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Abstract

Evidence supporting the current World Health Organization recommendations of early 

antiretroviral therapy (ART) initiation for adolescents is inconclusive. We leverage a large 

observational data and compare, in terms of mortality and CD4 cell count, the dynamic treatment 

initiation rules for human immunodeficiency virus-infected adolescents. Our approaches extend 

the marginal structural model for estimating outcome distributions under dynamic treatment 

regimes, developed in Robins et al. (2008), to allow the causal comparisons of both specific 

regimes and regimes along a continuum. Furthermore, we propose strategies to address three 

challenges posed by the complex data set: continuous-time measurement of the treatment initiation 

process; sparse measurement of longitudinal outcomes of interest, leading to incomplete data; 

and censoring due to dropout and death. We derive a weighting strategy for continuous-time 

treatment initiation, use imputation to deal with missingness caused by sparse measurements and 

dropout, and define a composite outcome that incorporates both death and CD4 count as a basis 

for comparing treatment regimes. Our analysis suggests that immediate ART initiation leads to 

lower mortality and higher median values of the composite outcome, relative to other initiation 

rules.
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1 | INTRODUCTION

1.1 | Dynamic treatment regimes and treatment of pediatric human immunodeficiency 
virus infection

Human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome continues to 

be one of the leading causes of burdensome disease in adolescents (10–19 years old). 

Globally, an estimated 2.1 million adolescents were living with HIV in 2013, with most 

living in sub-Saharan Africa (World Health Organization, 2015). Current World Health 

Organization (WHO) treatment recommendations for adolescents call for initiation of 

antiretroviral therapy (ART) upon diagnosis with HIV (World Health Organization, 2015). 

Previously, and particularly for resource-limited settings, WHO recommendations called for 

delaying treatment until a clinical benchmark signaling disease progression was reached. For 

example, the 2013 guidelines recommended initiating ART when CD4 cell count—a marker 

of immune system function—fell below 500.

For investigating the effectiveness of ART initiation rules, adolescents are a subpopulation 

of particular interest, particularly because of issues related to drug adherence (Mark et al., 
2017). For adolescents, early initiation of ART can potentially increase the risk of poor 

adherence, leading to development of drug resistance, while initiating too late increases 

mortality and morbidity associated with HIV. Evidence from both clinical trials (Luzuriaga 

et al., 2004; Violari et al., 2008) and observational studies (Berk et al., 2005; Schomaker 

et al., 2017) supports the immediate ART initiation rule recommended by the WHO 

for children under 10 years of age. Conclusive evidence is lacking for adolescents. The 

2015 WHO guidelines did not identify any study investigating the clinical outcomes of 

adolescent-specific treatment initiation strategies (World Health Organization, 2015). A 

recent large-scale study (Schomaker et al., 2017) of HIV-infected children (1–9 years) and 

adolescents (10–16 years) found mortality benefit associated with immediate ART initiation 

among children, but inconclusive results for the adolescents, and recommended further study 

of this group. Evaluating ART initiation rules specific to adolescents therefore remains 

important.

Prior to 2015, WHO guidelines for treatment initiation were expressed in the form of a 

dynamic treatment regime (DTR), formulated as “initiate when a specific marker crosses 

threshold value q.” In a DTR, the decision to initiate treatment for an individual can depend 

on evolving treatment, covariate, and marker history (Chakraborty and Murphy, 2014).

In this paper, we use observational data on 1962 HIV-infected adolescents, collected as part 

of the East Africa IeDEA Consortium (Egger et al., 2012) to compare the effectiveness 

of CD4-based DTR, with emphasis on comparisons to the strategy of immediate treatment 

initiation. Our approach is to emulate a clinical trial in which individuals are randomized at 

baseline and then followed for a fixed amount of time, at which point mortality status and, 

for those remaining alive, CD4 cell count are ascertained. Hence, the utility function for our 

comparison involves both mortality and CD4 count among survivors.

In addition to the usual complication of time-varying confounding caused by treatment not 

being randomly allocated, the structure of the dataset poses three specific challenges that 
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we address here. First, unlike with many published analyses comparing DTR, treatment 

initiation is measured in continuous time; second, the outcome of interest, CD4, is measured 

infrequently and at irregularly spaced time intervals, leading to incomplete data at the 

target measurement time; third, some individuals may not complete follow-up, leading to 

censoring of both death time and CD4 count.

We use inverse probability weighting (IPW) to handle confounding, and imputation to 

address missingness due to sparse measurement and censoring. To deal with continuous-time 

measurement of treatment initiation, we derive continuous-time versions of the relevant 

probability weights. To deal with missingness, we rely on imputations from a model of the 

joint distribution of CD4 count and mortality fitted to the observed data. We take a two-step 

approach: first, the joint model is fitted to the observed data and used to generate (multiple) 

imputations of missing CD4 and mortality outcomes; second, we apply IPW to the filled-in 

datasets to generate causal comparisons between different DTR.

