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Abstract

Optimal integration of positive and negative outcomes during learning varies depending on an 

environment’s reward statistics. The present study investigated the extent to which children, 

adolescents, and adults (N = 142 8 – 25 year-olds, 55% female, 42% White, 31% Asian, 17% 

mixed race, and 8% Black; data collected in 2021) adapt their weighting of better-than-expected 

and worse-than-expected outcomes when learning from reinforcement. Participants made choices 

across two contexts: one in which weighting positive outcomes more heavily than negative 

outcomes led to better performance, and one in which the reverse was true. Reinforcement 

learning modeling revealed that across age, participants shifted their valence biases in accordance 

with environmental structure. Exploratory analyses revealed increases in context-dependent 

flexibility with age.

Across development, individuals learn to select adaptive actions through experience, 

increasingly making choices that are likely to bring about beneficial outcomes and avoiding 

those that are likely to result in negative consequences. While individuals learn from 

both good and bad experiences, an extensive body of work has suggested that learning 

from better-than-expected and worse-than-expected outcomes are not symmetric processes. 

In evaluating the likely consequences of their actions, individuals often consider recent, 

positive experiences to a greater extent than recent negative experiences (Daw, Kakade, & 

Dayan, 2002; Frank, Seeberger, & O’reilly, 2004; Gershman, 2015; Lefebvre, Lebreton, 

Meyniel, Bourgeois-Gironde, & Palminteri, 2017; Niv, Edlund, Dayan, & O’Doherty, 2012; 

Sharot & Garrett, 2016).

The asymmetric weighting of positive and negative experiences during learning leads to 

distorted beliefs about the value structure of the environment (Cazé & van der Meer, 2013). 

For example, a stand-up comedian who learns more from applause than silence may have 

inflated expectations about her likelihood of delivering a successful performance; a chef who 

weights negative reviews more heavily than positive ones may underestimate his ability to 
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cook a good meal; and a new teenage driver who considers good outcomes — like getting to 

a friend’s house quickly — more than bad outcomes — like getting pulled over by the police 

— may believe that it is beneficial to break the speed limit.

Reinforcement learning models provide a computational framework through which to 

understand how valence biases during learning may lead to these types of distorted beliefs. 

Specifically, they provide a mathematical account of how asymmetric learning from positive 

and negative outcomes influences both individuals’ beliefs about the value of different 

actions, as well as the subsequent decisions they make. These models posit that individuals 

incrementally update their estimates of action values based on experienced prediction errors 

— the extent to which the outcomes of their actions deviate from their expectations — 

scaled by their learning rates (Sutton & Barto, 1998). Valence biases during learning can be 

captured through the use of separate learning rates for positive and negative prediction errors 

(Cazé & van der Meer, 2013; Daw et al., 2002). Higher positive versus negative learning 

rates yield upward changes in value estimates following positive prediction errors that are 

larger than corresponding downward changes following negative prediction errors, and vice 

versa.

Studies that have characterized how individuals learn from positive and negative prediction 

errors have found evidence for a positive learning rate asymmetry (Chambon et al., 2020; 

Lefebvre et al., 2017; Palminteri, Lefebvre, Kilford, & Blakemore, 2017) that leads to 

inflated expectations about the probability of experiencing good outcomes in the future — 

or an ‘optimism bias’ (Eil & Rao, 2011; Sharot, 2011; Sharot & Garrett, 2016; Sharot, 

Korn, & Dolan, 2011). Across many task contexts, weighting the positive outcomes of one’s 

choices more heavily than negative outcomes may lead to exaggerated beliefs about the 

relative value difference between better and worse choice options — a beneficial distortion 

that enhances decision-making (Lefebvre, Summerfield, & Bogacz, 2022). Similarly, in 

many real-world environments, this ‘optimism bias’ may likewise be beneficial. While 

healthy individuals often show positively biased belief-updating when learning about the 

probability of desirable and undesirable life events (Sharot & Garrett, 2016), individuals 

with depression do not show this asymmetry (Garrett et al., 2014; Korn, Sharot, Walter, 

Heekeren, & Dolan, 2014). Despite leading to less accurate beliefs, an ‘optimism bias’ may 

enhance, or be characteristic of, mental wellbeing (Taylor & Brown, 1988). In addition, 

optimism may promote motivation maintenance and persistence in the face of negative 

feedback (Sharot & Garrett, 2016). However, positive learning rate asymmetries may also 

lead to overconfidence (Johnson & Fowler, 2011) and heightened risk-taking (Niv et al., 

2012). Thus, biased learning computations may yield both beneficial and adverse effects on 

individuals’ health and behavior throughout their lives.

Given the ubiquity and potential consequences of asymmetric learning from positive and 

negative experiences across the lifespan, many studies have sought to characterize its 

normative developmental trajectory. While there is evidence that a positive asymmetry in 

reinforcement learning emerges in childhood (Habicht, Bowler, Moses-Payne, & Hauser, 

2021), the developmental trajectory of valenced learning rates varies across task contexts. 

For example, several recent studies have found that adults have higher negative learning 

rates relative to adolescents (Christakou et al., 2013) and children (Habicht et al., 2021), 
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such that younger individuals’ choices reflect greater optimism about the value of risky or 

uncertain options (Moutsiana et al., 2013). Other recent studies, however, have found that 

relative to those of children (van den Bos, Cohen, Kahnt, & Crone, 2012) and adolescents 

(Chierchia et al., 2021), adults’ choices reflect higher positive learning rates for chosen 

options, and lower negative learning rates (Hauser, Iannaccone, Walitza, Brandeis, & Brem, 

2015; Rodriguez Buritica, Heekeren, Li, & Eppinger, 2018). And in other experiments, 

positive and negative learning rates have followed non-linear age-related trajectories; in one 

study, adolescents demonstrated more negative learning rate asymmetries than children and 

adults (Rosenbaum, Grassie, & Hartley, 2022), and in another, they demonstrated more 

positive learning rate asymmetries (Eckstein, Master, Dahl, Wilbrecht, & Collins, 2021).

