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A B S T R A C T   

Against the background of the COVID-19 pandemic and various armed conflicts, the world is experiencing an 
unprecedented food crisis. The reclamation of abandoned cropland with food production potential may increase 
the global food supply in a short period of time, ensuring food security. At present, the extraction of abandoned 
cropland is mainly based on low- and medium-resolution remote sensing image data, making it difficult to extract 
fragmented areas in mountainous regions and to distinguish between abandoned cropland and transitional 
classes (such as fallow cropland). We developed a change-detection method based on within-year Sentinel-2 time 
series to extract cropland abandoned from 2018 to 2021 and defined four types of croplands, namely sponta-
neously abandoned, induced abandoned, fallow, and lost cropland, using Linxia County in mountainous China as 
the study region. First, cropland objects were generated from multi-temporal Sentinel-2 images using the multi- 
resolution segmentation method, and the land use map of Linxia County from 2017 to 2021 was drawn using 
random forest classifier. Second, through defining and identifying different cropland types, the interannual 
dynamic changes in cropland from 2018 to 2021 were extracted by analyzing the annual land use change tra-
jectory. Third, by analyzing the normalized difference vegetation index (NDVI) time series of cropland within- 
year, the active and cultivated cropland sites within-year were extracted by threshold segmentation. Finally, 
the changes in the four cropland types were extracted by intersecting the two result types. Our method captured 
the object level changes well (overall mapping accuracy = 93 ± 5 %), and the extraction accuracy of abandoned 
cropland reached 81 ± 2 %. Abandoned cropland was mostly located in areas of medium quality and with a 
moderate distance from rural settlements. Reclamation can potentially increase the grain production in Linxia 
County by at least 3.6 % and needs to be combined with the local natural geography and human activities. Our 
method is a robust method for extracting abandoned cropland and may be applied to other research related to 
land use change.   

1. Introduction 

Against the background of a growing world population and dietary 
changes, the demand for agricultural products to meet the supply of 
food, animal feed, fiber, and fuel is increasing (Alexander et al., 2015; 
Kim et al., 2016). The global demand for food is expected to double by 
2050 (Tilman et al., 2011; Tilman and Clark, 2014; Kehoe et al., 2017). 
In recent years, the impacts of the COVID-19 pandemic and armed 
conflicts on global food security have become an issue of high concern. 
Many countries banning or restricting food exports have intensified 
inflation, with disastrous impacts on maintaining global livelihood and 

stability (Carducci et al., 2021; di Caracalla, 2022; Pörtner et al., 2022; 
Tollefson, 2022). Pandemics and wars have exposed the fragility of food 
systems and show the urgent need for countries to secure immediate 
food supplies (Dasgupta and Robinson, 2022). The reclamation of 
abandoned cropland is a potential option to rapidly increase grain 
production in the short term, thereby minimizing risks to food security 
(Gelfand et al., 2013; Schierhorn et al., 2013; Zumkehr and Campbell, 
2013; Field et al., 2020), which is of great significance to solve the 
current global food crisis. 

Information about abandoned cropland is mostly acquired through 
farmer surveys. The largest advantage of this method is that it can 
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explain the mechanism behind cropland abandonment (Li et al., 2014), 
although it lacks spatial details, making it difficult to obtain a complete 
view of all abandoned cropland areas within a given study region (Yan 
et al., 2016; Li et al., 2017; Kuntz et al., 2018). With the emergence of 
multiple sensors with different imaging scales, resolutions, and ranges, 
remote sensing (RS) has been widely recognized as an effective tool to 
detect the spatial and temporal dynamic distribution of abandoned 
cropland with less time, lower costs, better accuracy, and higher 
coverage (Estel et al., 2015; Yin et al., 2018a, 2020). At present, the 
methods of extracting abandoned cropland based on remote sensing 
data mainly include the normalized difference vegetation index (NDVI) 
time series change detection method and the inter-annual land use 
change detection method. The first method mainly uses NDVI time series 
of high time resolution data, such as AVHRR, MODIS, and SPOT 
VEGETATION data, to extract abandoned cropland (Campbell et al., 
2008; Siebert et al., 2010; Alcantara et al., 2013; Estel et al., 2015). For 
example, Estel et al. (2015) extracted the abandoned cropland in Europe 
using time-series MODIS satellite data and drew a map of the reclama-
tion extent of abandoned cropland. The advantage of this method is that 
it can rely on the satellite’s high time resolution and long life and can 
capture seasonal-to-decade cropland abandonment dynamics, but the 
spatial resolution is low (1 km to 250 m). For cropland with relatively a 
high fragmentation degree (Kuemmerle et al., 2013; Hartvigsen, 2014), 
the classification results may be less reliable. Compared with low- 
resolution satellite data, medium-resolution Landsat images (30 m) 
can monitor abandoned cropland at a more refined spatial scale 
(Duveiller and Defourny, 2010; Blair et al., 2018), which greatly im-
proves the accuracy of abandoned cropland extraction. 

