Skip to main content
. 2023 Jan 10;13:485. doi: 10.1038/s41598-023-27548-w

Table 4.

Performance of various machine learning algorithms using blood profile data for the classification of Breast cancer metastasis.

Classification models Before removal of outliers After removal of outliers
Accuracy Recall Precision F1 Score AUC Accuracy Recall Precision F1 Score AUC
Logistic regression 0.73 0.98 0.73 0.84 0.74 0.61 0.96 0.59 0.73 0.68
KNN 0.7 0.87 0.75 0.81 0.73 0.78 0.78 0.81 0.79 0.79
Decision trees 0.64 0.75 0.75 0.75 0.68 0.83 0.86 0.83 0.85 0.87
Random forest 0.73 0.98 0.74 0.84 0.74 0.83 0.89 0.81 0.85 0.85
SVM linear 0.72 1 0.72 0.84 0.74 0.55 1 0.55 0.71 0.62
Polynomial SVM 0.73 0.99 0.73 0.84 0.74 0.82 0.86 0.82 0.84 0.85
Radial SVM 0.72 1 0.72 0.84 0.74 0.55 1 0.55 0.71 0.62
Gradient boosting 0.72 0.99 0.72 0.84 0.72 0.81 0.95 0.76 0.84 0.85
XGBOOST 0.73 0.99 0.73 0.84 0.7 0.78 0.93 0.74 0.83 0.85

The table represents the comparative performance of ML models before and after the removal of the outliers.