1.2 | Comparing DTR using observational data

Randomized controlled trials can be used to evaluate a DTR of the form described above 

(see Violari et al., 2008 for example). Observational data afford large sample sizes and rich 

information on treatment decisions, but the lack of randomization motivates the need to 

use specialized methods for drawing valid causal comparisons between regimes. Statistical 

methods for drawing causal inferences about DTR from observational data include the g-

computation algorithm (Robins, 1986), inverse probability weighted estimation of marginal 

structural models (Robins et al., 2008), and g-estimation of structural nested models 

(Moodie et al., 2007); see Daniel et al. (2013) for a comprehensive review and comparison.

The g-computation formula was first introduced by Robins (1986) and has been used to 

deal with time-dependent confounding when estimating the causal effect of a time-varying 

treatment. The unobserved potential outcomes and intermediate outcomes that would 

have been observed under different hypothetical treatments are predicted from models 

for potential outcomes and models for time-varying confounders. The predicted potential 

outcomes under different hypothetical DTR assignments are then contrasted for causal 

effect estimates. As the number of longitudinal time points increases, the method more 

heavily leverages parametric modeling assumptions used for extrapolation of covariates and 

outcomes, increasing the reliance on these assumptions and introducing potential for bias 

from model misspecification.

The IPW approach reweights each individual inversely by the probability of following 

specific regimes so that, in the weighted population, treatment can be regarded as randomly 

allocated to these regimes. Time-varying weights are required for handling time-dependent 

confounding. This involves specifying a model for treatment trajectory over longitudinal 

follow-up that can include time-dependent covariates. The IPW approach does not require 

models for the distribution of outcomes and covariates, which in principle makes it less 

susceptible to model misspecification than the g-computation formula. The method can, 

however, generate unstable parameter estimates if there are extreme weights, raising the 

possibility of finite-sample bias, which can often be alleviated by using stabilized weights or 

truncation (Cole and Hernán, 2008; Cain et al., 2010).
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1.3 | IeDEA data

The IeDEA consortium, established in 2005, collects clinical and demographic data on 

HIV-infected individuals from seven global regions, four of which are in Africa. Data from 

African regions derive from 183 clinics providing ART (Egger et al., 2012). Our analysis 

makes use of clinical encounter data, drawn from the East Africa region, on 1962 HIV-

infected and ART naive adolescents who were diagnosed with HIV between 20 February 

2002 and 19 November 2012. The dataset contains individual-level information at diagnosis 

on the following variables: age, gender, clinic site, centers for disease control and prevention 

(CDC) class (a four-level ordinal diagnostic indicator of HIV severity), CD4 count, weight-

for-age Z scores (WAZ), and height-for-age Z scores (HAZ). The dataset also includes 

longitudinal information on ART initiation status, death, CD4 count, WAZ, and HAZ. These 

data were generated before the 2015 WHO guidelines that recommend immediate ART 

initiation, which yields significant variability in ART initiation patterns observed in our data. 

The follow-up visits vary considerably from patient to patient, resulting in irregularly and 

sparsely measured CD4 cell count (1.71, 1.32, and 1.10/person/year within 1, 2, and 3 years 

of diagnosis) and various ART initiation patterns (Figure 1). Kaplan-Meier estimates of 

mortality 1, 2, and 3 years postdiagnosis are 3.3%, 4.5%, and 5.6% respectively.

Our goal is to compare CD4 cell count and mortality rate at 1 and 2 years postenrollment 

under dynamic regimes defined in terms of initiating treatment at specific CD4 threshold 

values. In the next section, we define the randomized trial our analysis is designed to 

emulate, and the outcome measure (utility) used for the comparisons.

The remainder of the paper is organized as follows: Section 2 describes notation and 

the statistical problem. Section 3 delineates the approaches to estimating and comparing 

dynamic continuous-time treatment initiation rules with sparsely measured outcomes and 

death. Section 4 presents results from our analysis of IeDEA data and highlights new 

insights relative to previous studies. Section 5 provides a summary and directions for future 

research.

2 | NOTATION AND DYNAMIC REGIMES

2.1 | Randomized trial being emulated to compare dynamic regimes

Ideally, causal comparisons of dynamic regimes should be based on a hypothetical 

randomized trial (Hernán et al., 2006). In our setting, the trial we are 

emulating would randomize individuals at time t = 0 to regimes in a set 

Q = 0, 200, 210, 220, …, 490, 500, ∞ , where q = 0 corresponds to “never treat” and q = 

∞ denotes “treat immediately,” and other regimes correspond to initiating treatment when 

CD4 falls below q. Each individual would be followed to a specific time point t*, at which 

point survival status would be ascertained and, for those surviving to t*, CD4 would be 

measured. For those who discontinue follow-up prior to t*, we assume treatment status (on 

or off) at the time of discontinuation would still apply at t*.

For each individual, let Dq: q ∈ Q  represent the set of potential outcomes, one for each 

regime, indicating death at t*, such that Dq = 1 if dead and Dq = 0 if alive. Similarly define 

Hu and Hogan Page 4

Biometrics. Author manuscript; available in PMC 2023 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Y q: q ∈ Q  to be the set of potential CD4 counts for an individual who survives to t*. Now 

define, for q ∈ Q, the composite outcome Xq = (1 − Dq)Yq, with Xq = 0 for those who die 

prior to t* and Xq = Yq > 0 for those who survive. We use both mortality rate P(Dq = 

1) = P(Xq = 0) and quantiles of Xq as a basis for comparing treatments. The cumulative 

distribution function of Xq is a useful measure of treatment utility because it has point 

mass at zero corresponding to the mortality rate, and thereby reflects information about 

both mortality and CD4 cell count among survivors, for example, P(Xq > 0) is the survival 

fraction and P(Xq > x), for x > 0, is proportion of individuals who survive to t*and have CD4 

count greater than x.

