p<0.001, df = 

579, tstat = −3.39; p=0.086, df = 450, tstat = −1.72; and p=0.98, df=402, tstat=0.02, for 

low, medium, and high load; p-values are false discovery rate (FDR) corrected for dependent 

samples with an alpha level of 0.05).

The contrasting effects of gains and losses on learning efficiency were partly paralleled in 

post-learning accuracy (Figure 8A,B). Accuracy was enhanced with larger expected gains at 

lower but not at the highest attentional load conditions (t-test pairwise comparison, p<0.001, 

df = 579, tstat = 4.5; p=0.011, df = 450, tstat = 2.56; and p=0.76, df = 402, tstat = 0.31; 

for low, medium, and high load; FDR corrected for dependent samples with an alpha level 

of 0.05) and accuracy was decreased with larger expected losses at all loads (t-test pairwise 

comparison, p<0.001, df = 928, tstat=3.66; p=0.013, df = 771, tstat = 2.48; and p=0.005, 

df=601, tstat=2.78; for low, medium, and high load, FDR corrected for dependent samples 

with an alpha level of 0.05). This decrease was not modulated by load level (permutation 

test, p>0.05) (Figure 8A,B). In contrast to learning speed and post-learning accuracy, 

response times varied more symmetrically across load conditions. At low attentional load 

choice times were fastest with larger expected gains and with the smallest expected losses 

(Figure 8C,D). At medium and higher attentional loads these effects were less pronounced. 

All MMIs were controlled for a main effect of attentional load by regressing out attention 

load variations on learning speed (trial-to-criterion) (see Methods).

To understand how prospective gains and losses modulated learning efficiency on a trial-by-

trial level we calculated the choice accuracy in trials immediately after experiencing a loss 
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of 3, 1, or 0 tokens, and after experiencing a gain of 1, 2, or 3 tokens. Experiencing the loss 

of 3 tokens on average led to higher performance in the subsequent trial when compared 

than experiencing the loss of 0 or 1 tokens (Figure 9A). This behavioral improvement after 

having lost 3 tokens was particularly apparent in the low attentional load condition, and 

less in the medium and high attentional load conditions (Figure 9B) (LME model predicting 

the previous trial effect on accuracy; [Att.Load × feedbackLosses], b=0.01, p=0.002). We 

quantified this effect by taking the difference in performance for losing 3 vs. 0 tokens, 

which confirmed that there was on average a benefit of larger penalties in the low load 

condition (Figure 9C). Similar to losses, experiencing larger gains improved the accuracy 

in the subsequent trial at low and medium attentional load, but not at high attentional load 

(LME model predicting previous trial effects on accuracy: for [Att.Load × feedbackGains], 

b=−0.03, p<0.001) (Figure 9B,C). Thus, motivational improvements of post-token feedback 

performance adjustment were evident for token gains as well as for losses, but primarily at 

lower and not at higher attentional load.

Next, we analyzed how the on average improved accuracy in trials after experiencing the 

loss of 3 tokens (Figure 9C) might relate to reduced learning speed (Figure 7B) in the 

3-Loss conditions. To test this we selected trials from the block before the learning criterion 

was reached and calculated accuracy in the nth trial following the experience of the token 

outcome using a running average window ranging from 1–20 trials. The analysis showed 

that after losing 3 tokens, accuracy was transiently increased compared with trials without 

losses (Figure 9D,E), but this effect was transient and reversed within 2 trials in the high 

load condition, and within 5 trials in the low load conditions (Figure 9F). For the gain 

conditions the results were different. Gaining 3 tokens led to a longer-lasting improvement 

of performance when compared to gaining 1 token. This improvement was more sustained 

in the low than the high attentional load condition (Figure 9E–F, the thin black lines in the 

upper half of the panel mark trials for which the accuracy difference of high versus low 

gains was significantly different from zero, Wilcoxon test, FDR corrected for dependent 

samples across all trials and low and high attentional load conditions with an alpha level 

of 0.05). These longer-lasting effects on performance closely resemble the main effects 

of losses and gains on the learning efficacy (Figure 7,8) and suggest that the block level 

learning effects be traced back to outcome-triggered performance changes at the single trial 

level with stronger negative effects after larger losses and stronger positive effects after 

larger gains.

