Table 4.
Classification models | Before removal of outliers | After removal of outliers | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Accuracy | Recall | Precision | F1 Score | AUC | Accuracy | Recall | Precision | F1 Score | AUC | |
Logistic regression | 0.73 | 0.98 | 0.73 | 0.84 | 0.74 | 0.61 | 0.96 | 0.59 | 0.73 | 0.68 |
KNN | 0.7 | 0.87 | 0.75 | 0.81 | 0.73 | 0.78 | 0.78 | 0.81 | 0.79 | 0.79 |
Decision trees | 0.64 | 0.75 | 0.75 | 0.75 | 0.68 | 0.83 | 0.86 | 0.83 | 0.85 | 0.87 |
Random forest | 0.73 | 0.98 | 0.74 | 0.84 | 0.74 | 0.83 | 0.89 | 0.81 | 0.85 | 0.85 |
SVM linear | 0.72 | 1 | 0.72 | 0.84 | 0.74 | 0.55 | 1 | 0.55 | 0.71 | 0.62 |
Polynomial SVM | 0.73 | 0.99 | 0.73 | 0.84 | 0.74 | 0.82 | 0.86 | 0.82 | 0.84 | 0.85 |
Radial SVM | 0.72 | 1 | 0.72 | 0.84 | 0.74 | 0.55 | 1 | 0.55 | 0.71 | 0.62 |
Gradient boosting | 0.72 | 0.99 | 0.72 | 0.84 | 0.72 | 0.81 | 0.95 | 0.76 | 0.84 | 0.85 |
XGBOOST | 0.73 | 0.99 | 0.73 | 0.84 | 0.7 | 0.78 | 0.93 | 0.74 | 0.83 | 0.85 |
The table represents the comparative performance of ML models before and after the removal of the outliers.