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Abstract 

When developing models for clinical information retrieval and decision support sys-
tems, the discrete outcomes required for training are often missing. These labels need 
to be extracted from free text in electronic health records. For this extraction process 
one of the most important contextual properties in clinical text is negation, which indi-
cates the absence of findings. We aimed to improve large scale extraction of labels by 
comparing three methods for negation detection in Dutch clinical notes. We used the 
Erasmus Medical Center Dutch Clinical Corpus to compare a rule-based method based 
on ContextD, a biLSTM model using MedCAT and (finetuned) RoBERTa-based models. 
We found that both the biLSTM and RoBERTa models consistently outperform the 
rule-based model in terms of F1 score, precision and recall. In addition, we systemati-
cally categorized the classification errors for each model, which can be used to further 
improve model performance in particular applications. Combining the three models 
naively was not beneficial in terms of performance. We conclude that the biLSTM and 
RoBERTa-based models in particular are highly accurate accurate in detecting clinical 
negations, but that ultimately all three approaches can be viable depending on the use 
case at hand.

Keywords:  Natural language processing, Text mining, Negation detection

Introduction
The increasing availability of clinical care data, affordable computing power, and suit-
able legislation provide the opportunity for (semi-)automated decision support systems 
in clinical practice. An important step in the development of such a decision support 
system is the accurate extraction of relevant labels to train the underlying models. 
These labels are rarely directly available as structured data in electronic health records 
(EHRs)—and even if they are, they often lack the precision and reliability [41] for a 
clinical decision support system. Therefore, extraction of labels from free text in the 
EHR—which contains the richest information and the appropriate amount of nuance—is 
needed.
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To this end, we need to consider the context in which medical terms are mentioned. 
One of the most important contextual properties in clinical text is negation, which indi-
cates the absence of findings such as pathologies, diagnoses, and symptoms. As they 
make up an important part of medical reasoning, negations occur frequently: one study 
estimated that more than half of all medical terms in certain clinical text are negated 
[6]. Accurate negation detection is critical when labels and features from free text in 
the EHR are extracted for use in clinical prediction models. But improving information 
retrieval through negation detection has many other use cases in healthcare, including 
administrative coding of diagnoses and procedures, characterizing medication-related 
adverse effects, and selection of patients for inclusion in research cohorts.

Negation detection is not a trivial task, due to the large variety of ways negations are 
expressed in natural language1. It can either be performed with a rule-based approach or 
through machine learning. In this paper, we evaluate the performance of one rule-based 
method (based on ContextD [1]) and two machine learning methods (a bidirectional 
long-short term memory model implemented in MedCat [25], and a RoBERTa-based 
[28] Dutch language model) for detection of negations in Dutch clinical text.

In their simplest form, traditional rule-based methods consist of a list of regular 
expressions of negation triggers (e.g. “no evidence for”, “was ruled out”). When a nega-
tion trigger occurs just before or after a medical term in a sentence, the medical term 
is considered negated. Examples include NegEx [5], NegFinder [33], NegMiner [13] 
and ConText [19, 38]. Some approaches also incorporate the grammatical relationships 
between the negation and medical terms. For example, incorporating part-of-speech 
tagging to determine the noun phrases that a negation term could apply to (see e.g. 
NegExpander [3]) , or using dependency parsing to uncover relations between words 
(see e.g. NegBio [35], negation-detection [16], DepNeg [40] and DEEPEN [31]). Moreo-
ver, distinguishing between the different types of negations (syntactic, morphological, 
sentential, double negation) as well as adding word distance has been proven helpful (see 
e.g. NegAIT [32] and Slater et al. [39]). While usually tailored for English, some of these 
methods have been adapted for use in other languages, including French [11], German 
[8] and Spanish [7, 9], as well as Dutch [1].

The main advantages of rule-based negation detection methods are that they are 
transparant and easily adaptable and do not require any scarce labeled medical train-
ing data. Rule-based methods can be surprisingly effective. Goryachev et  al. [17] 
demonstrate that the relatively simple NegEx can be more accurate than machine learn-
ing-based methods, such as a Support Vector Machine (SVM) trained on the part-of-
speech-tags surrounding the term of interest.

The main disadvantage of rule-based methods is that they are by definition unable to 
detect negations that are not explicitly captured in a rule. Depending on the use case, 
this can severely hamper their performance. This is where machine learning methods 
come into play, as they may outperform rule-based methods by picking up rules implic-
itly from annotated data.

1  For example, the rule-based system used in this work contains nearly 400 different patterns of expressing negation.
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One such machine learning method is the bidirectional long-short term memory 
model (biLSTM), a neural network architecture that is particularly suited for classifica-
tion of sequences such as natural language sentences. This model processes all words in 
a sentence sequentially, but in contrast to traditional neural network methods, a biLSTM 
takes the output of previous words into account to model relations between words in the 
sentence. For a biLSTM model the processing is bidirectional, meaning that sentences 
are processed in the (natural) forward direction, as well as the reverse direction.