Discussion

We found that prospective gains and losses had opposite effects on learning a relevant 

target feature. Experiencing losing tokens slowed learning (increased the number of trials 

to criterion), impaired retention (post-learning accuracy), and increased choice response 

times, while experiencing gaining tokens had the opposite effects. These effects varied with 

attentional load in opposite ways. Larger penalties for incorrect choices had maximally 

detrimental effects when there were many distracting features (high load). Conversely, 

higher gains for correct responses enhanced flexible learning at lower attentional load 

but had no beneficial effects at higher load. These findings were paralleled on the trial 

level. While there was a brief improvement of accuracy following losses for 2–5 trials 
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following the experience of losses during learning, accuracy declined following losses 

declined thereafter and on average prolonged learning. This post-error decline in learning 

speed was stronger with larger (3 token) loss. In contrast to losses, the experience of gains 

led to a more sustained improvement of accuracy in subsequent trials, consistent with better 

performance after gains, particularly when attentional load was low.

Together, these results document apparent asymmetries of gains and losses on learning 

behavior. The negative effects of losing tokens and the positive effects of gaining tokens 

were evident in all four monkeys. The inter-subject consistency of the token and load effects 

suggests that our results delineate a fundamental relationship between the motivational 

influences of incentives (gains) and disincentives (losses) on learning efficacy at varying 

attentional loads.

Experiencing loss reduces learning efficacy with increased distractor loads.

One key observation in our study is that rhesus monkeys are sensitive to visual tokens as 

secondary reinforcers, closely tracking their already obtained token assets (Figure 2). This 

finding is consistent with prior studies in rhesus monkeys showing that gaining tokens for 

correct performance and losing tokens for incorrect performance modulates performance in 

choice tasks (Rich & Wallis, 2017; Seo & Lee, 2009; Taswell et al., 2018). This sensitivity 

was essential in our study to functionally separate the influence of negative and positive 

valenced outcomes from the influence of the overall saliency of outcomes. In our study the 

number of tokens for correct and incorrect performance remained constant within blocks 

of ≥35 trials and thus set a reward context for learning target features among distractors 

(Sallet et al., 2007). When this reward context entailed losing three tokens, monkeys learned 

the rewarded target feature ~5–7 trials later (slower) than when incorrect choices led to no 

token change (depending on load, Figure 7B). At the trial level, experiencing losing 3 tokens 

during the initial learning briefly enhanced performance on immediately subsequent trials, 

suggesting subjects successfully oriented away from the loss-inducing stimulus features, 

but this effect reversed within three trials after the loss experience, causing a sustained 

decrease in performance and delayed learning when experiencing losing 3 tokens (Figure 

9C,F). This result pattern suggests that experiencing losing 3 tokens led to a short-lasting re-

orienting away from the loss-inducing stimuli, but it does not enhance the processing, or the 

remembering, of the chosen distractors. Experiencing loss rather impairs using information 

from the erroneously chosen objects to adjust behavior. This finding had a relatively large 

effect size and was rather unexpected given various previous findings that would have 

predicted the opposite effect. First, the loss attention framework suggests that experiencing 

a loss causes an automatic vigilance response that triggers subjects to explore alternative 

options other than the chosen object (Yechiam et al., 2019; Yechiam & Hochman, 2013a, 

2013b). Such an enhanced exploration might have facilitated avoiding objects with features 

that were associated with the loss in the trials immediately following the loss experience 

(Figure 9C,F). But our results suggest that the short-lasting, loss-triggered re-orienting to 

alternative objects was not accompanied by a better encoding of the loss-inducing stimuli 

but predicted a weaker encoding or poorer credit assignment of the specific object features 

of the loss-inducing object so that the animals were less able to distinguish which objects 

in future trials belonged to the loss-inducing objects. Such a weaker encoding would lead to 
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less informed exploration after a loss, which would not facilitate but impair learning. This 

account is consistent with human studies showing poorer discrimination of stimuli when 

they are associated with monetary loss, aversive images or odors, or electric shock (Laufer 

et al., 2016; Laufer & Paz, 2012; Resnik et al., 2011; Schechtman et al., 2010; Shalev et al., 

2018).