2.2 | Defining DTR

Let {Z(t): t ≥ 0}, where Z(t) > 0, represent CD4 cell count, which is defined for all t but 

measured only at discrete-time points for each individual (see below). Let T denote survival 

time, with {NT (t): t > 0} its associated zero-one counting process. Each individual has a 

p × 1 covariate process {L(t): t ≥ 0}, some elements of which may be time-varying. The 

time-varying covariates may be recorded at times other than those where Z is recorded. 

Finally let A denote the time of treatment initiation, with associated counting process {NA 

(t): t ≥ 0} and intensity function λA (t). Adopting a convention in the DTR literature (Robins 

et al., 2008), we assume the decision to initiate ART at t is made after observing the 

covariates and CD4 cell count; that is, for a given t, NA (t) occurs after Z(t) and L(t). Finally 

let C be a censoring (dropout) time, with associated counting process NC (t).

At a fixed time t, let H(t) = {Z(t), NT (t), L(t), NA (t), NC (t)} represent the most recent 

values of each process. We use overbar notation to denote the history of a process, so 

that, for example, L(t) = L(s): 0 ≤ s ≤ t  is the history of L(t) up to t. All individuals are 

observed at baseline and then at a discrete number of time points whose number, frequency, 

and spacing may vary. Hence the observed data process for individual i(=1,…,n) is denoted 

by Hi tiKi = Hi(t): t = 0, ti1, ti2, …, tiKi

2.3 | Mapping observed treatment to DTR

The DTR “initiate treatment when Z(tj) falls below threshold q” (where tj is time at the 

jth visit) is a deterministic function rq H tj  that depends on observed values of Z tj  and 

treatment history NA tj ; for brevity we suppress subscript j and write r(tq), which applies to 

each individual’s actual visit times. As some patients have missing baseline CD4, let RZ (t) 
be a binary indicator with RZ (t) = 1 denoting that CD4 has not been observed by time t. At 

t = 0, the rule is rq (0) = I{RZ (0) = 1 or Z(0) < q}, indicating immediate initiation regardless 

of Z(0) or treat if Z(0) is below q. For t > 0, we define Zmin(t) = minj:0 ≤ tj < tZ tj  to be the 

lowest previously recorded value of Z prior to t. Then,
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rq(t) =

0 if NA t− = 0 and Zmin(t) ⩾ q and

Z(t) ⩾ q or RZ(t) = 1,

1 if NA t− = 0 and Zmin(t) ⩾ q and
Z(t) < q,

1 if NA t− = 1.

In words, the first line of the rule says not to treat if an individual has not yet initiated 

treatment and Z(t) has not fallen below q or has not been observed; the second line says to 

treat if time t represents the first time Z(t) has fallen below q; the third line says to keep 

treating once ART has been initiated.

In addition to the observed data process, we define a regime-specific compliance process 

{Δq (t): t ≥ 0}, where Δq (t) = 1 if regime q is being followed at time t and Δq = 0 otherwise. 

Written in terms of H(t) and rq (t), we have Δq (t) = NA (t) rq (t) + {1 − NA (t)}{1 − rq (t)}.

Hence, if an individual’s actual treatment status at time t agrees with the DTR q, then this 

individual is compliant with regime q at time t. Thus for each individual and for each q ∈ Q, 

we observe, in addition to H(t), a regime compliance process Δqi(t): t = 0, ti1, …, tiKi .

2.4 | Missing outcomes due to sparse measurement times and censoring

For those who remain alive at t*, the observed Xi corresponds to Zi (t*). When measurement 

of Zi (t) is sparse and irregular, Zi (t*) will not be directly observed unless tik = t* for some 

k ∈ {1,…,Ki}. In settings like this, it is common to define the observed outcome as the 

value of Zi (t) closest to t* and falling within a prespecified interval [ta, tb] containing t*. 

Specifically, Xi is the value of Z(tik) such that tik ∈ [ta, tb] and |tik − t*| is minimized over k. 

Even using this definition, the interval [ta, tb] still may not contain any of the measurement 

times for some individuals; hence Xi can be missing even for those who remain in follow-up 

at t*. The other cause of missingness in Xi is dropout, which occurs when tiKi < ta.