Based on a conventional biLSTM (see e.g. Graves and Schmidhuber [18]), Sun et al. 
[42] developed a hybrid biLSTM Graph Convolutional Network (biLSTM-GCN) 
method. The biLSTM can also be combined with a conditional random field [20]. Other 
machine learning approaches include an SVM that has access to positional information 
of the tokens in each sentence Cruz Díaz et al. [10], and the use of conditional random 
fields in the NegScope system by Agarwal and Yu [2].

A more recent machine learning model is RoBERTa [28], a bidirectional neural net-
work architecture that is pre-trained on extremely large corpora using a self-supervised 
learning task, specifically to fill in masked tokens. This masking does not require exter-
nal knowledge as the selection of tokens to be masked can be performed automatically. 
RoBERTa is part of a family of models, which primarily vary in learning task, that are 
based on the transformers architecture [43]. Once pre-trained, a transformer model can 
be finetuned with supervised learning tasks for e.g. negation detection or named entity 
recognition. Lin et al. [27] show that a zero-shot language model such as BERT performs 
well on the negation task and does not require domain adaptation methods. Khandelwal 
and Sawant [23] developed NegBERT, a BERT model finetuned on open negation cor-
pora such as BioScope [46].

The goal of the current paper is to compare the performance of rule-based and 
machine learning methods for Dutch clinical data. We conduct an error analysis of the 
types of errors the individual models make, and also explore whether combining the 
methods through ensembling offers additional benefits. Python implementations of all 
the evaluated models are available on GitHub.2

Data
We used the Erasmus Medical Center Dutch clinical corpus (DCC) collected by Afzal 
et  al. [1] (published together with ContextD) that contains 7490 Dutch anonymized 
medical records annotated with medical terms and contextual properties. All text strings 
that exactly matched an entry in a subset of the Dutch Unified Medical Language System 
(UMLS, [4]) were considered a medical term. These medical terms were subsequently 
annotated for three contextual properties: temporality, experiencer, and negation. In this 
paper we focus on the binary context-property negation. The label negated was given 
when evidence in the text was found that indicated that a specific event or condition did 
not take place or exist, otherwise the label not negated was assigned.

As illustrated in Fig.  1, we excluded 2125 records in total from further analysis, 
primarily because no annotation was present (this was the case for 2078 records), 

2  https://​github.​com/​umcu/​negat​ion-​detec​tion/​relea​ses/​tag/​v1.0.0.

https://github.com/umcu/negation-detection/releases/tag/v1.0.0
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otherwise the file containing the source text or its annotation was corrupted (37 
records), or the annotation did not correspond to a single medical term (10 records, 
e.g. only a single letter was annotated, or a whole span of text containing multiple 
medical terms). This left 5365 usable records for analysis, containing a total of 12551 
annotated medical terms. A small number of medical terms were not processed by 
the RoBERTa-based models, because of the imposed maximum record length of 512 
tokens in our implementation. We excluded these medical terms from analysis with 
other methods as well, resulting in a final set of 12419 annotated medical terms.

The corpus consists of four types of clinical records, which differ in structure and 
intent (for details, see Afzal et al. [1]). Basic statistics are presented in Table 1 and a 
representative example of each record type, including various forms of negation, is 
provided in Supplementary Material A.

Methodology
We employed three distinct methods to identify negations: a rule-based approach 
called ContextD, a biLSTM from MedCAT and a fine-tuned Dutch RoBERTa model. 
These methods are cross-validated using the same ten folds.

Table 1  Basic textual statistics of the selected DCC records, showing the mean value per record and 
the boundaries of the second and third quartile (top) and the total count in the dataset (bottom)

Letter category # sentences # words # unique words Word length

General Practitioner 2.1 (1, 2) 17.8 (8, 23) 16.8 (8, 22) 5.9 (5, 6.5)

entries 2034 33840 11080

Specialist letters 3.8 (2, 4) 30.0 (9, 34) 24.9 (8, 30) 7 (5.8, 7.7)

2737 29674 10207

Radiology reports 3.6 (2, 4) 19.1 (7, 26) 16.8 (6, 23) 7.2 (6.1, 8)

3939 28614 6371

Discharge letters 4.1 (2, 5) 33.8 (14, 45) 27.8 (13, 38) 6.1 (5.5, 6.6)

3057 33458 6351

Fig. 1  Data flow diagram
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Rule‑based approach

The rule-based ConTextD algorithm [1] is a Dutch adaptation of the original ConText 
algorithm [19].

The backbone of the ConText algorithm is a list of (regular expressions of ) negation 
terms (“negation triggers”). A given medical term is considered to be negated when it 
falls within the scope of a negation trigger. The default scope in ConText is the remain-
der of the sentence after/before the trigger. Each negation trigger has either a forward 
(e.g., “no evidence of ...”) or backward scope (e.g., “... was ruled out”).

ConText has two more types of triggers aside from negation triggers: pseudo-triggers 
and termination triggers. Pseudo-triggers are phrases that contain a negation trigger but 
should not be interpreted as such (e.g., “not only” is a pseudo-trigger for the negation 
trigger “not”). Pseudo-triggers take precedence over negation triggers: when a pseudo-
trigger occurs in a sentence, the negation trigger it encompasses is not acted upon. Ter-
mination triggers serve to restrict the scope of a negation trigger. For example, words 
like “but” in the sentence “No signs of infection, but pneumonia persists”, signal that the 
negation does not apply to the entire sentence. Using “but” as termination trigger pre-
vents the algorithm to consider “pneumonia” to be negated while “infection” is still con-
sidered negated.