A second reason why the overall decrement of performance with loss was unexpected 

was that monkeys and humans can clearly show non-zero (>0) learning rates for negative 

outcomes when they are estimated separately from learning rates for positive outcomes 

(Caze & van der Meer, 2013; Collins & Frank, 2014; Frank, Moustafa, Haughey, Curran, & 

Hutchison, 2007; Frank, Seeberger, & O’Reilly R, 2004; Seo & Lee, 2009), indicating that 

negative outcomes in principle are useful for improving the updating of value expectations. 

While we found improved performance immediately after incorrect choices, this effect 

disappeared after ~3 further trials and overall caused slower learning. This finding suggests 

that experiencing loss in a high attentional load context reduced not the learning rates per 

se but impaired the credit assignment process that updates the expected values of object 

features based on token feedback. This suggestion calls upon future investigations to clarify 

the nature of the loss-induced impediment using computational modeling of the specific 

subcomponent processes underlying the learning process (Womelsdorf, Watson, & Tiesinga, 

2021).

A third reason why loss-induced impairments of learning were unexpected are prior reports 

that monkeys successfully learn to avoid looking at objects that are paired with negative 

reinforcers (such as a bitter taste) (Ghazizadeh et al., 2016a). According to this prior finding, 

monkeys should have effectively avoided choosing objects with loss-inducing features 

when encountering them again. Instead, anticipating token loss reduced their capability 

to avoid the objects sharing features with the object that caused token loss in previous 

trials, suggesting that losing a token might attract attention (and gaze) similar to threatening 

stimuli (like airpuffs) (Ghazizadeh et al., 2016a; White et al., 2019) and thereby causing 

interference that impairs avoiding the features of the loss-inducing stimuli in future trials 

when there were multiple features in the higher attentional load conditions.

The three discussed putative reasons for why loss might not have improved but decreased 

performance points to the complexity of the object space we used. When subjects lost 

already attained tokens for erroneously choosing an object with 1, 2, or 3 object features, 

they were less able to assign negative credit to a specific feature of the chosen object. 

Instead, they tend to over-generalize features of loss-induced objects to objects with shared 

features that might also contain the rewarding feature. Consequently, they did not learn from 

erroneous choices as efficiently as they would have learned with no or neutral feedback after 

errors. This account is consistent with studies showing a wider generalization of aversive 

outcomes and a concomitantly reduced sensitivity to the loss-inducing stimuli (Laufer et 

al., 2016; Laufer & Paz, 2012; Resnik et al., 2011; Schechtman et al., 2010; Shalev et al., 

2018). Consistent with such reduced encoding or impaired credit assignment of the specific 

object features, we found variable effects on post-error adjustment (Figure 9B,D,E) and 

reduced longer-term performance (i.e. over ~5–20 trials) after experiencing loss (Figure 

9F) with the negative effects increasing with more distractors in the higher attentional 
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load condition (Figure 7B,D). According to this interpretation, penalties such as losing 

tokens are detrimental to performance when they do not inform straightforwardly what 

type of features should be avoided. This view is supported by additional evidence. Firstly, 

when tasks have simpler, binary choice options, negative outcomes are more immediately 

informative about which objects should be avoided and learning from negative outcomes 

can be more rapid than learning from positive outcomes (Averbeck, 2017). We found a 

similar improvement of performance in the low load condition that lasted for 1–3 trials 

before performance declined below average (Figure 9F). Secondly, using aversive outcomes 

in a feature non-selective way might incur a survival advantage in various evolutionary 

meaningful settings. When a negative outcome promotes generalizing from specific aversive 

cues (e.g. encountering a specific predator) to a larger family of aversive events (all predator-

like creatures) this can enhance fast avoidance responses in future encounters (Barbaro et 

al., 2017; Dunsmoor & Paz, 2015; Krypotos, Effting, Kindt, & Beckers, 2015; Laufer et al., 