Different patterns of developmental variance in valenced learning rates across studies likely 

reflect developmental change in the adaptation of learning computations to the statistics of 

different environments. Learning rates are not an intrinsic feature of an individual; instead 

they characterize how an individual interacts with a particular environment (Eckstein, 

Master, Xia, et al., 2021; Eckstein, Wilbrecht, & Collins, 2021; Nussenbaum & Hartley, 

2019). Across learning environments, the extent to which particular valence biases promote 

adaptive decision-making varies (Cazé & van der Meer, 2013; Chambon et al., 2020; 

Gershman, 2015; Lefebvre et al., 2022). Thus, developmental differences in valenced 

learning rates across studies may reflect age-related variance in the optimal integration 

of experienced outcomes into beliefs about the reward structure of the environment. 

As one example — though Christakou et al. (2013) and Chierchia et al. (2021) found 

opposing patterns of developmental change in valenced learning rates, adults outperformed 

adolescents in the tasks used in both studies, suggesting that adults’ learning rates were 

better optimized to the statistics of each task context. Indeed, across the developmental 

reinforcement learning literature, age-related change in learning rates do not show consistent 

patterns — instead, the most consistent pattern across studies is that optimal decision-

making tends to improve from childhood to young adulthood (Nussenbaum & Hartley, 

2019). Taken together, past research suggests that understanding developmental change in 

valenced learning requires understanding change in the flexible adaptation of learning rates 

to the demands of different contexts.

We sought to address directly the question of whether, across development, individuals 

adapt their learning rates in accordance with the structure of the environment. While the 

majority of developmental studies of reinforcement learning have examined how individuals 

learn within a single task context, here, we examined whether children, adolescents, and 

adults adjusted the extent to which they weighted recent positive and negative prediction 

errors across two different learning environments. Because learning rates scale prediction 

errors, the extent to which asymmetries in positive and negative learning rates distort value 

estimates depends on the variance in decision outcomes. Choices with highly variable 

outcomes evoke large prediction errors and therefore will be subject to greater distortion 

by asymmetric learning rates than choices with less variance in their reward outcomes 

(Mihatsch & Neuneier, 2002; Niv et al., 2012). Hereafter, we will refer to choices with 

greater variance in their possible reward outcomes as ‘riskier’ and choices with less 

variance in their reward outcomes as ‘safer’ (Weber, Shafir, & Blais, 2004). Under this 

conceptualization of risk, individuals who have positive learning rate asymmetries will tend 
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to select riskier choices, whereas those with negative learning rate asymmetries will be more 

likely to avoid them (Niv et al., 2012; Rosenbaum et al., 2022). Here, we manipulated the 

reward statistics of the two environments such that in one, making riskier choices would 

lead to higher reward gain on average, whereas in the other, making safer choices was 

advantageous. In the context in which making risky choices was advantageous, individuals 

could earn more reward by weighting positive prediction errors more heavily than negative 

prediction errors, while the reverse was true in the other context. This task manipulation 

enabled us to characterize whether, across development, individuals flexibly adapted valence 

biases in learning based on the statistics of their environments. We reasoned that many 

of the apparent discrepancies across prior developmental findings could be explained by 

age-related increases in context-dependent adaptation of valenced learning rates. As such, 

we hypothesized that a.) individuals would adjust their learning rates across contexts, 

showing a more positive learning rate asymmetry in the context in which taking risks was 

advantageous, and b.) the extent to which individuals adjusted their learning rates across 

contexts would increase from childhood to adulthood.

Methods

Participants

154 participants aged 8 – 25 years completed the study online between March and August 

2021. Participants were excluded from all analyses if they: a) interacted with their browser 

window (minimized, maximized, or clicked outside the window) more than 20 times 

throughout the learning task (n = 4), b) failed to respond on more than 10% of (20) choice 

trials (n = 0), c) pressed the same key on more than 40% of (80) choice trials (n = 1), 

or d) responded in less than 200 ms on more than 20% of (40) choice trials (n = 7) (See 

Supplemental Fig. 3 for distributions of these data quality metrics). After applying these 

exclusions, we analyzed data from N = 142 participants (N = 47 children, 8 – 12 years, 

mean age = 10.45 years, 26 females; N = 46 adolescents, 13 – 17 years, mean age = 15.37 

years, 24 females; N = 49 adults, 18 – 25 years, mean age = 22.23 years, 28 females). We 

based our sample size off of previous studies that have employed computational models to 

investigate developmental change in value-based learning processes in samples of 50 – 100 

participants (Chierchia et al., 2021; Cohen, Nussenbaum, Dorfman, Gershman, & Hartley, 

2020; Habicht et al., 2021; Rosenbaum et al., 2022). We aimed to recruit a larger number 

of participants (150) than many of these prior studies due to our intention to examine 

interactions between learning environments and learning processes across age.

All participants reported normal or corrected-to-normal vision and no history of psychiatric 

or learning disorders. Based on self- or parent-report, 41.5% of participants were White, 

31.0% were Asian, 16.9% were mixed race, 7.8% were Black and less than 1% were Native 

American. Two percent (N = 3) of participants did not provide their race. Additionally, 

16.2% of the sample identified as Hispanic. Participants’ annual household incomes ranged 

from less than $20,000 to more than $500,000. We include a more detailed breakdown 

of participant demographics in the supplement. Participants were compensated with a $15 

Amazon gift card for completing the study. They also received a bonus that ranged from $0 - 

$5 depending on their performance in the task.
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As with our previous online study (Nussenbaum et al., 2020) participants were primarily 

recruited from ads on Facebook and Instagram (n = 40), via word-of-mouth (n = 28), and 

through our database for in-lab studies (n = 30), for which we solicit sign-ups at local 

science fairs and events and through fliers on New York University’s campus. Prior to 

participating in the online study, participants who had never completed an in-person study 

in our lab were required to complete a 5-minute zoom call with a researcher. During this 

zoom call, all participants (and a parent or guardian, if the participant was under 18 years) 

were required to be on camera and confirm the full name and date of birth they provided 

when they signed up for our online database. Adult participants and parents of child and 

adolescent participants were required to show photo identification so that we could verify 

their identities.

Once participants were verified, they were emailed a single-use, personalized link to a 

Qualtrics consent form. Participants could complete the study at any time within 7 days 

after receiving the link, as long as they had 1 hour available to complete the task in a 

single sitting. If participants (and their parents, if applicable) gave consent to participate and 

reported that their device met the technological requirements (laptop or desktop computer 

with Chrome, Safari, or Firefox), the consent form re-directed them to the reinforcement 

learning task.

Tasks

Participants completed two experimental tasks, each of which was hosted as its own 

Pavlovia project. Tasks were coded in jsPsych (de Leeuw, 2015) and are publicly available 

online: https://osf.io/p2ybw/

Reinforcement learning task.