We used the Dutch translation of the original triggers from ConText, as produced 
by the ContextD authors.3 These triggers were used in conjunction with MedSpaCy4 
[14], a Python implementation of the ConText algorithm. Because ConText defines the 
scope of a negation trigger in number of words or the boundary of the sentence (the 
default), raw text also needs to be tokenized and split into separate sentences. We 
used the default tokenizer and the dependency-parser-based sentence splitter of the 
nl_core_news_sm-2.3.0 model in spaCy5, a generic Python library for NLP.

MedCAT’s biLSTM

The open-source multi-domain clinical natural language processing tool Medical Con-
cept Annotation Toolkit (MedCAT) incorporates Named Entity Recognition (NER) and 
Entity Linking (EL), to extract information from clinical data [25]. MedCAT contains a 
component named MetaCAT for dealing with context properties after a concept is iden-
tified in a clinical text. MetaCAT makes use of bidirectional Long-Short Term Mem-
ory networks (biLSTMs) [18]. This sequence encoding can be combined directly with a 
classifier such as a fully connected network (FCN) or indirectly via a Conditional Ran-
dom Field or Graph Convolutional Network to facilitate interaction between entities. In 
this work we use an FCN for the final classification. By MetaCAT default, the biLSTM 
observes 15 tokens to the left and 10 tokens to the right of the annotated concept.

MetaCAT replaces target terms, for example diabetes mellitus, with an abstract place-
holder, such as [disease]. This allows the model to learn a shared representation between 
concepts, which increases the generalization behavior of the model for negation detec-
tion. For example, the model now only needs to learn that no signs of [disease] is a 

3  Erasmus Medical Center website.
4  medspacy, version 0.1.0.2.
5  spaCy, version 2.3.5.
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negation, instead of learning no signs of diabetes mellitus, no signs of bronchitis, ... for 
each disease separately.

MetaCAT uses a Byte Pair Encoding (BPE) tokenizer which operates on a subword 
level [15]. Earlier research [29] showed that the subword tokenizer outperforms tradi-
tional tokenizers that operate on word level. When training MetaCAT’s biLSTM, embed-
dings are required. For this reason, first a set of Continuous Bag of Words (CBOW) 
embeddings were created using a set of Dutch Wikipedia articles in the medical domain. 
Secondly, the biLSTM model is trained on the annotated DCC data using the default 
MetaCAT settings.

While MedCAT provides a full pipeline including NER and entity linking, in the cur-
rent project we only use the biLSTM negation classifier component, using the entities 
marked in the DCC as input. This allows for easy comparison with the other two meth-
ods that do not share the same pipeline architecture.

RoBERTa

RoBERTa [28] is part of a family of language models built on top of the transformers 
architecture that allows for learning general contextual representations using self-super-
vised training. The variation in models such as BERT [22], XLM [26] and T5 [37] pri-
marily comes from differences in training objectives.

A benefit of RoBERTa, BERT and similar transformer-based methods is that the con-
text of a term can play an important role. With sequential models such as LSTMs long 
range inter-word dependencies are hardly taken into account for the simple reason that 
direct neighbors have more influence on eachother6. Bidirectional LSTM’s alleviate the 
uni-directionality but still suffer from the inability to incorporate large contexts.

A possible downside of using a pre-trained model is that the standard version of RoB-
ERTa is trained on general text, which may not perform well in the medical domain.

The RobBERT language model [12] is a RoBERTa architecture pretrained on the Dutch 
SoNaR corpus (see Oostdijk et al. [34]) using Masked Language Modeling, a self-super-
vised learning process where the model learns to fill in masked tokens. SoNaR consisted 
primarily of texts obtained from publicly available media. MedRoBERTa.nl [44] is a RoB-
ERTa model that was trained from scratch on 11.8GB of EHRs from the Dutch AUMC 
tertiary care center.

Following Lin et  al. [27], we compared RobBERT with a domain-adapted (DAPT) 
RobBERT. Here the domain-adaptation is performed by continued pre-training of the 
model on a domain-specific corpus consisting of Dutch Medical Wikipedia, NHG direc-
tives and standards7 (medical guidelines for general practitioners), Richtlijnendatabase8 
(medical guidelines for hospital specialties) and Huisarts en Wetenschap9 (monthly 
magazine of the Dutch general practitioners’ association, issues 1957–2019) (see Addi-
tional file 1: Table S3 for more detail).

6  Recurrent neural networks suffer from the exploding and vanishing gradient problem, with LSTMs and GRUs this is 
resolved basically through gates between sequence elements and weight clipping. These interventions allow for larger 
sequences but cannot prevent that there is a monotonic decline in influence away from each token.
7  https://www.nhg.org/.
8  https://demedischspecialist.nl/.
9  https://www.henw.org/.
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We finetuned all RoBERTa models on the annotated DCC data for 3 epochs with a 
batchsize of 32 and 64 samples. We performed the finetuning in two ways; all layers are 
updated or only the final classification layer is trained for the negation detection task. 
The latter is also called self-supervised plus simple fit (or SSS).