For both of these situations, we rely on multiple imputation based on a model for the joint 

distribution of the CD4 process Z(t) and the mortality process NT (t). The general strategy 

is as follows: first, we specify and fit a model for the joint distribution Z(t), NT (t) ∣ H(t)

of CD4 and mortality, conditional on observed history. For those who are known to be alive 

but do not have a CD4 measurement within the prespecified interval [ta, tb], we impute 

Xi Z t* ∣ Hi t*  from the fitted CD4 submodel. For those who are missing Xi because of 

right censoring, we proceed as follows: (a) calculate P NT t* = 1 ∣ Hi tiK  from the fitted 

survival submodel, and impute Di from a Bernoulli distribution having this probability; (b) 

for those with, Di = 0 impute Xi Z t* ∣ Hi t*  from the fitted CD4 submodel; and (c) for 

those with Di = 1, set Xi = 0. Further details are given in Section 3.5.
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3 | ESTIMATING AND COMPARING EFFECTIVENESS OF DYNAMIC 

REGIMES

3.1 | Assumptions needed for inference about dynamic regimes

We are interested in parameters or functionals of the potential outcomes 

distribution FXq(x) = P Xq ≤ x . Specific quantities of interest are the mortality rate 

θq1 = P Xq = 0 = FXq(0), the median of the distribution of the composite outcome 

θq2 = FXq
−1(1/2), and the mean CD4 count among survivors θq3 = E(Xq | Xq > 0). We first 

consider inference in the case where there is no missingness in the observable outcomes Xi. 

Estimates for each of these quantities can be obtained using weighted estimating equations 

under specific assumptions:

A1. Consistency assumption.—To connect observed data to potential outcomes, we 

use the consistency relation Xi = Xqi when Δqi (t*) = 1, for all q ∈ Q, which implies that the 

observed outcome Xi corresponds to the potential outcome Xqi when individual i actually 

follows regime q. Note that an individual can potentially follow more than one regime at any 

given time.

A2. Exchangeability assumption.—In observational studies, individuals are not 

randomly assigned to follow regimes. Decisions on when to start ART are often 

made by based on guidelines and observable patient characteristics. We make the 

following exchangeability assumption, also known as sequential randomization of treatment: 

λA t ∣ H(t), T > t, Xq = λA(t ∣ H(t), T > t) for t < t*. This assumption states that initiation of 

treatment at t among those who are still alive is conditionally independent of the potential 

outcomes Xq conditional on observed history H(t).

A3. Positivity assumption.—Finally we assume that at any given time t, there is 

positive probability of initiating treatment, among those who have not yet initiated, for 

all configurations H(t) (Robins et al., 2008): P λA(t ∣ H(t), T > t) > 0 = 1. This implicitly 

assumes a positive probability of visiting clinic in the interval [t, t*], conditional on H(t).

3.2 | Weighted estimating equations for comparing specific regimes

For illustration, consider estimating the mortality rate θq1 = P(Xq = 0). If individuals are 

randomized to specific regimes, a consistent estimator of the death rate is the sample 

proportion among those who follow regime q, that is, θq1 = ∑iΔqi t* I Xi = 0 /∑iΔqi t* . 

This estimator is the solution to ∑iΔqi t* I Xi = 0 − θq1 = 0, which is an unbiased 

estimating equation when θq1 = θq1*  is the true value of θq1. We can similarly 

construct unbiased estimating equations for other quantities of interest. For example, 

under randomization, a consistent estimator of the median of Xq is the solution to 

∑iΔqi t* I Xi ≤ θq2 − (1/2) = 0.
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For observational data, relying on the assumptions of consistency, positivity, and 

exchangeability, we can obtain consistent estimates of quantities of interest using 

weighted estimating equations. Returning to mortality rate, a consistent estimator 

of θq1 can be obtained as the solution to the weighted estimating equation 

∑i = 1
n Δqi t* W qi I Xi = 0 − θq1 = 0, where W qi = 1/P Δq t* = 1 ∣ Hi t*  is the inverse 

probability of following regime q through time t* (Robins et al., 2008; Cain et al., 2010; 

Shen et al., 2017).

In practice the weights Wqi must be estimated from data; some of the estimated weights can 

be large, leading to estimators with high variability (Cain et al., 2010). This problem can be 

ameliorated to some degree by using stabilized weights of the form

W qi
s = P Δq t* = 1

P Δq t* = 1 ∣ Hi t* . (1)

In this case, the numerator of the weight function needs to be calculated directly from the 

regime indicator processes. Specifically, for each regime q, define a 0–1 counting process Nq 

(t) = 1 − Δq (t) that jumps when regime q is no longer being followed, and let Λq (t) denote 

its associated cumulative hazard function. Then Sq (t) = P{Nq (t) = 0} = P{Δq (t) = 1}; hence 

(an estimate of) Sq (t*) = exp{−Λq (t*)} can be used as the numerator weight.

3.3 | Comparing regimes along a continuum

We can examine the effect of DTR q on Xq at a higher resolution along a continuum such 

as Q = 200, 210, …, 500  (we use integers for Q, but theoretically it can include continuous 

values). When the number of regimes to be compared is large, it is highly possible that 

not every regime is followed by a sufficiently large number of individuals, and sampling 

variability associated with the regime effect estimated using the procedure for discrete 

regimes may be large (Hernán et al., 2006). A statistically more efficient approach is to 

formulate a causal model that captures the smoothed effect of q on a parameter of interest; 

we illustrate using the median θq2 = FXq
−1(1/2).