2016). Such a generalized response is also reminiscent of non-selective ‘escape’ responses 

that experimental animals show early during aversive learning before they transition to more 

cue specific avoidance responses later in learning (Maia, 2010). The outlined reasoning 

helps explaining why we found that experiencing loss is not helpful to avoid objects or 

object features when multiple, multidimensional objects define the learning environment.

Experiencing gains enhance learning efficacy but cannot compensate for distractor 
overload.

We found that experiencing three tokens as opposed to one token for correct choices 

improved the efficacy of learning relevant target features by ~4, ~1.5, and ~0 trials in 

the low, medium and high attentional load condition (Figure 7). On the one hand, this 

finding provides further quantitative support that incentives can improve learning efficacy 

(Berridge & Robinson, 2016; Ghazizadeh et al., 2016a; Walton & Bouret, 2019). In fact, 

across conditions learning was most efficient when the monkeys expected three tokens and 

when objects varied in only one feature dimension (1D, low attentional load condition). 

However, this effect disappeared at high attentional load, i.e. when objects varied trial-by-

trial in features of three different dimensions (Figure 7). A reduced behavioral efficiency of 

incentives in light of distracting information is a known phenomenon in the problem solving 

field (Pink, 2009), but an unexpected finding in our task because the complexity of the 

actual reward rule (the rule was ‘find the feature that predicts token gains’) did not vary from 

low to high attentional load. The only difference between these conditions was the higher 

load of distracting features, suggesting that the monkeys might have reached a limitation 

in controlling distractor interference that they could not compensate further by mobilizing 

additional control resources.

But what is the source of this limitation to control distractor interference? One possibility 

is that when attention demands increased in our task monkeys are limited in allocating 

sufficient control or ‘mental effort’ to overcome distractor interference (Hosking, Cocker, 

& Winstanley, 2014; Klein-Flugge, Kennerley, Friston, & Bestmann, 2016; Parvizi, 

Rangarajan, Shirer, Desai, & Greicius, 2013; Rudebeck, Walton, Smyth, Bannerman, & 

Rushworth, 2006; Shenhav et al., 2017; Walton, Bannerman, Alterescu, & Rushworth, 

2003; Walton, Rudebeck, Bannerman, & Rushworth, 2007). Thus, subjects might perform 
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poorer at high attentional load partly because they are not allocating sufficient control of 

the task performance (Botvinick & Braver, 2015). Rational theories of effort and control 

suggest that subjects allocate control as long as the benefits of doing so outweigh the 

costs of exerting more control. Accordingly, subjects should perform poorer at higher 

demand when the benefits (e.g. the reward rate for correct performance) are not increased 

concomitantly (Shenhav, Botvinick, & Cohen, 2013; Shenhav et al., 2017). One strength of 

such a rational theory of attentional control is that it specifies the type of information that 

limits control, which is assumed to be the degree of cross-talk of conflicting information at 

high cognitive load (Shenhav et al., 2017). According to this hypothesis, effort and control 

demands rises concomitantly with the amount of interfering information. This view provides 

a parsimonious explanation for our findings at high attentional load. While incentives can 

increase control-allocation when there is little cross-talk of the target feature with distractor 

features (at low attentional load), the incentives are not able to compensate for the increased 

cross-talk of distracting features at the high attentional load condition. Our results therefore 

provide quantitative support for a rational theory of attentional control.

In our task the critical transition from sufficient to insufficient control of interference was 

between the medium and high attentional load condition, which corresponded to an increase 

of distractor features that vary trial-by-trial from 8 features (at medium attentional load) 

to 26 features (at high attentional load). Thus, subjects were not able to compensate for 

distractor interference when the number of interfering features were somewhere between 

8 and 26, suggesting that prospective gains – at least when using tokens as reinforcement 

currency – hit a limit to enhance attentional control within this range.