Finally we considered the effect of decreasing the maximum number of tokens, i.e. 
the maximum sequence length. Decreasing the maximum sequence length will linearly 
decrease both the space and time complexity of the model training. We varied the num-
ber of tokens by taking a token window around each entity (i.e. an annotated medical 
term in the DCC) (Fig. 2). For the training this means that entities may occur in multiple 
token windows per record. For the validation we only use the entities in the center of 
each token window.

Ensemble classification

To investigate whether the three models could complement each other, we created an 
ensemble classifier. The classifier used a majority voting ensemble, which assigns the 
label that is predicted by at least two of the three classifiers.

Model evaluation

To gauge the performance of the models we applied 10-fold cross-validation. We 
inspected the errors in the test folds and assigned error categories facilitating inter-
model comparison (see Sect. ). This setup also allows for easy evaluation of the proposed 
ensemble classifier post-hoc based on the predictions of the individual methods.

We evaluated each model’s recall, precision, and F1-score for the negated class. Recall 
(true positive rate or sensitivity) is defined as the proportion of true positives out of the 
sum of true positives and false negatives, and thus indicates what proportion of all nega-
tions a model correctly identified. Precision (positive predictive value) is defined as the 
proportion of true positives out of all positives, and thus indicates how often the model 
was correct when it predicted that a term was negated. The F1-score is the harmonic 
mean of precision and recall.

Error analysis

To better understand the types of misclassifications that the models made, we reviewed 
all the false positives and false negatives separately for each of the three models, similar 
to what [1] did to evaluate ContextD. A false negative occurred when the model pre-
dicted “not negated” when a negation was present; a false positive occurred when the 
model predicted “negated” when no negation was present.

Error analysis allows to determine the expected gain of further steps aimed at pre-
venting errors, which can be either (1) to apply preprocessing to remove artifacts 
that negatively influence model performance, (2) to remove inconsistencies in data 

Fig. 2  Variable size token window
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annotation and/or use synthetic data to train the models, or (3) to combine the differ-
ent models in a complementary fashion.

We first categorized all errors made by a single model. We then attempted to re-
use these categories as much as possible for the error analysis of the remaining two 
models, only creating new categories when there was a clear need. Each model’s errors 
were reviewed by a single invidual (BvE, LCR, and MS). This initial round was followed 
by two more rounds of discussion among the three reviewers, lumping and splitting 
the candidate categories, to obtain a final set of categories that was shared across mod-
els. This process resulted in 10 different error categories (Table 2). To assess the degree 
of consistency in categorization of the three reviewers, we computed Cohen’s kappa 
coefficient on the subset of errors that were shared by multiple models.

Results
We consider the model performance quantitatively by looking at overall performance 
metrics, and more qualitatively by analyzing and categorizing the errors that each model 
made.

Overall performance

From the 12419 medical terms in 5365 medical records, 1748 medical terms were 
marked as negated by the annotators. Of these, 1687 concepts were identified by at least 
one of the negation detection models.

The precision, recall and F1 score for each negation detection method are reported in 
Table 3. RobBERT achieved the highest scores overall, followed by the ensemble method 
for a few metrics and record types.

Table 2  Definitions and examples of the error categories used for error analysis. Negation terms are 
underlined; the annotated medical terms are in brackets. Examples translated from the Dutch source 
text

Italic: paraphrase of example clinical text

Category Definition and example

Uncommon negation Negation term rarely occurs in the data ... which argues against a [diagnosis] of RA

Mminus In clinical notes, a minus directly following a term indicates negation pale-, [nau-
seous] -, clammy+

Scope Several medical terms follow/precede a negation, but the negation does not apply 
to all of them. This often occurs in a list, or simply when the negation occurs much 
later/earlier in the sentence no abdominal pain, [abrasion on leg]

Punctuation Punctuation that is likely to hinder sentence splitting and/or correct recognition of 
the (scope of the) negation term no evid. for [aneurysm]

Negation of different term The negation applies to another term close to the medical term no further investiga-
tion of [weight loss]

Wrong modality The context is not negation, but hypothetical, historical, or otherwise indication: to 
rule out [osteopenia]

Speculation The clinician expressed uncertainty instead of outright negation no [eczema] after all?

Ambiguity The grammatical structure makes it unclear whether a term is negated or not ... 
without loss of function and [concussion] following...

Other The type of error does not fit into any of the other categories

Annotation error The original annotator assigned the wrong label
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Rule‑based

While the performance of the rule-based method here was indeed comparable to the 
original (see the results in Table  5 of Afzal et  al. [1]), some differences can be identi-
fied, that probably arise because we do not use exactly the same rules nor exactly the 
same dataset. First, there are two different variations of ContextD: the “baseline” rules, 
which were simply a translation of the original Context method [19], and the “final” 
rules, which were iteratively adapted using half of the dataset. Our set of rules is most 
similar to the “baseline” method, as we chose not to implement any of the modifications 
in the “final method” described in the paper. However, our set of rules likely still contains 
some elements of the “final method”. Second, while the original ContextD method was 
evaluated on only half the dataset (as the other half was used for finetuning the rules), 
we use the full dataset. In our evaluation, performance varied quite strongly over the 
folds, which indicates that the exact evaluation set that was used influenced the obtained 
results. Performance varied particularly strongly for the GP entries, which would also 
explain why the difference in performance with ContextD is largest for this category.