Value-based learning.: To examine how individuals learn from outcomes that are better 

and worse than they expected, we adapted a version of the Iowa Gambling Task used 

in a previous developmental study (Christakou et al., 2013). In our version of the task, 

participants’ goal was to earn as many tokens as possible by drawing cards from four 

different colored decks. On every trial, participants viewed four colored decks of cards, in 

a random horizontal arrangement (Fig. 1). They had 10 seconds to select one of the decks 

using the ‘2’, ‘4’, ‘6’, and ‘8’ keys at the top of the keyboard. After selecting a deck, 

participants saw their selection highlighted for 500 ms, after which the top card flipped over 

to reveal its back, with its token value, for 500 ms. Each trial was separated by a 500 ms 

inter-trial interval, during which time the decks disappeared and then reappeared in random 

locations (see Supplement for an analysis of motor perseveration effects). On every trial, 

participants gained or lost the number of tokens on the card. At the end of the task, their 

tokens were converted into a monetary bonus. Participants were explicitly told that each 

deck had a mix of cards that would cause them to both win and lose tokens. They were also 

told that the cards in each of the decks were different, and that some decks were ‘luckier’ 

than others. Participants were instructed to try to select the ‘lucky’ decks to earn the most 

tokens. They were also told that the arrangement of the decks did not matter – only its color 

would relate to its distribution of cards.
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Participants completed two blocks of 100 choice trials; each block of choice trials was 

completed in a different ‘room’ of a virtual casino that had a distinct background and 

involved four unique decks of cards. Every 50 trials, participants were invited to take 

a break; they could continue by pressing a specific key when they were ready. After 

completing the first 100 trials, participants were told that they would complete a second 

round of the game in a new room of the casino. They were told that all of the card decks 

in this second casino room were different from those in the first room, and that they should 

once again try to learn which decks in this room were ‘luckier.’

The distribution of cards was different within each deck (Table 1). Every card deck had six 

cards with unique token values — three of these six resulted in gains, and three resulted in 

losses. The cards within each deck were sampled randomly with replacement, such that the 

probability of any specific outcome was 16.7%, and the probability of experiencing a gain 

or loss was always 50%, regardless of which deck was selected. In each block, two decks 

were ‘risky’, such that they had high gains but also high losses. Two decks were ‘safe’ and 

had more moderate gains and losses. Critically, in one block of the task, the average value of 

the risky decks was positive (25 tokens) and the average value of the safe decks was negative 

(−25 tokens), whereas in the other block of the task, the average value of the risky decks was 

negative (−25 tokens) and the average value of the safe decks was positive (25 tokens). The 

order of the blocks was counterbalanced across participants.

Participants were not explicitly informed about the outcome probabilities or magnitudes 

associated with the cards in each deck — they were only told that every deck had a mix of 

cards that would cause them to gain or lose tokens, and that some decks were better than 

others. They were also explicitly told that within a room of the casino, the mix of cards in 

each deck would remain constant such that decks that were ‘lucky’ early on would remain 

lucky throughout the entire round. In addition, though each room of the casino had two sets 

of two identical decks (e.g., the two ‘risky’ and two ‘safe’ decks in each room had the same 

distribution of cards), participants were not informed that there was any relation between 

any of the four colored decks.

Explicit reports.: After completing each block of 100 choice trials, participants were asked 

two explicit questions about the ‘luckiness’ and ‘value’ of each deck. We include a full 

description of this measure and our findings in the supplement.

Instructions and practice.: Prior to beginning the real trials, participants completed an 

extensive tutorial, which included child-friendly instructions that were both written on the 

screen and read aloud via audio recordings. Participants were unable to advance each 

instructions page until all the text had been read aloud via the audio recording. The tutorial 

also included 10 practice trials in a third room of the virtual casino, which was visually 

distinct from those used in the task, with four different colored card decks. Outcomes from 

the practice deck were −200, −100, 100, and 200 to show participants that cards could cause 

them to gain or lose points. Participants also had to respond correctly to three True/False 

comprehension questions before beginning the real task. If participants answered a question 

incorrectly, they would see the correct answer with an explanation, and repeat the question. 
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On average, participants answered all three comprehension questions correctly in 3.16 trials 

(Age group means: Children = 3.19, Adolescents = 3.09, Adults = 3.20).

Reasoning task.—After the reinforcement learning task, participants were automatically 

directed to the Matrix reasoning item bank (MaRs-IB), which measures participants’ fluid 

reasoning (Chierchia et al., 2019). We previously created a version of this task to administer 

online (Nussenbaum et al., 2020). The task involved a series of matrix reasoning puzzles. On 

each trial, participants were presented with a 3×3 grid of abstract shapes, with a blank square 

in the lower right-hand corner. Participants had 30 seconds to select the missing shape from 

one of four possible answers (the target and three distractors) by clicking on it. Upon making 

their selection, participants saw feedback — either a green check mark for correct responses 

or a red X for in- correct responses — for 500 ms. Participants were all administered the 

same sequence of 80 puzzles, which comprises a scrambled mix of easy, medium, and hard 

puzzles. Participants either completed 8 minutes of puzzles or all 80 puzzles, whichever 

occurred first. Prior to beginning the real trials, participants went through a series of short 

instructions. In addition, participants completed three practice trials of “easy” puzzles. Each 

practice trial was repeated until the participant answered it correctly.

Questionnaires.—To explore potential relations between valence biases in learning 

and real-world risk-taking and depressive symptomatology, we administered several 

questionnaires. After the reasoning task, participants were redirected to Qualtrics, where 

they were administered the age-appropriate version of the Domain-Specific Risk-Taking 

questionnaire (DOSPERT) (Blais & Weber, 2006; Weber, Blais, & Betz, 2002) and either 

the Beck Depression Inventory (BDI) (Beck, Ward, Mendelson, Mock, & Erbaugh, 1961) 

(for adults ages 18 and older) or the Children’s Depression Inventory (CDI) (Kovacs & 

Preiss, 1992) (for children and adolescents ages 8 – 17). We interspersed four ‘attention 

check’ questions throughout the questionnaires that asked participants to select a specific 

multiple choice response. Three of the 142 participants included in the task analyses did 

not complete the questionnaires. Of the 139 participants who completed the questionnaires, 

13 participants did not respond correctly to all four of the attention checks; their data were 

excluded from questionnaire analyses, leaving data from 126 participants (n = 40 children; 

n = 42 adolescents, n = 44 adults). Because the child, adolescent, and adult versions of the 

questionnaires included different numbers of questions, we computed a proportion for each 

participant for each subdomain of the DOSPERT and for the BDI/CDI that reflected their 

proportion of the maximum score possible.