Recently, an inter-annual land use change detection method for 
mapping abandoned cropland using annual Landsat time series data 
during the study period has emerged (Romero and Perry, 2004; Bau-
mann et al., 2011). For example, Song (2019) mapped different types of 
abandoned cropland in mountain areas of China by monitoring Landsat 
and HJ-1 satellite images and applying the successive annual land use 
changes from 2012 to 2017. Dara et al. (2018) used the time series of 
Landsat images and, based on the random forest classification method, 
extracted cropland abandoned in northern Kazakhstan from 1988 to 
2013. The advantage of this method is that it can identify the change 
characteristics of abandoned cropland in a certain period, but the 
extraction accuracy is greatly affected by the initial land use classifica-
tion accuracy, which is prone to error transfer (DeVries et al., 2015; Yin 
et al., 2018a; Wang and Song, 2021). 

The inter-annual land use change detection method can be used on 
pixels or image objects. In practice, pixel-based classification results 
inevitably cause “salt and pepper noise”. Yin et al. (2020) selected 14 
study regions globally, using the Landsat time series to map the extent 
and time of cropland abandonment and to distinguish among stable, 
abandoned, and fallow cropland. However, in some mountainous areas, 
most pixels are a mixture of cropland as well as herbaceous and woody 
plants, and abandoned cropland in these areas is difficult to map due to 
the effect of mixed pixels (Miller et al., 2017). In Asia and Africa, most 
agricultural systems belong to small groups of farmers, and pixel-based 
studies often fail to depict individual cropland (Xiong et al., 2017). The 
Geographic Object-based Image Analysis (GEOBIA) (Sitokonstantinou 
et al., 2018; Feizizadeh et al., 2021; Janowski et al., 2021; Oreti et al., 
2021) delineates any analysis unit by segmenting the image; the image 
information is closer to the features of the real world (Whiteside et al., 
2011), with a higher classification accuracy and application potential 
than pixel-based methods in land cover mapping and change detection 
(Im et al., 2008; Stow et al., 2008; Inglada et al., 2015; Lebourgeois 
et al., 2017). This is therefore an effective method to improve the ac-
curacy of land use classification. At present, the analysis of abandoned 
cropland is mainly focused on pixel-level algorithms, and studies on the 
object-based extraction of abandoned cropland are scarce (Yin et al., 
2018b). 

Although inter-annual change detection methods are increasingly 

used to monitor cropland abandonment at medium and high spatial 
resolution scales, they are only based on one or more pairs of images 
before and after change, and the classification processes of heteroge-
neous images are independent of each other, which easily ignores 
vegetation changes in the growth cycle. However, the time resolution of 
Landsat images is as low as 16 days, making it difficult to find sufficient 
cloud-free images in appropriate periods to establish long time series 
NDVI data covering different crop growth periods. Compared with 
Landsat data, Sentinel-2A/B data with a spatial resolution of 10 m and a 
revisit period of only 5 to 10 days offer an unprecedented opportunity 
for global agricultural monitoring (Battude et al., 2016; Drusch et al., 
2012; Matton et al., 2015; Valero et al., 2016), providing more spatial 
details and a higher temporal resolution (Lebourgeois et al., 2017, 
Sitokonstantinou et al., 2018). Previously, Sentinel-2 data have been 
used for crop classification (Belgiu and Csillik, 2018; Van et al., 2018), 
estimations of chlorophyll and nitrogen contents of crops (Clevers and 
Gitelson, 2013; Herrmann et al., 2011), delineations of cropland 
boundaries (Xiong et al., 2017), and crop yield prediction (Jin et al., 
2019), among others. However, there are few studies that prove the 
potential of Sentinel-2 time series data in the extraction of abandoned 
cropland (He et al., 2022). 