Machine learning (biLSTM, RobBERT)

The rule-based method is outperformed by both machine learning methods in almost all 
cases. Its performance varies strongly over the different record types: it performs worst 
for the least structured records, particularly the GP entries, and best for the most struc-
tured records, particularly the radiology reports. The performance gap between the rule-
based and machine learning methods shows the same pattern: the less structured the 
record, the larger the gap.

Table 3  Classification results across methods and data sources

Bold: best score for a category of clinical notes

Letter category Prediction method Precision Recall F1

Discharge letters Rule-based 0.893 0.921 0.906

Discharge letters BiLSTM 0.957 0.931 0.944

Discharge letters RobBERT 0.953 0.974 0.963

Discharge letters Voting ensemble 0.963 0.966 0.964
General Practitioner entries Rule-based 0.674 0.801 0.732

General Practitioner entries BiLSTM 0.889 0.889 0.889

General Practitioner entries RobBERT 0.950 0.912 0.931
General Practitioner entries Voting ensemble 0.930 0.886 0.908

Radiology reports Rule-based 0.901 0.966 0.932

Radiology reports BiLSTM 0.933 0.934 0.933

Radiology reports RobBERT 0.960 0.963 0.961
Radiology reports Voting ensemble 0.955 0.965 0.960

Specialist letters Rule-based 0.807 0.840 0.823

Specialist letters BiLSTM 0.922 0.835 0.876

Specialist letters RobBERT 0.934 0.890 0.911
Specialist letters Voting ensemble 0.937 0.862 0.898

All letters Rule-based 0.825 0.892 0.857

All letters BiLSTM 0.926 0.901 0.913

All letters RobBERT 0.951 0.938 0.944
All letters Voting ensemble 0.948 0.924 0.936
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The biLSTM model consistently outperformed the rule-based approach, except for the 
radiology reports category, where performance was approximately equal. In turn, Rob-
BERT outperformed the biLSTM model with a difference of 0.02–0.05 in F1 score across 
record categories.

Additionally, we saw no consistent differences between different RobBERT implemen-
tations. The smallest 32-token window resulted in a slightly reduced accuracy, but dras-
tically reduced computational resources (see Additional file 1 Tables S1 and S2).

Note that for the RobBERT and the biLSTM models we did not apply threshold tuning 
to optimize for precision or recall—we simply took the default threshold of 0.5 (also note 
that calibration is required if such a probabilistic measure is applied in clinical practice).

Model ensemble

The RobBERT method outperforms the other models as well as the ensemble method 
when scored on the complete dataset. On the individual categories the ensemble method 
performs worse or similar to the RobBERT method.

Figure 3 shows that the RobBERT method (all bars with “RobBERT”) makes fewer 
errors than the voting ensemble (all bars with more than two methods). In particular, 
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Fig. 3  Number of misclassifications for different model combinations. The y-axis shows the number of 
errors in all possible intersections of the error sets made by the different models. That is, “All” is the number of 
entities that are misclassified by all three models; “Rule-based” is the number of entities that are misclassified 
by only the rule-based model; “RobBERT & BiLSTM” is the number of entities misclassified by both the 
RobBERT and biLSTM models, but not the rule-based model; etc

Oth Ann Spec Amb Sc Pct Dif Mod Minus

Uncommon 11 6 7 5 6 6 1 6 2
Other 2 7 3 3 7 4 0 0

Annotation 3 5 3 1 2 0 0
Speculation 13 3 1 8 3 0
Ambiguous 2 1 4 1 0

Scope 3 3 0 1
Punctuation 1 0 0
Different term 0 1

Modality 0

Fig. 4  Confusion matrix of inter-annotator disagreement
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the number of errors committed by RobBERT alone is smaller than the number of 
errors that are introduced when adding the BiLSTM and the rule-based method to 
the ensemble.

Error analysis

We obtained a Cohen’s Kappa score of 0.48 when annotating agreement on the error 
category. This is considered as moderate agreement [30]. The categories involved in 
disagreement are shown in Fig. 4. The uncommon negation meta-category is a source 
of disagreement, showing that some annotators consider a negation uncommon while 
others choose a semantic error category. Also other as a (semantic) catch-all category 
is responsible for disagreement. From the specific categories the speculation label is 
most often subject of disagreement.

The moderate agreement is not surprising given that the error cases represent chal-
lenging annotations. It is important to note that it is possible that multiple categories 
apply for the same error due to model-specific interpretations, which would have a 
negative effect on our perceived inter-annotator agreement.