Let ql and qu denote the lower and upper bound of the regime continuum. Assume FXg
−1(τ), 

where τ is a fixed quantile, follows a structural model:

FXq
−1(τ) = α0I(q = ∞) + α1I(q = 0)

+ I q ∈ ql, qu d(q), (2)

where d(·) is an unspecified function with smoothness constraints. In our application, we use 

natural cubic splines constructed from piecewise third-order polynomials that pass through a 

set of control points, or knots, placed at quantiles of q. This allows d(q) to flexibly capture 

the effect of q along the continuum and enables separate estimation of the discrete regimes q 
= ∞ and q = 0. Parameterizing our model in terms of the basis functions of a natural cubic 

spline with J knots (Hastie et al., 2009) yields FXq
−1(τ) = α⊤V (q), where
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V q (J + 2) × 1
= I(q = ∞), I(q = 0), I q ∈ ql, qu d†(q)⊤ ⊤

and d†(q) = d1
†(q), …, dJ

†(q)
⊤

 are the J basis functions of d(q). The parameter α is a vector of 

J + 2 coefficients for I(q = ∞), I(q = 0) and the basis functions d† (q). The causal effect of 

regime q on the potential outcome Xq is therefore encoded in the parameter α. A consistent 

estimator of α can be obtained by solving the estimating equation (Leng and Zhang, 2014):

∑
i

Δqi(t)W qis V i(q) I Xi − V i⊤(q)α > 0 − τ = 0.

Setting τ = 0.5 estimates the causal effect of q on the median of Xq.

3.4 | Derivation and estimation of continuous-time weights

3.4.1 | Assuming no dropout or death prior to t*—The denominator of W qi
s  in 

Equation (1) is the probability of individual i following regime q through t*, conditional 

on observed history Hi (t*). As described in Cain et al. (2010), Robins et al. (2008), and 

Shen et al. (2017), for discrete-time settings where the measurement times are common 

across individuals, this probability corresponds to the cumulative product of conditional 

probabilities of treatment indicators over a set of time intervals 0 = t0 < t2 < ⋯ < tK = t*. 

Specifically,

P Δqi t* = 1 ∣ Hi t*

= ∏
k = 0

K
P Δqi tk = 1 ∣ Hi tk

= ∏
k = 0

K
P Ni

A tk rqi tk + 1 − Ni
A tk 1 − rqi tk = 1 ∣ Hi tk

= ∏
k = 0

K
P Ni

A tk = 1 ∣ Hi tk I rqi tk = 1

+ P Ni
A tk = 0 ∣ Hi tk I rqi tk = 0 .

(3)

This establishes the connection between regime compliance and treatment history. Equation 

(3) represents the treatment history among those with Δqi (t*) = 1; therefore, to compute the 

probability of regime compliance for those with Δqi (t*) = 1, we just need to model their 

observed treatment initiation process, as described in Equation (4).

This observation allows us to generalize the weights for the discrete-time setting to the 

continuous-time process. Let dNi
A(t) be the increment of Ni

A over the small time interval [t, 

t + dt). Note that conditional on H(t), the occurrence of treatment initiation for individual i 
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in [t, t + dt) is a Bernoulli trial with outcomes dNi
A(t) = 1 and dNi

A(t) = 0. Equation (3) can 

therefore be written as

∏
k = 0

K
P dNi

A(t) = 1 ∣ Hi(t)
dNi(t)P dNi

A(t) = 0 ∣ Hi(t)
1 − dNi(t), (4)

which takes the form of the individual partial likelihood for the counting process 

Ni
A(t):0 ≤ t ≤ t* . When the number of time intervals between t0 and tK increases, dt 

becomes smaller, and the finite product in (4) will approach a product integral (Aalen et al., 
2008):

∏
0 ≤ t ≤ t*

λA t ∣ Hi(t) dt dNiA(t) 1 − λA t ∣ Hi(t) dt 1 − dNiA(t)
(5)

= ∏
0 ≤ t ≤ t*

λA t ∣ Hi(t)
ΔNiA(t) exp −∫

0

t*
λA t ∣ Hi(t) dt , (6)

where ΔNi
A(t) = Ni

A(t) − Ni
A t− . The product integral of the first part in (5) is the finite 

product over the jump times of the counting process, hence the first factor in (6). The second 

factor in (6) follows from properties of the product integral of an absolutely continuous 

function (Aalen et al., 2008, Appendix A.1).

The individual counting process Ni
A(t), 0 ≤ t ≤ t*  will have at most one jump (at Ai), and 

in our case patients stay on ART once it is initiated. Hence, the product integral only needs 

to be evaluated up to the ART initiation time. Equation (6) therefore reduces to

P Δqi t* = 1 ∣ Hi t*
= λA Ai ∣ H Ai SA Ai ∣ Hi Ai Ni t*

+ SA t* ∣ Hi t* 1 − Ni t*
= fA Ai ∣ Hi Ai Ni

A t*
+ SA t* ∣ Hi t* 1 − Ni

A t* ,

(7)

where SA(t ∣ H(t)) = exp −ΛA(t ∣ H(t))  is the survivor function associated with the ART 

initiation process.