Analysis approach

All analysis code and anonymized data are publicly available online: https://osf.io/p2ybw/

Model-free analysis methods.—Behavioral analyses were run in R version 4.1.1 (R 

Core Team, 2018). Mixed-effects models were run using the ‘afex’ package (Singmann, 

Bolker, Westfall, Aust, & Ben-Shachar, 2020). Except where noted, models included the 

maximal random-effects structure (i.e., random intercepts, slopes, and their correlations 

across fixed effects for each subject) to minimize Type I error (Barr, Levy, Scheepers, & 

Tily, 2013). For logistic mixed-effects models, we assessed the significance of fixed effects 
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via likelihood ratio tests. For linear mixed-effects models, we assessed the significance 

of fixed effects via F tests using Satterthwaite approximation to estimate the degrees 

of freedom. Except where noted, age was treated as a continuous variable. Continuous 

variables were z-scored across the entire dataset prior to their inclusion as fixed effects 

in mixed-effects models. We had no a priori hypotheses about how participant sex may 

influence learning, so we did not include sex as a covariate in the models reported in the 

main text. We conducted exploratory analyses to test for sex differences in decision-making 

and did observe any significant effects (see Supplement).

Computational modeling.—To test how individuals updated value estimates following 

valenced prediction errors, we fit three variants of a standard temporal difference 

reinforcement learning model (Sutton et al., 1998).

One learning rate model.: After choosing a card deck (c) on trial t and experiencing the 

reward outcome (r), participants update their estimated value (V) of the selected deck such 

that:

V c t + 1 = V c t + α * δt

Where α is the learning rate and δt is the prediction error: δt = r − V(c)t. The values of each 

card deck were initialized at 0 at the beginning of each block. All reward outcomes were 

divided by the maximum value (260) so that they ranged between −1 and 1.

Two learning rate model.: The two learning rate model is identical to the one learning rate 

model except that a positive learning rate (α+) was used when δt > 0 and a negative learning 

rate (α−) was used when δt < 0. This model captures the hypothesis that individuals learn 

differently from positive and negative prediction errors.

Four learning rate model.: The four learning rate model is identical to the two learning 

rate model except that separate positive and negative learning rates were estimated for 

each block (risk good and risk bad) of the task. This model captures the hypothesis that 

individuals learn differently from positive and negative prediction errors and that they adjust 

their weighting of valenced outcomes across different learning environments.

Choice function.: In all models, value estimates were converted to choice probabilities via a 

softmax function with an inverse temperature parameter (β) that governs the extent to which 

estimated values drive choices and a stickiness parameter (ϕ) that captures the tendency to 

repeat the most recent choice (Katahira, 2018):

P ct = e β*V ct + ϕ*K

∑c = 1
4 e β*V ct + ϕ*K

where K is an indicator variable that is 1 for the choice option selected on the previous trial, 

and 0 for all other choice options. We also include model comparison results for a set of 
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models without the stickiness parameter in the supplement. Across all models, the addition 

of the stickiness parameter included model fit.

Alternative models.: In addition to the three models described above, we also fit nine 

variants of a model with a learning rate that decayed over the course of each task block. 

Though these models appeared to fit the data well, they were not highly recoverable, 

suggesting they were overparameterized for the task. We have included a full description 

of these models, including analyses of parameter estimates derived from them, in the 

supplement.

Model-fitting procedure.: For each participant, we identified the fitted parameter values 

that maximized the log posterior of their choices using the fmincon function in the 

optimization toolbox in Matlab 2020b (The Mathworks Inc., 2020). We applied the 

following bounds and priors to each parameter: β: bounds = [0, 30], prior = gamma(1.2, 

5) (Chierchia et al., 2021; Palminteri, Khamassi, Joffily, & Coricelli, 2015); ϕ: bounds = 

[−10, 10], prior = normal(0, 3); all variants of α: [0, 1], prior = beta(1.1, 1.1) (Chierchia 

et al., 2021). Importantly, all learning rate parameters had the same prior. We randomly 

initialized each parameter, drawing uniformly from within their bounds. We initialized and 

ran fmincon ten times per participant, and took the parameter estimates that maximized the 

log posterior across runs.

Model validation.: To ensure our models were distinguishable from one another, we 

conducted recoverability analyses. We simulated data from 500 participants for each 

model, randomly drawing parameters from distributions covering the full range of observed 

parameter values that we obtained when we fit the models to our real data (β ~ U(.15, 30); 

ϕ ~ t50; all values of α ~ U (0, 1)) (Wilson & Collins, 2019). We then fit each simulated 

dataset with each of the three models and examined the proportion of participants from each 

generating model best fit by each of the models fit to the data (Supplemental Fig. 5). For 

all three datasets, the model used to generate the data was also the best-fitting model for the 

majority (> 65%) of the simulations.

For the four learning rate model, our primary model of interest, we also conducted 

parameter recoverability analyses and posterior predictive checks (see Supplement). To 

ensure parameters were recoverable, we examined the correlation between the ‘true’ 

generating parameters that we used to simulate the data, and the fitted parameter values 

(Supplemental Fig. 6). For all parameters, the correlation between the ‘true’ simulated 

parameter value and the recovered parameter value was high (>= .77).

Results

Model-free results

Relation between age and reasoning.—First, we examined whether there was a 

relation between age and accuracy on the MaRs reasoning task within our sample. In line 

with prior findings (Chierchia et al., 2019; Nussenbaum, Scheuplein, Phaneuf, Evans, & 

Hartley, 2020), we observed a significant relation between age and accuracy, β = .32, SE = 
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.08, p < .001, indicating that performance on the reasoning task improved with increasing 

age.

Optimal choices over time.—We next examined whether participants across ages 

learned to select the two optimal card decks — those with positive expected values — 

in each block (Figure 2). In the risk good block, making an optimal choice required 

participants to select one of the two decks that resulted in the largest losses on 50% of trials 

because they also paid out even larger gains on the other 50%. In the risk bad block, making 

an optimal choice required participants to forego selecting either of the two decks that paid 

out the largest gains because they also paid out even larger losses. To examine whether 

participants learned to make optimal choices over the course of each task block, we ran 

a mixed-effects logistic regression modeling the influence of continuous age, trial number, 

block type (risk good vs. risk bad), and their interactions on trial-wise optimal choices. 