Impaired learning in loss-contexts and economic decision theory.

In economic decision theory it is well documented that making choices is suboptimal in 

contexts that frame outcomes in terms of losses rather than gains (Tversky & Kahneman, 

1981, 1991). This view from behavioral economics aims to explain which options 

individuals will choose in a given context, which shares some resemblance with our task, 

where subjects learned to choose one among three objects in learning contexts (blocks) 

that were framed with variable token gains and losses. In a context with higher potential 

losses, humans are less likely to choose an equally valued option than in a gain-context. 

The reason for this irrational change in choice preferences is believed to reside in an 

overweighting of emotional content that devalues outcomes in loss contexts (Barbaro et al., 

2017; Loewenstein, Weber, Hsee, & Welch, 2001). Colloquial words for such emotional 

overweighting might be displeasure (Tversky & Kahneman, 1981), distress, annoyance, or 

frustration. Concepts behind these words may relate to primary affective responses of anger, 

disgust or fear. However, these more qualitative descriptors are not providing an explanatory 

mechanism, but rather tend to anthropomorphize the observed deterioration of learning 

in loss-contexts. Moreover, the economic view does not provide an explanation why the 

learning would be stronger affected at higher attentional load (Figure 7D).

Conclusion.

Taken together, our results document the interplay of motivational variables and attentional 

load during flexible learning. We first showed that learning efficacy is reduced when 
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attentional load is increased despite the fact that the complexity of the feature-reward target 

rule did not change. This finding illustrates that cognitive control processes cannot fully 

compensate for an increase in distractors. The failure to fully compensate for enhanced 

distraction was not absolute. Incentive motivation was able to enhance learning efficacy 

when there were distracting features of one or two feature dimensions but could not 

help anymore to compensate for enhanced interference when features of a third feature 

dimension intruded into the learning of feature values. This limitation suggests that crosstalk 

of distracting features represents a key process involved in cognitive effort (Shenhav et 

al., 2017). Moreover, the negative effect of distractor interference was exacerbated by 

experiencing the loss of tokens for wrong choices. This effect illustrates that negative 

feedback does not help to avoid loss-inducing distractor objects during learning, which 

documents that expecting or anticipating loss deteriorates flexible learning the relevance of 

objects in a multidimensional object space.
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Figure 1. Task paradigm varying attentional load and token gains and losses.
(A) The trial sequence starts with presenting 3 objects. The monkey choses one by touching 

it. Following a correct choice a yellow halo provides visual feedback, then green tokens are 

presented above the stimulus for 0.3s before they are animated to move upwards towards 

the token bar where the gained tokens are added. Following an error trial visual feedback is 

cyan, then empty token(s) indicate the amount of tokens that will be lost (here: −1 token). 

The token update moves the empty token to the token bar where green tokens are removed 

from the token bar. When ≥5 tokens have been collected the token bar blinks red/blue, three 

drops of fluid are delivered, and the token bar reset. (B) Over blocks of 35–60 trials one 

object feature (here: in rows) is associated with either 1,2, or 3 token gains, while objects 

with other features are linked to either, 0, −1, or −3 token loss. (C) Attentional load is 

varied by increasing the number of features that define objects. The one-dimensional (1D) 

load condition presents objects that vary in only one feature dimension relative to a neutral 

object, the 2D load varies features of two feature dimensions, and the 3D load condition 

varies three feature dimensions. For example, a 3D object has different shapes, colors, and 

arm types across trials (but the same neutral pattern). (D) Simulation of the expected reward 

rate animals receive with different combinations of token-gains and -losses (x-axis) given 

different learning speed of the task (y-axis). (E) Actual reward rates (y-axis) for different 

token conditions (x-axis) based on their learning speed across 4 monkeys.
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Figure 2. Effects of the number of earned tokens (‘Token State’) on response times.
(A) Average response times as a function of the number of earned tokens visible in the 

token bar (x-axis) for individual monkeys (grey) and their average (in black). Included were 

only trials prior to reaching the learning criterion. Over all trials monkeys (B, F, I, and S) 

showed average response time of 785, 914, 938, and 733 ms, respectively. (B) Same as A 
but including only trials after the learning criterion was reached. (C-D): Same format as 