We should note that the speculation category is somewhat domain specific: a cli-
nician might have observed that a particular diagnostic test yielded no indications 
for a particular diagnosis; arguably this is not a negation of the diagnosis but merely 
the explicit absence of a confirmation. These signals may or may not be considered 
as negations, depending on, for example, whether a test is seen as conclusive or if 
instead additional testing is required for establishing a diagnosis. This reasoning 
would require the integration of external knowledge, for example through UMLS. 
More broadly, the dichotomisation of negation/not-negated is perhaps too coarse 
given the high prevalence of explicitly speculative qualifications in electronic health 
records. One clear issue with the dichotomy not-negated/negated is that it biases the 
annotations and models towards the non-negated class, because the negated label 
requires explicit negations whereas non-negated is everything else, i.e., negations 
are more strictly constrained. In some cases it is beneficial if the bias is reversed, 
for instance to obtain affirmations with low false positivity. A mitigation of the non-
negation bias is to introduce a model specifically for affirmations/non-affirmations, or 
indeed a separate label for speculation (see, e.g. Vincze [45]).
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Fig. 5  Error category frequencies
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Model‑independent issues

The distribution of error categories over methods is shown in Fig. 5 and Table 4. The 
categories annotation error, speculation, ambiguous (together around 20–25% across 
models) may benefit from more specific annotation guidelines. The other errors can be 
classified as actual mistakes by the model. From these, preprocessing can potentially 
improve scope and punctuation-related errors. Modality can be improved using special-
purpose classifiers similar to the current negation detection classifier. The remaining 
problematic errors are negation of a different term, uncommon negation, minus, and 
other errors (around 50% of all errors across models).
Annotation- and uncertainty-related errors
A significant amount of annotation errors was found, both for false positives and false 

negatives. This is consistent with Afzal et al. [1], who report that about 8% of the false 
positive negations were due to erroneous annotations (no percentage was reported for 
false negatives). These errors can be solved by improving the annotation, either through 
better guidelines or by more strict application and post-hoc checking of these guidelines.

Note that annotation errors will also be present in true negatives/positives, which will 
remain undetected in case the models make the same mistake as the annotators. If these 
annotation errors are randomly distributed this is a form of label smoothing, and as such 
the errors could be useful to reduce overfitting. However, it is likely that these annota-
tion errors are not random and are indicative of inherent ambiguity.

Table 4  Overview of error categories per model

Rule-based biLSTM RobBERT

False positives

Ambiguous 0 0% 14 16% 11 13%

Annotation error 11 3% 5 6% 13 15%

Minus 0 0% 8 9% 0 0%

Negation of different term 119 36% 24 27% 32 38%

Other 1 0% 13 14% 16 19%

Punctuation 0 0% 5 6% 1 1%

Scope 136 41% 6 7% 0 0%

Speculation 50 15% 10 11% 8 9%

Uncommon negation 0 0% 5 6% 0 0%

Wrong modality 14 4% 0 0% 4 5%

Total 331 90 85

False negatives

Ambiguous 0 0% 18 11% 8 7%

Annotation error 20 11% 7 4% 15 14%

Minus 51 27% 13 8% 23 21%

Negation of different term 2 1% 0 0% 0 0%

Other 29 15% 14 9% 15 14%

Punctuation 13 7% 20 12% 1 1%

Scope 0 0% 32 20% 8 7%

Speculation 8 4% 13 8% 20 18%

Uncommon negation 60 32% 39 24% 17 16%

Wrong modality 6 3% 6 4% 2 2%

Total 189 162 109
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The speculation and ambiguous categories (together around 20–25% across mod-
els) both stem from uncertainty-related issues, either expressed by the clinician 
(speculation) or in the interpretation of the text (ambiguous). These may present 
problems both during annotation and during model training, as the examples do 
not fully specify a negation, yet the intended meaning can often be inferred. More 
specific annotation guidelines could reduce these issues to some extent, by ensur-
ing that the examples of a certain category are consistently annotated. However, the 
models may still be unable to capture such inferences, even if the examples are con-
sistently annotated.

Typical examples for speculation are: There is no clear [symptom] or The patient is 
dubious for [symptom]. The English corpora BioScope [46], GENIA [24] and BioInfer 
[36] include uncertainty as a separate label, which may be beneficial for the current 
dataset as well.
Remaining errors
The other categories were more syntactic in nature. The word-level syntactic 

errors scope, negation of different term, and uncommon negation occur across meth-
ods. Other errors are due to the use of a minus to indicate negation or usage of colon 
and semicolon symbols (punctuation). The minus sign is however also used as a 
hyphen (to connect two words), which complicates handling of this symbol both in 
preprocessing and during model training.

As an example of possible mitigation measures, the following sentence produced 
a false negative (i.e., a negated term classified as non-negated) for the target term 
redness:

Previously an antibiotics treatment was administered(no redness).

In this example the negation word no is concatenated with an opening parenthesis 
and the previous word, which poses problems for tokenization. Such errors might be 
avoided by inserting whitespace during preprocessing.

The following sentence shows a false positive from the biLSTM classifier for the 
term earache:

since 1 day pain in the right lower lobe andcoughing, mucus, temp 
to38.2, pulmones no abnormality earache and deaf, oam right?