Optimal choices were coded as 1 when participants chose risky decks in the risk good 

block and safe decks in the risk bad block, and 0 otherwise. Given prior research suggesting 

that the order in which individuals encounter different environments may influence learning 

(Garrett & Daw, 2020; Xu et al., 2021), we also included block number (1st vs. 2nd block) 

as an interacting fixed effect in our model.

We observed strong evidence for learning: Participants were increasingly more likely to 

choose the optimal decks as each block progressed, as indicated by a main effect of trial, 

X2(1) = 52.81, p < .001. In line with prior studies of value-guided choice (Nussenbaum 

& Hartley, 2019), we also observed a main effect of age, and an age × trial interaction, 

such that older participants were more likely to make optimal choices relative to younger 

participants, X2(1) = 6.45, p = .011, and were increasingly more likely to do so as the task 

progressed, X2(1) = 5.40, p = .020 (Figure 2; See Supplement for corresponding analyses of 

participants’ response times).

Participants’ choice behavior demonstrated signatures of an ‘optimism bias.’ If participants 

weighted better-than-expected outcomes more strongly than worse-than-expected outcomes, 

their value estimates for the risky decks should be distorted upward to a greater extent than 

their value estimates for the safe decks, leading them to perform better in the risk good 

block. Indeed, we observed a main effect of block type, X2(1) = 5.24, p = .022, such that 

participants performed better in the risk good relative to the risk bad block, in line with 

evidence for an ‘optimism bias.’ The effects of block type did not vary significantly across 

age, X2(1) = .52, p = .470.

We also examined model estimates of how the order in which participants encountered the 

risk good and risk bad contexts influenced learning. We did not observe a main effect of 

block number, suggesting that participants did not systematically perform better or worse in 

the first versus second block of the task, X2(1) = .53, p = .467. However, we did observe 

an age × block number interaction effect, X2(1) = 7.90, p = .005, as well as an age × block 

number × block type interaction, X2(1) = 4.68, p = .030, and an age × trial × block number 

trial interaction, X2(1) = 4.10, p = .043. In general, younger participants performed better in 

the first block they experienced, whereas older participants performed better in the second 

block. This effect was particularly strong for the risk bad block (Figure 2). This suggests 
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that younger participants may have been biased by the first context they experienced; if 

they experienced the risk good context first and learned to select the riskier decks, they 

persisted in this strategy in the risk bad context, even when doing so was suboptimal. Older 

participants, however, did not demonstrate this same pattern. In general, older participants 

performed slightly better in the second block they encountered, suggesting that they may 

have learned more general task strategies in the first block that enhanced their performance 

in the second block.

Finally, we re-ran our model examining optimal choices including accuracy on the reasoning 

task as a fixed effect. All significant effects that we observed when we did not include 

reasoning accuracy persisted (all ps < .05), suggesting that age-related variance in task 

performance could not be accounted for by age-related variance in reasoning ability. In 

addition, reasoning ability itself did not significantly relate to task performance, X2(1) = 

3.50, p = .061.

Our behavioral results suggest that children, adolescents, and adults learned through 

experience to make choices to bring about beneficial outcomes, both when doing so required 

selecting risky options that sometimes resulted in large losses, and when doing so required 

foregoing large gains to select safer options that resulted in more moderate gains and losses. 

In line with our hypothesis, learning varied across age — older participants were better at 

making optimal choices across contexts.

Computational modeling results

Model comparison.—After characterizing participant choice behavior, we turned to 

our main question of interest: To what extent were age-related differences in learning 

performance driven by age-related differences in valenced learning rates? To address this 

question, we examined whether reinforcement learning models with one, two, or four 

learning rates best described participants’ choices. Across age groups, model comparison 

revealed that participants’ choices were best captured by a model with four learning 

rates (Figure 3A), suggesting that participants integrated better-than-expected and worse-

than-expected outcomes into their value estimates differently, and that they shifted the 

extent to which they weighted valenced prediction errors across task blocks (Mean Akaike 

Information Criteria (AIC) values: one learning rate: 466; two learning rates: 447.2; four 

learning rates: 437.5). Further, the four learning rate model had the lowest average AIC 

scores within each age group and best fit the highest proportion of children, adolescents, 

and adults (Figures 3B and 3C). Thus, though there was heterogeneity in the best-fitting 

model within each age group, model comparison suggested that across ages, the majority 

of participants adapted the extent to which they weighted recent positive and negative 

prediction errors during learning across task contexts.

Asymmetric learning rates and task performance.—After establishing that the four 

learning rate model best characterized participant choices, we examined the relation between 

learning rate asymmetries and task performance. For each participant, we computed a 

normalized ‘asymmetry index’ for each block of the task by subtracting their negative 

learning rate estimate from their positive learning rate estimate and dividing the difference 
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by the sum of their positive and negative learning rates (Niv et al., 2012). These 

normalized asymmetry indices range from −1 to 1, with asymmetry indices of −1 indicating 

that participants only updated value estimates following negative prediction errors, and 

asymmetry indices of 1 indicating that participants only updated value estimates following 

positive prediction errors.

We designed our task such that higher positive versus negative learning rates would be 

beneficial in the risk good block and higher negative versus positive learning rates would 

be beneficial in the risk bad block (See Supplement). To confirm that different learning 

rate asymmetries were indeed optimal across different blocks of our task, we examined 

how participant learning rate asymmetries related to the amount of reward they earned and 

their proportion of optimal choices across learning contexts. In line with our manipulation, 

we observed AI × block type interaction effects on both the number of points participants 

earned in each block, F(1, 274) = 21.52, p < .001, and on the proportion of optimal choices 

made, F(1, 257.3) = 133.28, p < .001. These results confirmed that having a more positive 

AI enhanced learning and choice performance in the risk good block, and having a more 

negative AI enhanced learning and choice performance in the risk bad block (Fig. 4).