For an alternate derivation of the continuous-time weights, see Johnson and Tsiatis (2005), 

who use a Radon-Nikodym derivative of one integrated intensity process (under randomized 

treatment allocation) with respect to another (for the observational study), and arrive at 

the same weighting scheme as ours. Simulation studies by Hu et al. (2018) demonstrate 

consistency and stability of weighted estimators using continuous-time weights in empirical 

settings when assumptions A1 to A3 hold and the weight model is correctly specified.

Components of the denominator weights are estimated from a fitted hazard model for 

treatment initiation. Specifically we assume λA(t ∣ H(t)) follows a Cox proportional hazards 
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model λA(t ∣ H(t)) = λ0
A(t)u(H(t); ϕ), where u is a strictly positive function capturing the 

effect of covariates and ϕ is a finite-dimensional parameter vector. Details of the model 

specification used in our application are given in Section 4. The parameter ϕ is estimated 

using maximum partial likelihood estimation, and the baseline hazard function λ0
A(t) is 

estimated using the Nelson-Aalen estimator. The functions fA and SA are estimated via

SA(t ∣ H(t)) = exp −∫
0

t
u(H(s); ϕ)dΛ0

A(s) , (8)

fA(t ∣ H(t)) = dΛA(t ∣ H(t))SA(t ∣ H(t)) . (9)

To estimate the stabilizing numerator weight P{Δq (t*) = 1}, we use the q-specific survivor 

function associated with the counting process Nq (t), estimated using the Nelson-Aalen 

estimator Sq t* = exp −Λq t* .

3.4.2 | Considering dropout or death prior to t*—In the IeDEA data, some 

participants drop out prior to t*, which requires modifications to the weight specification. 

We make an additional assumption:

A4. Conditional constancy assumption.: Once lost to follow-up at Ci < t*, treatment and 

regime status remain constant, that is, NA (t) = NA (Ci) and Δqi (t) = Δqi (Ci) for all t ∈ [Ci, 

t*].

Under this assumption, both regime adherence and treatment initiation status are 

deterministic after Ci. Hence, the stabilized weight is Sq Ci /SA Ci ∣ H Ci  for those who 

initiated treatment prior to Ci and Sq Ci /SA Ci ∣ H Ci  for those who have not. If death 

occurs at Ti < t*, both compliance and treatment initiation processes only need to be 

evaluated up to time Ti, and estimation of the stabilized weights is same as described 

above, with Ti replacing Ci. Let Ui = min (Ti, Ci, t*) denote duration of follow-up time for 

individual i. The modified stabilized weight can be written as

W qi
s = Sq Ui I Ui < t* + Sq t* I Ui ≥ t*

fA Ai ∣ H Ai
Ni

A t*

+ Sq Ui
SA Ui ∣ Hi Ui

I Ui < t*

+ Sq t*
SA t* ∣ Hi t*

I Ui ≥ t* 1 − Ni
A t* .

(10)

Estimation follows by Equations (8) and (9).
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3.5 | Imputation strategy for missing and censored outcomes

Imputation of missing CD4 counts and mortality status are generated from a joint model 

of CD4 and survival. The two processes are linked via subject-specific random effects that 

characterize the true CD4 trajectory (Rizopoulos, 2012). Hazard of mortality is assumed to 

depend on the true, underlying CD4 count as described below.

Observed CD4 counts as a function of time are specified with a two-level model. At the first 

level, Zi (t) = mi (t) + ei (t), where mi (t) is the true, underlying CD4 cell count and ei~N(0, 

σ(t)) is within-subject variation of the observed counts around the truth. The second level 

specifies the trajectory in terms of baseline covariates Li (0), treatment initiation time Ai, 

follow-up time t, and subject-specific random effects bi:

mi(t) = ℎ1 Li(0), NiA(t), t; β + ℎ2 NiA(t), t; bi .

In the model for mi (t), h1 (Li (0), Ai, t; β) models the effect of L(0), A, and t in terms of a 

population-level parameter β and h2 (Ai, t; bi) captures individual-specific time trajectories 

relative to treatment initiation in terms of random effects bi, where bi~N(0, Ω).

The hazard model for death uses true CD4 count mi (t) as a covariate, in addition to 

components of Li(0) and treatment timing. The specification we use in our analysis is

logλT t ∣ mi(t), Li(0), Ai(t) = logλ0
T(t) + g1 mi(t); γ1

+ g2 Li(0), Ni
A(t); γ2

(11)

where λ0
T (t) is an unspecified baseline hazard function, g1 (·; γ1) is a smooth, twice-

differentiable function indexed by a finite-dimensional parameter γ1, and g2 (·; γ2) captures 

the main effect of baseline covariates, the instantaneous effect of treatment initiation, and 

potential interactions between them. In our application, we use cubic smoothing splines to 

model the effects of mi (t) and of continuous baseline covariates. This model has fewer 

covariates than the CD4 model because of relatively low mortality rates.

The joint model is used to generate imputations where CD4 count and mortality information 

are missing at time t*. The variance of our target parameters θq = (θq1, θq2, θq3) is based on 

Rubin’s variance estimator (Rubin, 1987); full details of model specifications and variance 

calculations used in the data analysis in Section 4 appear in Supporting Information.