This is a scoping error, where the negation on the term “abnormality” is incorrectly 
extended to the target term “earache”. This issue would be difficult to correct in 
preprocessing, as it necessitates some syntactic and semantic analysis to normalize 
the sentence. This would closely resemble the processing by the rule-based system, 
therefore this is an example where model ensembling could be beneficial. However, 
given the multiple other textual issues in this sentence (such as missing whitespace, 
punctuation, and capitalization) a more robust alternative solution might be to 
maintain a certain standard of well-formedness in reporting, either through auto-
matic suggestions, reporting guidelines, or both.
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Rule‑based

Almost half of the false positives for the rule-based method fell under the “scope” cate-
gory (41%, see Table 4). The default scope for a negation trigger extends all the way to the 
start (backward direction) or end (forward direction) of a sentence. For long sentences, 
or when sentences are not correctly segmented, the negation trigger may then falsely 
modify many medical terms. This occurred particularly often for short and unspecific 
negation triggers, such as no (Dutch: niet, geen). Potential solutions include improving 
sentence segmentation, restricting the number of medical terms that a single negation 
trigger can modify, restricting the scope to a fixed number of tokens (the solution used 
by the ContextD “final” algorithm for certain record types), or restricting the scope by 
adding termination triggers (the ContextD “final” algorithm added punctuation such as 
colons and semicolons as termination triggers for some record types). We determined 
that 32 out the 140 false positives were caused by a missing termination trigger; adding 
just the single trigger wel (roughly meaning but) would have prevented 18 errors (5%).

Most other false positives were due to “negation of a different term”. These are perhaps 
more difficult to fix, but in some cases these could be prevented by adding pseudo-trig-
gers that for instance prevent the trigger “no” from modifying a medical concept when 
followed by another term (e.g., “no relationship with”).

For the false negatives, the majority are caused by “uncommon negations”, i.e. negation 
triggers that were missing from the list of rules. A special case that caused a lot of errors 
was the minus (hyphen) symbol, which in clinical shorthand is often appended to a term 
to indicate negation. Other missing negation triggers that occurred relatively often were 
variations on negative (n=18, such as neg), not preceded by (n=8, e.g., niet voorafgegaan 
door), and argues against (n=5, e.g., pleit tegen). The obvious way to remedy these error 
categories is to simply add these negation triggers to the rule list, but this may intro-
duce new problems. For instance, adding “-” as a negation trigger (as was done in the 
ContextD “final” algorithm) would negate any word that occurs before a hyphen (e.g., 
“infection-induced disease”). More generally, any change aimed at reducing the amount 
of false negatives (such as adding negation triggers) or false positives (such as restrict-
ing scope) is likely to induce a commensurate increase in false positives or negatives, 
respectively. The list of rules—and thereby the trade-off between recall and precision—
will have to be adapted and optimized for each individual corpus and application.

BiLSTM

As shown in Table 4, for the biLSTM classifier around 5% of the errors are annotation 
errors, where the model actually predicted the correct label. For false negatives one of 
the largest categories is scope errors, which includes examples where a list of entities is 
negated using a single negation term, as well as examples where many tokens are pre-
sent between the negation term and the medical term. For false positives, negation of a 
different term is a common error, which is problematic for all three methods. However, 
compared to the other methods the biLSTM has a more even distribution over error 
categories. The overall performance and the distribution over categories shows that the 
biLSTM is more robust against syntactic variation than the rule-based model, but not as 
generalized as RobBERT.
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RobBERT

Negation of different terms, speculation, uncommon negation and the use of a hyphen 
(minus) to indicate negations are the largest potentially resolvable contributors to the 
RobBERT error categories, totalling to about 50% of the errors (Table 4).

RobBERT-base fills in missing interpunction, i.e. it expects interpunction based on 
the corpus it was trained on and in our clinical case we often find that interpunc-
tion is missing. A degenerative example is “The patient is suffering from palpitations, 
shortness of breath and udema, this can be an indication of <mask>”, RobBERT filled 
in the mask as : (a semicolon).

A large percentage of the false negatives were due to RobBERT mishandling 
hyphens. We also observed varying model output based on negation triggers being 
mixed lower/uppercase. Mishandling the hyphens can potentially be resolved by 
adapting the tokenizer to include the hyphen as a separate token or by adding white 
space.

We observed that words could have a varying negation estimate over the differ-
ent tokens that make up the words, illustrated in Fig. 6. This variance is an artefact 
of using a sub-word tokenizer. This is potentially problematic for words consisting 
of many tokens, but it also allows for more flexibility because we can decide to (for 
example) take the maximum probability over the tokens per word. It can also occur 
that token-specific negations are required, for instance when the negation and the 
term are concatenated, as in “De patient is tumorvrij” (“The patient is tumorfree”). The 
possibility of concatenation is language dependent.

The categories uncommon negation and negation of a different term can be reduced 
by expanding the training set with the appropriate samples.

Discussion
We compared a rule-based method based on ContextD, a biLSTM model using Med-
CAT and (finetuned) Dutch RoBERTa-based models on Dutch clinical text and found 
that both machine learning models consistently outperform the rule-based model in 
terms of the F1, precision and recall. Combining the three models was not beneficial 
in terms of performance. The best performing models achieve an F1-score of 0.95. 
This is a relatively high score for a cross-validated machine learning approach, and 
is likely near the upper bound of what is achievable for this dataset, considering the 
noise in labeled data (0.90-0.94 inter-annotator agreement).