Adaptability of asymmetric learning rates across task contexts.—After 

confirming that different learning rate asymmetries were indeed beneficial across task 

blocks, we turned to our main question of interest: To what extent did participants 

flexibly adapt the extent to which they weighted positive and negative prediction errors 

when learning in different environments? To address this question, we ran a linear mixed 

effects model probing the effects of block type, block number, continuous age, and their 

interactions on AI. We hypothesized that participants would demonstrate flexible adaptation 

of their learning rates to the structure of the task, such that they would show higher AI in 

the risk good relative to the risk bad block, when more positive learning rate asymmetries 

were advantageous. In accordance with our initial hypothesis, we observed a main effect of 

block type, F(1, 276) = 7.28, p = .007, such that participants had more positive learning 

rate asymmetries in the risk good block relative to the risk bad block (Fig. 5A), when 

more positive learning rate asymmetries better promoted optimal choice. Thus, participants 

showed evidence of flexibility in valence biases during learning. Interestingly, however, 

participants demonstrated positive learning rate asymmetries in both blocks (Fig. 5A), in 

line with the ‘optimism bias’ that has been observed in prior work (Habicht et al., 2021; 

Lefebvre et al., 2017).

We also originally predicted that the influence of block type on AI would vary across age, 

with older participants showing greater flexibility in AI relative to younger participants. 

Contrary to this initial hypothesis, however, we did not observe a significant age × block 

type interaction effect on AI, F(1, 276) = 0.29, p = .589. No other main effects or 

interactions were significant (ps > .055). Further, we continued to observe an effect of block 

type on AI when we included reasoning ability as an interacting fixed effect in our model (p 
= .01), and we did not observe a significant block type × reasoning ability interaction effect 

(p > .10), suggesting that the flexible adjustment of learning rates across task contexts was 

not significantly related to our measure of general fluid reasoning.
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Age-related differences in the flexibility of valence biases.—When we treated age 

as a continuous variable and analyzed learning rate asymmetries across task blocks, we 

did not observe a significant age × block type interaction effect on AI. However, given 

our a priori hypothesis that we would observe age-related increases in the adaptability of 

learning rates, we followed up our whole-sample analysis by examining the influence of 

block number and block type on AI within each age group separately. In these age group 

analyses, we found that only adults demonstrated a significant effect of block type on AI, 

F(1, 94) = 5.54, p = .021, uncorrected. In children and adolescents, the effect of block type 

was not significant (ps > .19), and we did not observe significant block type × block number 

interactions (ps > .13). In children, however, we did observe a main effect of block number, 

F(1, 45) = 4.38, p = .042, uncorrected, indicating that children’s learning rate asymmetries 

tended to be more positive in the second block they experienced. Thus, these exploratory 

analyses provide preliminary evidence for age-related change in the flexibility of learning 

rate asymmetries, with adults better adapting their learning rates to the reward structure of 

the environment.

Changes in learning rate asymmetries across blocks could have been driven by changes in 

positive learning rates, negative learning rates, or both. To better characterize age differences 

in learning rate adaptability, we examined the relation between continuous age, block type, 

block number, and positive and negative learning rates separately (Fig. 5B). We observed a 

main effect of block type on negative learning rates only, F(1, 138) = 5.38, p = .022; positive 

learning rates did not significantly vary across block types, F(1, 138) = .42, p = .519. Thus, 

changes in learning rate asymmetries were primarily driven by shifts in the extent to which 

individuals weighted recent losses when estimating the value of each card deck. We also 

observed effects of age on both positive and negative learning rates. For negative learning 

rates, we observed a main effect of age, F(1, 138) = 6.2, p = .014, such that younger 

participants demonstrated higher negative learning rates on average. For positive learning 

rates, we observed an age × block number interaction effect, F(1, 138) = 5.69, p = .018, with 

younger participants demonstrating higher positive learning rates in the second block they 

experienced, regardless of its type.

Changes in the use of value to guide decisions.—To make good choices, 

participants not only had to estimate the value of each card deck, they also had to effectively 

use those value estimates to guide decisions. Thus, while our analysis of learning rates 

suggest that the age-related differences we observed in choice behavior are likely at least 

in part due to developmental differences in the valuation process, they may also reflect 

developmental differences in how value estimates are translated into choice behavior. In 

our reinforcement learning model, the inverse temperature parameter governs the extent to 

which value estimates drive choice: Higher values reflect more deterministic choices that 

use the estimated values to a greater extent. To determine whether age-related change in 

the inverse temperature parameters may have influenced behavior in our task, we examined 

its relation with age. In line with prior studies that have found that older participants more 

consistently selected the option with the highest estimated value (Nussenbaum & Hartley, 

2019), we found that inverse temperatures were higher in older participants, β = .17, SE = 
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.08, p = .05. We did not observe a relation between age and choice stickiness, β = −.02, SE = 

.08, p = .82.

Relations with ‘real-world’ risk-taking and depressive symptoms.—Finally, we 

explored whether asymmetries in learning rates related to our measures of ‘real-world’ 

risk-taking and depressive symptomatology. We hypothesized that participants with more 

positive learning rate asymmetries, who were more likely to make risky choices during the 

task, may also be more likely to take risks in their daily life. We also hypothesized that 

participants with more negative learning rate asymmetries, who had more ‘pessimistic’ value 

estimates, may also show greater rates of depressive symptoms. To test these predictions, we 

computed each participant’s mean learning rate asymmetry index and ran linear regressions 

examining the influence of age, mean AI, and their interaction on participants’ self-reported 

likelihood of taking risks, their self-reported likelihood of taking financial risks, and their 

self-reported levels of depressive symptoms. Contrary to our hypotheses, we did not observe 

any relation between AI and these measures (all ps > .33).

Discussion

Prior work assessing developmental change in asymmetric learning rates has not arrived 

at consistent conclusions (Nussenbaum & Hartley, 2019). Here, we used a reinforcement 

learning task with two distinct learning contexts to test the hypothesis that the divergent 

patterns of learning rate asymmetries that have been observed across prior developmental 

studies may, in part, be due to the flexible adaptation of valenced learning rates to 

the demands of different environments. In line with our hypothesis, we found that 

individuals adjusted the extent to which they weighted positive and negative prediction 

errors based on the reward statistics of their environments, showing more positive learning 

rate asymmetries in the context in which making riskier choices yielded greater rewards 

and more negative learning rate asymmetries in the context in which safer choices were 

better. These differences in learning rate asymmetries were primarily driven by changes 

in negative learning rates, which were significantly higher in the context in which it was 

advantageous to avoid the choices that yielded the largest losses. We note, however, that 

when we simulated the performance of agents with many different positive and negative 

learning rates (see Supplement), we observed a larger influence of negative learning rates 

on reward earned throughout the task; thus, participants’ greater adjustment of negative 

versus positive learning rates may be specific to the reward statistics of this task. In 

exploratory analyses, we further observed preliminary evidence of age-related change 

in this adaptability, with adults showing a greater adjustment of learning rates across 

contexts relative to children and adolescents. This increased adaptability may have supported 

older participants’ enhanced choice performance and better differentiation of optimal and 

suboptimal options in their explicit reports (see Supplement), though we note that our 

evidence for increased adaptability in older participants is inconclusive.