A-B showing the average response times across monkeys for the low, medium, and high 

attentional load condition during learning (C) and after learning (E). (E) The Token State 

modulation index (y-axis) shows the difference in response times (RT’s) when the animal 

had 4 tokens earned versus one token earned. During learning (red) RT’s were slower with 

4 than 1 earned tokens to similar degrees for different attentional loads (x-axis). This pattern 

reversed after learning was achieved (green). Dashed red lines show ground mean across all 

attention loads.
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Figure 3. Average learning curves for each monkey and load, loss, and gain conditions.
(A) The proportion correct performance (y-axis) for low/medium/high attentional load for 

each of four monkeys relative to the trial since the beginning of a learning block (x-axis). 

(B): The number of trials-to-reach criterion (y-axis) for low/medium/high attentional load 

(x-axis) for each monkey (in grey) and their average (in black). (C) Same as A showing the 

learning for blocks in which 1, 2, or 3 tokens were gained for correct performance. Red line 

shows average across monkeys. (D) Same as B for blocks where monkeys expected to lose 

0, 1, or 3 tokens for incorrect choices. (E) Same as a and b showing the learning for blocks 

in which 0, 1, or 3 tokens were lost for incorrect performance. Green line shows average 

across monkeys. Errors are SE’s. (F) Same as B for blocks where monkeys expected to win 

1, 2, or 3 tokens for correct choices.
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Figure 4. Main effects of attentional load, number of expected token-gains and expected token-
loss on and response time.
(A) The response times (y-axis) for low/medium/high attentional load (x-axis) for each 

monkey (in grey) and their average (in black). (b) Same as A for blocks where monkeys 

expected to lose 0, 1, or 3 tokens for incorrect choices. (c) Same as B for blocks where 

monkeys expected to win 1, 2, or 3 tokens for correct choices.
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Figure 5. Controlled analyses on main effects of expected token-gains/loss when token-loss/gain 
held fixed on learning speed and response time.
(A) The learning speed (y-axis) for variable gains for fixed losses of 0 (left) and −1 (right). 

(B) The learning speed (y-axis) for variable losses for fixed gains of 2 (left) and 3 (right). 

low/medium/high attentional load (x-axis) for each monkey (in grey) and their average (in 

green). (C) The response time (y-axis) for variable gains for fixed losses of 0 (left) and −1 

(right). (D) The response time (y-axis) for variable losses for fixed gains of 2 (left) and 3 

(right).

Banaie Boroujeni et al. Page 28

J Cogn Neurosci. Author manuscript; available in PMC 2023 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Proportion of unlearned blocks across conditions.
(A) The number of unlearned blocks (y-axis) for low/medium/high attentional load (x-axis) 

for each monkey (in color) and their average (in grey). (B,C) Same as (A) for loss (B) and 

for the gain conditions (C).
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Figure 7. The effect of attentional load and expected token gain/loss on learning efficacy.
(A) A magnitude-specific hypothesis (orange) predicts that learning efficacy is high 

(learning criterion is reached early) when the absolute magnitude of expected loss (to the 

left) and expected gains (to the right) is high. A valence-specific hypothesis (blue) predicts 

that learning efficacy is improved with high expected gains (to the right) and decreased with 

larger penalties/losses. (B) Average learning efficacy across four monkeys at low/medium/

high attentional load (line thickness) in blocks with increased expected token-loss (to the 

left, in red) and with increased expected token gains (to the right, green). (C) Hypothetical 

interactions of expected gains/losses and attentional load. Larger incentives/penalties might 

have a stronger positive/negative effect at higher load (left) or a weaker effect at higher load 