In this context, this paper develops a new method for extracting 
abandoned cropland within-year by combining the NDVI time series of 
Sentinel-2 remote sensing images with the annual land use trajectory of 
the object level. Two types of cropland abandonment, spontaneous and 
induced abandonment, were defined, and abandoned cropland was 
separated from fallow cropland and lost cropland. Linxia County, Gansu 
Province, China, was used as the research area, and we applied Sentinel- 
2 time-series images from 2017 to 2021 to draw a map of fragmented 
and abandoned cropland areas in mountainous areas. The research ob-
jectives are as follows: 1) To develop a method to identify the abandoned 
cropland within-year; 2) to identify the distribution of abandoned 
cropland in Linxia County from 2018 to 2021 and distinguish the 
cropland types; 3) to analyze the spatial change characteristics of 
abandoned cropland in Linxia County and to put forward suggestions for 
reclamation. 

2. Research area and data sources 

2.1. Overview of the research area 

Linxia County (Fig. 1) is under the jurisdiction of Linxia Hui 
Autonomous Prefecture, Gansu Province, China, and covers a total area 
of 1,212.4 k m2. It is in the transition zone between the Qinghai-Tibet 
Plateau and the Loess Plateau. The landform is mainly mountainous 
and hilly, with numerous gullies, tablelands, and streams. The terrain is 
low in the northeast and high in the southwest, with an elevation of 
1,697–4,561 m. Linxia County belongs to the transition zone between 
the temperate semi-humid and alpine humid area, and the climate is 
semi-humid climate. Because of the characteristics of continental and 
monsoon mountain climates, the climate factors change with the height 
of the terrain. The climate is mild in spring and cool and humid in 
autumn, without heat in summer and severe cold in winter. The average 
annual temperature is 5.9℃, with an average annual frost-free period of 
148 days. The average annual precipitation is 630.6 mm, with an 
average annual evaporation of 541.9 mm. According to the FAO-90 soil 
classification system (HWSD, 2009), cambisols is the main soil type in 
Linxia County, followed by chernozems; phaeozems are less frequent. 
The soil texture is mainly loam, including loamy sand and silt loam. The 
dominant harvesting system is one cropping a year, and the main crops 
include wheat, corn, rapeseed, and potatoes. 

Restricted by landform conditions, Linxia County is characterized by 
water resources shortages, an unbalanced spatial and temporal distri-
bution, structural contradictions of supply, and an ecologically fragile 
area with fragmented terrain, ravines, and serious soil erosion. The 
economic aggregate is small, with a low per capita income, an unstable 
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agricultural foundation, rural population outflow, and policy factors 
that have led to the aggravation of cropland abandonment. In recent 
years, in an effort to curb cropland abandonment and ensure food pro-
duction safety, the local government has vigorously pursued the reno-
vation and restoration of abandoned cropland (Linxia County People’s 
Government Network, 2021). On the other hand, a large-scale project to 
return cropland to forest and grassland was initiated in areas unsuitable 
for cultivation to mitigate land degradation caused by soil erosion 
(Linxia Hui Autonomous Prefecture People’s Government Network, 
2021). 

2.2. Data sources 

2.2.1. Remote sensing image data 
Sentinel-2A/B satellite images with cloud cover less than 20 % were 

used for 22 days from April 1, 2017, to November 31, 2021; the research 
area covered two images with a total of 44 periods of data from the 
European Space Agency (ESA, 2021) (Table 1). Among them, the data in 
2017 and 2018 were L1C-level images, which were not atmospherically 
corrected, only orthorectified and geometrically corrected. The image 
data from 2019 to 2021 belonged to the L2A level, adding the atmo-
spheric correction link as atmospheric bottom layer reflectivity 
products. 