In addition to observing context-dependent adaptability of learning computations, we also 

observed persistent biases in learning rates. In line with prior work (Chambon et al., 2020; 

Habicht et al., 2021; Lefebvre et al., 2017), we observed evidence for a positive learning 

rate asymmetry across learning environments, such that individuals more heavily weighted 
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positive prediction errors than negative prediction errors when estimating the values 

of different choices. These optimistic belief-updating mechanisms inflated participants’ 

valuation of the riskier choice options to a greater extent than the safer choice options, 

leading to better performance in the environment in which making riskier choices was 

advantageous.

Younger participants were particularly impaired at overcoming this optimism bias. Across 

our measures of learning, we observed interactions between age and block number. 
Whereas older participants performed better in the second context they experienced, 

younger participants performed worse. In addition, their performance was specifically 

impaired in the risk bad condition when they experienced it after the risk good condition. 

Participants’ overall bias toward weighting positive prediction errors more heavily than 

negative prediction errors may have facilitated the selection of optimal choices in the risk 

good context, and therefore increased the difficulty of the transition from the risk good to the 

risk bad context. Children’s behavior in particular is consistent with the idea that adaptations 

to different learning environments are asymmetric (Garrett & Daw, 2020) — it is easier 

to transition from contexts in which making good choices requires more effort to those in 

which making good choices is less effortful than vice versa (Xu et al., 2021).

Our results add to the growing literature on developmental change in the adaptability of 

reinforcement learning computations to the statistics of the environment. Prior work has 

shown that adults flexibly adjust the extent to which they weight recent positive and negative 

prediction errors based on the underlying volatility of the environment as a whole (Behrens, 

Woolrich, Walton, & Rushworth, 2007; Browning, Behrens, Jocham, O’Reilly, & Bishop, 

2015; Nassar et al., 2012) or of win and loss outcomes specifically (Pulcu & Browning, 

2017), that they up- or down-regulate their Pavlovian bias to approach rewarding stimuli 

based on the utility of instrumental control (Dorfman & Gershman, 2019), and that they 

increase their use of more computationally costly ‘model-based’ learning strategies when 

doing so promotes greater reward gain (Kool, Gershman, & Cushman, 2017). While adults 

demonstrate effective metacontrol of the parameters that govern learning algorithms across 

diverse environments, our findings align with several recent studies that have found that 

children show reduced flexibility in the dynamic adjustment of their learning strategies. 

For example, relative to adults, children and adolescents demonstrate reduced stakes-based 

arbitration between model-free and model-based learning strategies (Bolenz & Eppinger, 

2021; Smid, Kool, Hauser, & Steinbeis, 2020). A recent study (Jepma, Schaaf, Visser, 

& Huizenga, 2021) also found that relative to adults, adolescents demonstrated smaller 

differences in the proportion of risky choices that they made across contexts in which 

taking risks was either advantageous or disadvantageous. Our present work builds on 

this growing body of literature, demonstrating that, across age, the flexibility of learning 

computations may also influence the extent to which individuals weight the positive and 

negative outcomes of their choices.

Interestingly, however, our findings are in contrast to those from a previous study 

(Gershman, 2015), which found that adults did not adjust their valenced learning rates 

based on the reward statistics of different environments. Rather than manipulating the 

magnitudes of gains and losses as our study did, this prior study manipulated the overall 
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reward rate of the environment. Theoretical models of optimal learning have demonstrated 

that in environments with low reward rates, more positive learning rate asymmetries are 

advantageous, whereas in environments with high reward rates, more negative learning rate 

asymmetries are advantageous (Cazé & van der Meer, 2013). In an empirical test of these 

predictions (Gershman, 2015), adult participants did not demonstrate differences in valenced 

learning rates across contexts with different reward rates. It is possible that adjusting 

learning rates based on the overall reward rate of the environment relies on different — 

and perhaps more demanding — computational mechanisms than adjusting learning rates 

based on the relative magnitudes of and variance across gain and loss outcomes in a learning 

environment.

Our study leaves open the question of how individuals adjust their positive and negative 

learning rates based on their experiences. In our task, participants had no way of knowing 

the optimal learning rate asymmetry ahead of time. Thus, the adjustment of learning rates 

across contexts must have unfolded dynamically as individuals experienced the different 

reward distributions across the two environments (Cazé & van der Meer, 2013). In other 

words, while individuals’ positive and negative learning rates determined the extent to 

which they weighted recent positive and negative prediction errors in updating their beliefs 

about the reward structure of the environment, their beliefs in turn likely shaped how 

they learned from experienced outcomes. At the computational level, there are multiple 

plausible mechanisms for how individuals may tune valenced learning rates to different 

environments — individuals may track the volatility and stochasticity of reward outcomes 

and use the variability of prediction errors or rates at which prediction errors change 

to scale learning rates (Behrens et al., 2007; Cazé & van der Meer, 2013; Diederen & 

Schultz, 2015; Gershman, 2015; McGuire, Nassar, Gold, & Kable, 2014; Nassar et al., 2012; 

Nassar, Wilson, Heasly, & Gold, 2010; Piray & Daw, 2021). Models that dynamically adjust 

learning rates based on experienced outcomes could also yield further insight into the block 

order effects we observed by allowing for learned information about the environment’s 

reward statistics to be carried over into new contexts. Biologically, the flexible adjustment 

of valence biases may be implemented by dopaminergic and serotonergic mechanisms 

(Collins & Frank, 2014; Cox et al., 2015; Daw et al., 2002; Frank, Moustafa, Haughey, 

Curran, & Hutchison, 2007; Michely, Eldar, Erdman, Martin, & Dolan, 2020), which 

undergo pronounced changes from childhood to early adulthood (Doremus-Fitzwater & 

Spear, 2016; Li, 2013). Thus, future studies should explicitly test different, biologically 

plausible algorithms through which learning rates may be dynamically updated — as well as 

how their underlying parameters may change across age.