4 | APPLICATION TO IEDEA DATA

Our analysis uses longitudinal data on 1962 adolescents with at least 2 years of follow-up 

time. Time is measured in days. We evaluate effectiveness of the regimes at times t* = 365 

and 730 days (1 and 2 years, respectively) after diagnosis. To capture the CD4 observed at 

t*, we set [ta, tb] = [t* − 180, t* + 180]; hence Y is the CD4 count measured at a time falling 

within [ta, tb] and closest to t*. If no CD4 is captured within [ta, tb], then Y is missing. 

The percentage of missing data for Y is 29.1% at 1 year and 43.4% at 2 years. Among 

those with missing 1-year outcome, 41.2% were lost to follow-up prior to ta; for those with 
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missing 2-year outcome the proportion is 42.5%. Table 1 describes summary statistics for 

baseline variables and follow-up, the observed outcome pair (Y, D) (CD4 and deaths), and 

ART initiation.

Missing outcomes are imputed following the strategies described in Section 3.5, and the 

complete datasets are analyzed using IPW methods for the causal comparative analysis. 

The fit of the CD4 submodel was examined using residual plots and examination of 

individual-specific fitted curves; for the mortality submodel, we tested the proportional 

hazards assumption for each term included in the model. These model checks indicated no 

evidence of lack of fit. Details appear in Supporting Information.

Following the deterministic rule rq(H(t)) described in Section 3, we create the regime-

specific indicators Δqi (t*) for q ∈ Q for each patient based on the concordance between their 

ART initiation history {NA (t): 0 ≤ t ≤ t*} and rq H t* . To estimate regime weights, we 

fit the model λA(t ∣ H(t)) = λ0
A(t)u(H(t); ϕ) to individuals’ treatment and covariate histories 

observed in the original data to estimate the denominator of W qi
s  in (1). For the time-varying 

component of H(t), we include the most recently observed values of CD4, WAZ, and 

HAZ as main effects, modeled using cubic splines. For baseline covariates, we include 

age at diagnosis (modeled using a cubic spline) and the categorical variables gender 

and CDC symptom classification (mild, moderate, severe, asymptomatic, and missing). 

To estimate the numerator of the stabilized weights, we use the Nelson-Aalen estimator 

of the survival function for each regime-specific compliance process, as described in 

Section 3.4.1. We truncated the weights at 5% and 95% quantiles to improve stability. 

We conducted a sensitivity analysis to assess the impact of weight truncation. The point 

estimates and the confidence intervals for treatment effect on mortality were unchanged 

with different weighting schemes. Point estimates and variation associated with treatment 

effect on the composite outcome increased with less truncation; the confidence intervals 

indicated greater variability but no change in substantive conclusion about treatment effect. 

For the denominator weight model, we tested the proportional hazards assumption for each 

term included in the model and found no violations of the assumption. Details appear in 

Supporting Information.

We summarize the comparative effectiveness for specific regimes q ∈ {0, 200, 350, 500, ∞} 

in Table 2 in terms of mortality proportion θq1 = P(Xq = 0), median of the distribution of the 

composite outcome θq2 = FXg
−1(1/2), and mean CD4 count among survivors, θq3 = E(Xq | Xq 

> 0). (The quantity θq3 is not a causal effect because it conditions on having survived to time 

t*.) Confidence intervals are constructed using the normal approximation to the sampling 

distribution, derived from bootstrap resampling, as described in Supporting Information.

Immediate ART initiation yields significantly lower mortality rate and higher medians of 

the composite outcome at both years than delayed initiation. The “never treat” regime leads 

to significantly higher mortality rate; among the patients who survive to one year, CD4 

is higher—resulting in higher θq2 and θq3—indicating that those who do survive without 

treatment may be relatively healthier at the beginning of the follow-up.
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Figure 2 shows the effect of weighting on estimated medians of Xq for q = 0, 200, 350, 

500, ∞. We compare weighted and unweighted estimates using imputed data; the weighted 

estimates suggest immediate ART initiation leads to highest θq2, whereas the unweighted 

estimates ignoring nonrandom allocation of DTRs recommend “never treat” to be the 

optimal regime. The difference could be attributable to differences in baseline covariates 

(see Table 8 in Supporting Information). Not surprisingly, the weighted estimates have 

higher variability.

Finally, we estimate the causal effect of the DTR on the median of Xq using the smoothed 

relationship between FXq
−1(1/2) and q from Model (2). The estimated “dose response” 

curves of θq2 vs. q appear in the top panel of Figure 3. The bottom panel describes the 

difference in θq2 between dynamic regimes q = ∞ and q ∈ {0, 200, 210,…,500}. Our 

results indicate that immediate ART initiation leads to significantly higher median values of 

the composite outcome Xq than delayed ART initiation. Furthermore, as an illustration of 

increased efficiency, the variance of the 1-year outcome associated with q = 350 estimated 

from the structural model is 180, compared to 209 for the regime-specific estimate, a 

13.9% reduction. The R code used to implement our approaches is available in Supporting 

Information.