2.2.2. Other data 
We used the 30-m land use and land cover change (LUCC) data from 

the Chinese Academy of Sciences in 2015, 2018, and 2020 as a reference 
for delineation samples (RESDC, 2020). These data were constructed 
based on expert knowledge by using Landsat 8 satellite remote sensing 
data and human–computer interactive visual interpretation, with an 
overall accuracy between 83 % and 96 % (Liu et al., 2014). The 

categories of rural settlements included in the data can be used to un-
derstand abandoned cropland at different distances from rural settle-
ments in Linxia County. Google Earth Image (Image Elevation Download 
Expert, 2021) with a spatial resolution of 0.49 m was used to assess the 
accuracy of the land-use classification and abandoned cropland maps 
evaluated by visual discrimination. Digital Elevation Model (DEM) data 
(30 m) were obtained from the Geospatial Data Cloud Platform (GDC, 
2021) and used to calculate the abandonment rate of Linxia County plots 
under different slopes. Traffic and road data were from the Open Street 
Map (OSM, 2021) and used to understand the influence of the distance 
between cropland and roads on cropland abandonment. China’s crop-
land production potential dataset was obtained from the Resource and 
Environmental Science and Data Center, Chinese Academy of Sciences 
(RESDC, 2017); it was calculated based on the Global Agro-Ecological 
Zones (GAEZ) model jointly developed by the Food and Agriculture 
Organization of the United Nations (FAO) and the International Institute 
for Applied Systems Analysis IIASA (Fischer et al., 2006; Liu et al., 2015) 
and used to assess the grain production potential of abandoned farmland 
after reclamation. 

3. Research methods 

We mapped cropland abandonment using Sentinel-2 imagery from 
2018 to 2021. The workflow of mapping abandoned cropland mainly 
included the following steps (Fig. 2): First, the Sentinel-2 data were pre- 
processed. Second, multi-resolution segmentation and random forest 
classifier in eCognition were used to generate the land use map for 
2017–2021, with the aim to estimate the cropland boundaries within- 
year and to determine the annual land use trajectory of the study area. 
To improve the accuracy of the classification results, according to the 
phenological information of crops in Linxia County, the images from 

Fig. 1. Geographic Location of Linxia County, Gansu Province, China.  
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October of each year were selected for classification. Third, the NDVI 
time series data of cropland within-year were created, and the spatial 
distribution of planted cropland and uncultivated land was obtained by 
threshold segmentation. Spontaneous abandonment, induced abandon-
ment, fallow cropland, and lost cropland were distinguished by estab-
lishing the identification rules of different cropland types. Finally, the 
recall rate was used to verify the accuracy of the abandoned cropland 
maps. 

3.1. Data Pre-processing 

To ensure consistency across sensors and days, we used the Sen2Cor 
tool in the Sentinels Application Platform (SNAP, 2019) toolbox for at-
mospheric correction of Sentinel-2 images to convert the Class 1C Top of 
Atmosphere (TOA) reflectance product to Class 2A Bottom of Atmo-
sphere (BOA) (Drusch et al., 2012; Muller-Wilm et al., 2013). Three 
visible bands (red, green, and blue), three red-edge bands (red-edge 705, 
740, and 783), and two near-infrared bands (NIR and Narrow NIR) of 
Sentinel-2 data were used. The Sentinel-2 bands at the 20-m spatial 
resolution were resampled to a 10-m spatial resolution by nearest- 
neighbor resampling (Louis et al., 2016). Finally, layer stacking, seam-
less mosaic, and subset were performed using the ENVI 5.3 software, and 
22 images for classification were finally obtained. In ArcGIS, slope 
calculation was carried out on DEM data of Linxia County, and slope 
data of the study area were cut out. The categories of rural settlements in 
LUCC data in 2015, 2018, and 2020 were extracted respectively, and the 
data set of rural settlements in Linxia County during the study period 
was obtained by ArcGIS overlay analysis. Finally, buffer zones of 50, 
100, and 200 m were constructed around the roads of Linxia County, and 
zones of 100, 200, and 500 m were constructed around the rural set-
tlements. The purpose was to superimpose the abandoned cropland plots 
extracted (Section 3.3) to represent the influence range and degree of 
road and rural settlements on cropland abandonment. 