(a) Varying negation-estimated over
single word Coeliakie

(b) Varying negation-estimated over
single word Oedeem

Fig. 6  Intra-word negation variance. The token delimiter character Ġ is a result of the tokenization
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Applicability

The performance of the assessed methods is well within the acceptable range for use in 
many information retrieval and data science use-cases in the healthcare domain. Appli-
cation of these methods can be especially useful for automated tasks where a small num-
ber of errors is permitted, such as reducing the number of false positives during cohort 
selection for clinical trial recruitment. In this task, erroneously excluding a patient is 
less problematic, and the included patients can be checked manually for eligibility. Other 
data applications can benefit from this as well, such as text mining for identification of 
adverse drug reactions, feature extraction for predictive analytics or evaluation of hospi-
tal procedures.

However, the model still makes classification errors, which means it is not suitable as 
a stand-alone method to retrieve automatic annotations for medical decision support 
systems but can be used directly to improve existing label extraction processes. Applica-
tion in a decision support system would require some sort of manual interaction with a 
specialist.

Additional aspects for model comparison

The model comparison (based on precision, recall and F1 score) shows that the Rob-
BERT-based models result in the highest performance. However, additional consid-
erations can play a role in selecting a model, for example computational and human 
resources. Fine-tuning and subsequently applying a BERT-based model requires signifi-
cant hardware and domain expertise, which may not be available in clinical practice, or 
only available outside the medical institution’s domain infrastructure, which introduces 
security and privacy concerns.

In contrast, the biLSTM and rule-based models can be used on a personal computer, 
with only a limited performance decrease ( ∼ 0.03 and ∼ 0.08 respectively) on each eval-
uation metric. The rule-based method has the advantage that model decisions are inher-
ently explainable, by showing the applied rules to the end user. This may lead to faster 
adoption of such a system compared to black box neural models.

The used biLSTM method is part of MedCAT, which also incorporates named entity 
recognition and linking methods. Compared to the other assessed approaches, this is 
a more complete end-to-end solution for medical NLP, and is relatively easy to deploy 
and use, especially in combination with the information retrieval and data processing 
functionalities of its parent project CogStack [21]. Recently, MedCAT added support for 
BERT-based models for identification of contextual properties.

Limitations and future work

The study described in this paper has various limitations for which potential improve-
ments can be identified. Regarding language models, the biLSTM network is trained 
on a relatively small set of word embeddings obtained from Dutch medical Wikipe-
dia articles. This could be complemented or replaced with a larger and more repre-
sentative dataset, to be more in line with the language models used in the RobBERT 
experiments. Alternatively, a corpus of actual electronic health records can be used 
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for the best representative dataset, yet this leads to privacy concerns given the high 
concentration of identifiable protected health information in natural language, even 
after state of the art pseudonimization.

In the current approach the candidate terms for negation detection in the DCC are 
generated by performing medical named entity recognition, where each recognized 
entity is presented to the negation detection models. The context provided to each 
model, which is assumed be sufficient for determining the presence of negation, is 
defined to be the sentence around a term as determined by a sentence splitting algo-
rithm. This results in scope-related errors such as incorrect delimitation of the medi-
cal term, incorrect sentence splitting, or the negation trigger being in a grammatically 
different part of the sentence. These issues can be reduced at various stages in the 
pipeline, either by improving the involved components, or by performing a sanity 
check on the generated example using part-of-speech-tagging or (dependency) pars-
ing. Another approach to reduce the number of problematic candidates is to train 
additional classifiers on meta-properties like temporality (patient doesn’t remember 
previous occurrences of X) or experiencer (X is not common in family of patient). Fur-
thermore, the domain-specific structure of the EHR records in the various categories 
could be leveraged, e.g., to discard non-relevant sections of the health record during 
processing for specific use cases.

Considering that several error categories are related to the availability of training 
data, we can to some extent improve the models using synthetic data or a larger set 
of manually annotated real data. This can alleviate the lack of balance between the 
negation and non-negation classes in the Dutch Clinical Corpus (currently 14% nega-
tions), which are problematic for both the biLSTM and the RobBERT models. Fur-
thermore, we observe a significant amount of errors due to, or related to, ambiguity. 
Such errors are expected, not having errors related to ambiguity could indicate an 
overfitted model. This idea of error categorisation can also be extended to create a 
model for estimating the dominant error types in unseen data, i.e. to facilitate model 
selection and problem-specific model improvements.

In future work it is of interest to train the methods on a broader set of health record 
corpora, in order to increase the amount of data in general, making it less dependent 
on DCC specific distributions, and to alleviate the class balance and sparsity issues in 
particular.

In this work we compared a small number of methods, and this may have led to 
a conservative estimate on the performance of the resulting ensemble method. For 
future work it may be interesting to investigate a bespoke ensemble method where 
rule-based and machine-learning based methods are combined in a complementary 
fashion. One technique that is particularly interesting is based on prompting, which 
does not require any finetuning and thus allows pre-trained language models to be 
leveraged directly.

Unraveling the semantics of clinical language in written electronic health records 
is a complex task for both algorithms and human annotators, as we experienced dur-
ing error analysis. However, the three assessed methods show a good performance on 
predicting negations in the Dutch Clinical Corpus, with the machine learning meth-
ods producing the best results. Given the sparse availability of NLP solutions for the 
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Dutch clinical domain, we hope that our findings and provided implementations of 
the models will facilitate further research and the development of data-driven appli-
cations in healthcare.
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