5 | SUMMARY AND DISCUSSION

Motivated by inconclusive evidence for supporting the current WHO guidelines promoting 

immediate ART initiation in adolescents, we have conducted an analysis comparing dynamic 

treatment initiation rules. Our approach utilizes the theory of causal inference for DTRs. We 

extend the framework to allow the causal comparisons of both specific regimes and regimes 

along a continuum, Additionally, propose strategies to address sparse outcomes and death, 

and use a composite outcome that can be used to draw causal comparisons between DTRs.

Our analysis suggests that immediate ART initiation leads to mortality benefit and higher 

median values of the composite outcome, relative to delayed ART initiation. The “never 

treat” regime yields significantly higher mortality than other initiation rules.

The data from IeDEA pose several challenges that we addressed within our analysis. First, 

treatment initiation times are recorded on a continuous-time scale. Existing approaches have 

relied primarily on discretization of the time axis to construct inverse probability weights. 

We have derived a method to construct weights that uses the continuous-time information. 

Similar strategies have been employed in Hu et al. (2018) and Johnson and Tsiatis (2005); 

see also Lok (2008) for related work in the context of structural nested mean models.

Second, CD4 counts are measured at irregularly spaced times. This creates challenges when 

the goal is to compare treatment regimes at a specific follow-up time, as would be the case 

with a randomized trial. Moreover, even though our sample comprises those who would be 

scheduled to have at least 2 years of follow-up, some individuals discontinue follow-up prior 

to that time. These features of the data lead to incomplete observation of CD4 count at the 

target analysis time and to censoring of death times. To address this issue, we have relied on 
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a parametric model for the joint distribution of observed CD4 counts and death times. The 

CD4 submodel is flexible enough to capture important features of the longitudinal trajectory 

of CD4 counts, and is used to impute missing observations at the target follow-up time. 

The mortality submodel, which depends explicitly on the CD4 trajectory, is used to impute 

mortality status at the target estimation time. A limitation of the imputation model is that 

death and CD4 may depend on HIV viral load, but availability of this variable is limited in 

our data and therefore not included in the model.

The primary strength of this approach is its ability to handle a complex data set on its own 

terms, without artificially aligning measurement times. Although imputation-based analyses 

rely on extrapolating missing outcomes, and both the weight model and imputation model 

must be correctly specified, a potential advantage of our approach over g-computation is 

reduced depending on data extrapolation. There are several possible extensions as well. 

First, largely due to limitations related to computing, we used a two-step approach to fit our 

observed data imputation model rather than a joint likelihood approach. There may be some 

small biases (Rizopoulos, 2012) introduced by using a two-step rather than fully joint model. 

Second, the imputation model may not be fully compatible with the weighting model in the 

sense that we are not constructing a joint distribution of all observed data. Our approach 

emulates a setting whereby the data imputer and the data analyst are separate: the imputed 

dataset can be turned over for whatever kind of analysis would be applied to a complete 

dataset. Empirical checks to our joint model for CD4 and mortality showed no evidence 

of lack of fit to the observed data (see Supporting Information). To make the models more 

flexible, it may be possible to employ machine learning methods as in Shen et al. (2017). 

Finally, developing sensitivity analyses to capture the effects of unmeasured confounding for 

our model would be a worthwhile and important contribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
CD4 and ART initiation status during follow-up for nine randomly selected individuals. 

Empty circles indicate no ART and filled circles represent on ART. Two gray lines denote 1 

and 2 years postdiagnosis. Purple line corresponds to end of follow-up. ART, antiretroviral 

therapy

Hu and Hogan Page 17

Biometrics. Author manuscript; available in PMC 2023 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Comparing the median values of Xq under regime q ∈ {0, 200, 350, 500, ∞}. Weighted (W) 

and unweighted (UW) estimates are compared side-by-side
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FIGURE 3. 
The effectiveness of continuous regimes. The upper panel presents the median of Xq, θq2, 

at 1 and 2 years; the bottom panel displays the difference in θq2 at 1 and 2 years between 

regimes q = ∞ and q ∈ {0, 200, 210,…,500}. The triangles represent θq2 corresponding to 

regime q = 0 (upper panel), and the difference in θq2 between regimes q = ∞ and q = 0 

(bottom panel). Similarly, the diamonds correspond to θq2 under regime q = ∞. The filled 

symbols are the mean values, and the empty symbols are the upper and lower bounds of the 

95% confidence intervals
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TABLE 1

Summary statistics

n = 1962

At t * = 1 year At t * = 2 years

ART initiated 1286 (65.5%) 1422 (72.5%)

Death 61 (3.1%) 80 (4.1%)

CD4 counts per person 1.71 2.64

Mean (SD) or count (%) % missing

CD4 343.05 (314.78) 21.3

WAZ −2.64 (1.83) 33.7

HAZ −2.10 (1.48) 36.1

Age 12.21 (1.41) 0

Male 863 (44.0%) 0

CDC class 71.6

Mild 200 (10.2%)

Moderate 73 (3.7%)

Severe 88 (4.5%)

Asymptomatic 196 (10.0%)

Person time follow-up
a 3.6 (1.7, 6.1)

Abbreviation: ART, antiretroviral therapy; HAZ, height-for-age Z scores; WAZ, weight-for-age Z scores.

a
Median (first and third quartiles) in years.
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