3.2. Generation of the annual land use map 

3.2.1. Image segmentation 
Image segmentation is a key step in object-oriented image processing 

and determines the initial objects for subsequent processing and anal-
ysis. These objects are cluster pixels that can be separated from the 
surrounding objects and have a certain homogeneity. Here, we first 
generated the object by performing Multi-Resolution Segmentation 
(MRS) in eCognition (Baatz and Schape, 2000). Based on the homoge-
neity criterion, the algorithm combines pixels or image objects into a 
larger image object that has certain homogeneity and can be separated 
from the surrounding objects from the bottom up. When the object’s 
attributes exceed the heterogeneity threshold defined by the segmen-
tation scale, the growth of the object stops. After continuous optimiza-
tion, the internal weighted heterogeneity of each object is minimized. 
The MRS is adjusted by using four key parameters, namely the scale 
parameter (SP), weights for compactness and smoothness, weights for 

Table 1 
Technical details of satellite images for Linxia County.  

Acquisition 
date 

Satellite mission and 
instrument 

Processing 
level 

Cloud cover 
(%) 

30 May 2017 S2A_MSI L1C 4/3 
29 July 2017 S2A_MSI L1C 6/2 
12 October 2017 S2B_MSI L1C 5/3 
20 April 2018 S2B_MSI L1C 9/17 
23 August 2018 S2A_MSI L1C 2/4 
12 October 2018 S2A_MSI L1C 0/1 
10 April 2019 S2A_MSI L2A 3/2 
25 April 2019 S2B_MSI L2A 0/2 
20 May 2019 S2A_MSI L2A 2/2 
24 June 2019 S2B_MSI L2A 2/5 
04 July 2019 S2B_MSI L2A 1/4 
29 July 2019 S2A_MSI L2A 0/1 
03 August 2019 S2B_MSI L2A 4/0 
27 September 

2019 
S2A_MSI L2A 0/2 

17 October 2019 S2A_MSI L2A 0/1 
01 November 

2019 
S2B_MSI L2A 1/12 

29 April 2020 S2B_MSI L2A 3/5 
28 June 2020 S2A_MSI L2A 8/5 
21 October 2020 S2A_MSI L2A 0/4 
29 April 2021 S2A_MSI L2A 0/0 
13 July 2021 S2B_MSI L2A 2/3 
05 November 

2021 
S2A_MSI L2A 0/2 

Notes: The whole territory of Linxia County is spliced by two Sentinel-2 satellite 
images. Table 1 includes 44 images of Linxia County, Gansu Province, China, 
taken at different 22 days from 2017 to 2021. The satellite mission and instru-
ment and processing levels of the two images are the same on the same day, and 
the cloud cover of 4/3; 6/2… means that the cloud cover of the two images taken 
in a day was 4 % and 3 %; 6 % and 2 %, … respectively. 

Fig. 2. Technical flow of mapping abandoned cropland.  
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color and shape, and band weights. In this study, all spectral bands were 
used, and the NIR bands were given higher weights for image segmen-
tation (Johnson and Xie, 2011). The weights of compactness and 
smoothness as well as color and shape were obtained by using the 
control variable method to traverse trial and error and constantly adjust 
the parameters. 

The scale parameter (SP) is the key control factor in the MRS and 
divides the whole image into different image objects. It controls the 
spectral heterogeneity of image objects; i.e., the larger the SP value, the 
greater the internal heterogeneity and the higher the number of pixels 
per image object (Johnson and Xie, 2011). Whilst comparing multiple 
segmentation results through user vision can flexibly incorporate expert 
knowledge into GEOBIA, it is limited by time, a high labor demand, and 
high costs (Duro et al., 2012; Arvor et al., 2013). On the other hand, 
different experts may have different ideas about the SP with the highest 
segmentation quality, making it highly subjective. Here, the SP was 
determined by optimal segmentation scale estimation (ESP2) (Dragut 
et al., 2014). In this method, the image is automatically segmented with 
a fixed increment of scale, and the homogenous local variance of the 
image object is calculated as the average standard deviation of the 
segmented object layer to determine the optimal segmentation scale. 
The optimal scale parameter of object segmentation is expressed by the 
rate of change (ROC) of local variance (LV). When the LV-ROC decreases 
and suddenly peaks, the corresponding segmentation scale is the optimal 
segmentation scale. The equation is as follows: 

ROC =
Li − Li− 1

Li− 1
× 100% (1)  

where ROC is the change rate of the corresponding LV, and Li is the 
average standard deviation of the segmentation object at the i layer of 
the image. 