(right). The predictions can be quantified with the Motivational Modulation index, which 

is the difference of learning efficacy for the high vs. low gains conditions (or high vs low 

loss conditions). (D) Average motivational modulation index shows that the slowing effect 

of larger penalties increased with higher attentional load (red). In contrast, the enhanced 

learning efficacy with higher gain expectations are larger at lower attentional load and absent 
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at high attentional load (green). Dashed red lines show ground mean across all attention 

loads.
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Figure 8. The effect of attentional load and token gain/loss expectancy on post-learning 
performance and response times.
(A) Post-learning accuracy (y-axis) when expecting varying token loss (red) and gains 

(green) at low/medium/high attentional load (line thickness). Overall, learning efficiency 

decreased with larger penalties and improved with larger expected token-gains. (B): The 

motivation modulation index for low/medium/high attentional load (x-axis) shows that the 

improvement with higher gains was absent at high load, and the detrimental effect of 

penalties on performance was evident at all loads. (C,D) Same format as A,B for response 

times. Subject slowed down when expecting larger penalties and speed up responses when 

expecting larger gains (C). These effects were largest at low attentional load and decreased 

at higher load (D). Dashed red lines show ground mean across all attention loads.
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Figure 9. Effects of experienced token gains and losses on performance.
(A): The effects of an experienced loss of 3, 1 or 0 tokens and of an experienced gain of 

1, 2, or 3 tokens (x-axis) on the subsequent trials’ accuracy (y-axis). Grey lines are from 

individual monkeys, and black shows their average. (B) Same format as A for the average 

previous trial outcome effects for low/medium/high attentional load. (C) Motivational 

modulation index (y-axis) quantifies the improved accuracy after experiencing 3 vs. 1 losses 

(red), and after experiencing 3 vs. 1 token gains (green) for low/medium/high attentional 

load. Dashed red lines show grand mean across attention load conditions. (D) The effect of 

an experienced loss of −3 or 0 token during learning on the proportion of correct choices 

in the following nth trials (x-axis). (E) Same as D but for an experienced gain of 3 or 1 

token. (F) The difference in accuracy (y-axis) after experiencing 3 vs. 0 losses (red), and 3 

vs. 1 token gains (green) over n trials subsequent to the outcome (x-axis). Thick and thin 

lines denote low and high attentional load conditions, respectively. Black thin and thick 

horizontal lines in the lower/upper half of the panel show trials for which the difference 

of accuracy (high vs. low losses/gains) was significantly different than zero, Wilcoxon test, 
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FDR corrected for dependent samples across all trial points and low and high attentional 

load conditions with an alpha level of 0.05.
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Table 1.

Model comparisons for different control conditions. The last row in each table is the model with gain 

and/or loss feedback, compared with the other models. BIC: Bayesian Information Criterion, AIC: Akaike 

Information Criterion. LR-Stat: Likelihood ratio stat.

Models on all conditions

Model BIC AIC LR-Stat P-value

RR stimulation 21210 21174 −49.69 <0.001

RR Experienced 21203 21167 −42.35 <0.001

Diff Gain-Loss 21165 21130 −58.84 <0.001

FB Gain FB Loss 21146 21081

Models on fixed gain: 2, variable loss: 0,−1,−3

Model BIC AIC LR-Stat P-value

RR 7462 7433 −58.20 <0.001

FBLoss 7404 7375

Models on fixed loss: −1, variable gain: 2,3

Model BIC AIC LR-Stat P-value

RR 5723 5695 −1.04 0.14

FBGain 5722 5694

Models on fixed gain: 3, variable loss: 0,−1

Model BIC AIC LR-Stat P-value

RR 10384 10353 −7.29 <0.001

FBLoss 10377 10346

Models on fixed loss: 0, variable gain: 1,2,3

Model BIC AIC LR-Stat P-value

RR 15356 15323 −3380 <0.001

FBGain 11975 11943
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