Biases in valenced learning have been proposed to influence mental health (Sharot & 

Garrett, 2016) and risky decision-making (Niv et al., 2012), but we did not observe any 

relations between learning rates and participants’ reports of depressive symptomatology and 

real-world risk-taking. Though contrary to our hypothesis, the absence of relations between 

self-reported ‘real-world’ behavior and risk-taking behavior in the lab is in line with several 

prior studies (Radulescu, Holmes, & Niv, 2020; Rosenbaum et al., 2022). While our study 

was designed to examine changes in learning rate asymmetries across contexts, participants 

still only made choices in two highly specific learning environments. The statistics of these 

learning environments may not align with those that individuals encounter in their daily 
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lives. For example, in our task, all choices were equally likely to lead to positive and 

negative outcomes, and these reward probabilities were perfectly stable for the duration 

of learning. Few choices in the ‘real world’ are equally likely to lead to good and bad 

outcomes, and often, individuals face changing environments where they must dissociate the 

stochasticity and volatility of reward outcomes (Nassar et al., 2010; Piray & Daw, 2021). 

Thus, the general learning biases we observed may be specific to the design of our task 

(Eckstein, Master, Xia, et al., 2021).

In the present study, we observed both context-dependent adaptivity in valenced learning 

rates as well as a general bias toward weighting positive prediction errors more heavily 

than negative prediction errors across contexts. It may be the case, however, that the 

positivity ‘bias’ itself reflects adaptivity to the structure of the environment but over a longer 

timescale. Across development, many individuals may more frequently encounter contexts 

in which a positive learning rate asymmetry is advantageous, and therefore learn to approach 

novel learning contexts with that bias. Indeed, children’s early life experiences influence 

their beliefs about the overall distribution of rewards in different learning environments 

(Hanson et al., 2017), the reward anticipation and processing mechanisms they employ 

during learning (Dillon et al., 2009; Weller & Fisher, 2013), and the decision-making biases 

they carry into adulthood (Birn, Roeber, & Pollak, 2017). In support of this idea, several 

recent studies have suggested that across environments with diverse reward statistics, more 

heavily weighting positive versus negative outcomes during learning from one’s own actions 

is advantageous, particularly when decision-making itself is ‘noisy’ (Chambon et al., 2020; 

Lefebvre et al., 2022). Given the diversity of contexts in which a positive learning rate 

asymmetry is advantageous (Lefebvre et al., 2022), such contexts may be experienced more 

frequently than environments in which it is advantageous to weight negative feedback more 

heavily, leading to a persistent optimism bias. Together with our present study, these findings 

suggest that learning mechanisms adapt to the structure of the environment across both 

long timescales, leading to more stable learning biases across distinct contexts, and short 

timescales, enabling flexible adjustment to rapid changes in environmental demands. Future 

work should focus on the construction of mechanistic models that can explain how the 

accumulation of experience across multiple nested environments and timescales influences 

the weighting of positive and negative experiences during learning across the lifespan.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Reinforcement learning task.
Participants completed 200 total trials of a reinforcement learning task, which was divided 

into two blocks. In each block, participants drew a card from one of four colored decks 

on every trial by pressing the ‘2’, ‘4’, ‘6’, and ‘8’ keys at the top of the keyboard. After 

selecting a deck, the top card flipped over to reveal its token outcome. Each deck included 

three cards with positive outcomes and three cards with negative outcomes. Across task 

contexts, the distribution of cards within each deck varied (see ‘Table 1’) such that riskier 

choices were advantageous in one block but disadvantageous in the other block. Participants 

completed the two blocks in separate ‘casino rooms’ with different colored backgrounds and 

different colored decks.
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Figure 2. Participant learning performance across trials.
(A) Participants across age groups learned to select the two optimal card decks across trials 

(p < .001), though older participants demonstrated a stronger effect of trial on optimal 

choice performance relative to younger participants (p < .001). The lines show the average 

proportion of optimal choices within each trial group for each age group. Error bars show 

the standard error across participant means within each age group. (B) The effect of block 

number varied across age (p = .005), and we further observed an age × block type × block 

number interaction effect (p = .030). Younger participants tended to perform worse in the 

second block, whereas older participants performed better in the second versus first block of 

the task. These effects were magnified for the risk bad block — younger participants who 

experienced the risk bad block after the risk good block performed worse relative to those 

who experienced the risk bad block first, whereas older participants who experienced the 

risk bad block after the risk good block performed better than those who experienced it first. 

The points on the plot represent age-group means, and the error bars show the standard error 

across participant means within each age group.
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Figure 3. Model comparison.
(A) Across participants, average AIC values were lowest for the four learning rate model, 

indicating that participants used different learning rates for both better-than-expected and 

worse-than-expected outcomes and across task blocks. (B) Average AIC values within each 

age group as well as (C) the proportion of participants best fit by each model indicated that 

the four-learning-rate model was also the best-fitting model within each age group.
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Figure 4. Learning rate asymmetries and task performance.
Participants with more negative learning rate asymmetries in the risk bad block (A) earned 

more points and (B) made more optimal choices, whereas the reverse was true in the risk 

good block (p < .001). The points represent individual participants’ asymmetry indices for 

each block. The black lines show the best-fitting linear regression lines for each block, and 

the shaded region around them represents the 95% confidence interval.
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Figure 5. Learning rates across blocks.
(A) Participants demonstrated more positive learning rate asymmetries in the risk good 

relative to the risk bad block (p = .007). The smaller dots represent individual participants’ 

learning rate asymmetries in each block; think black lines connect points belonging to 

the same participant. The larger points connected by the thicker black lines indicate 

means within each age group. (B) Differences in learning rate asymmetries across blocks 

were largely driven by differences in participants’ negative learning rates. Participants 

demonstrated significantly higher negative learning rates in the risk bad relative to the risk 

good block (p = .022). Positive learning rates did not significantly vary across block types (p 
= .519).
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Table 1

Card decks across block types

Block Type Deck Type Positive Outcomes Negative Outcomes Expected Value

Risk Good Risky 240, 250, 260 −190, −200, −210 25

Risk Good Safe 40, 50, 60 −90, −100, −110 −25

Risk Bad Risky 180, 190, 200 −230, −240, −250 −25

Risk Bad Safe 100, 110, 120 −50, −60, −70 25
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