Subsequently, the maximum area of the image object at different 
segmentation scales was calculated using the maximum area method 
(Huang, 2003). In object-oriented image analysis, the concept of reso-
lution is replaced by the area of the image object (the product of the 
number of pixels that make up the object and the pixel resolution size). 
The maximum area of the image object can reflect the characteristics of 
the size change of the object with the segmentation scale. The segmented 
image is exported as a vector file, and the segmentation scale and the 
maximum area of the image object are, respectively, taken as the hori-
zontal and vertical axes to draw the change curve of the maximum area 
of the image object with the segmentation scale. The curve platform 
corresponds to the range of the most suitable segmentation scale 
extracted from each category. Finally, the optimal segmentation scale 
was determined by the combination of ESP2 and the maximum area 
method. 

3.2.2. Sample selection 
According to the LUCC classification system of the Chinese Academy 

of Sciences and the actual situation of the study area, we divided the 
land use types into six typical categories: cropland, forest, grassland, 
water area, built-up land, and unused land. To train and validate the 
results of land use classification, we intersected the datasets over these 3 
years and extracted plots that had remained unchanged for 3 years as a 
preliminary reference for sample selection. Second, to ensure that the 
classified sample data were distributed as evenly as possible in the entire 
study area, we used ArcGIS 10.5 to generate approximately 1,500 uni-
formly distributed random points within the study area. By comparing 
land use data, Google Earth images, and visual discrimination of 
Sentinel-2 images, random points that simultaneously met the three 
criteria were selected as sample points, and random points that did not 
meet these criteria were deleted. Overall,1,228 sample points were ob-
tained. Of these, 860 sample points were selected for sample training of 
the random forest model, and the remaining 368 samples were used for 
accuracy validation of the classification results. Finally, the sample 

points are assigned to the polygonal blocks after segmentation, and the 
training and verification samples at the object level were obtained. 

3.2.3. Feature Space construction 
The initial feature space was constructed from four aspects: spectral 

feature, shape feature, texture feature, and spectral index feature. 

Spectral feature: three visible bands (red, green, and blue), two near- 
infrared bands (NIR and Narrow NIR), and three unique red-edge 
bands (705, 740, and 783) of Sentinel-2 satellite were selected. 
The red-edge band is highly sensitive to the vegetation state, and 
within the range of the band, the vegetation reflectance rises sharply, 
making it an important indicator for vegetation classification and 
vegetation growth assessment (Thanh and Kappas, 2017, Sitokon-
stantinou et al., 2018). Mean and Standard deviation of the above 
eight bands, Brightness Settings (the sum of the number of layers of 
the image object divided by the mean of the layers containing 
spectral information), and maximum intra-object difference (Diff) 
were selected as the initial spectral feature set, with a total number of 
18. 
Texture features: In the early 1970 s, Haralick et al. (1973) proposed 
the gray-level co-occurrence matrix (GLCM). By calculating the 
probability of a direction θ separate step D gray value, we can extract 
the image spatial structure. Some studies show that adding the GLCM 
can improve the accuracy of remote sensing image classification 
(Marceau et al., 1990, Huang and Zhang, 2012). Here, GLCM 
Ang.2nd moment, GLCM Entropy, GLCM Contrast, GLCM StdDev, 
GLCM Correlation, GLCM Homogeneity, and GLCM Dissimilarity 
were selected. The statistical means of all directions were selected as 
the initial texture feature set, with a total of seven. 
Shape feature: The image object layer generated after multi- 
resolution segmentation has an obvious shape feature, which can 
be used to improve the accuracy of image classification (Stumpf and 
Kerle, 2011). We selected border index, compactness, density, shape 
index, elliptic fit, roundness and rectangular asymmetry fit, area, 
length/width, and asymmetry as the initial shape feature set, with a 
total of 10. 
Spectral index feature: After ratio processing, the spectral index can 
partially eliminate the influence of changes in irradiance conditions 
related to solar elevation angle, satellite observation angle, terrain, 
cloud/shadow, and atmospheric conditions (Carlson and Ripley, 
1997). In this study, 9 representative spectral indices were selected 
as the initial classification feature set. The NDVI (Carlson and Ripley, 
1997) can well represent the vegetation growth state and vegetation 
coverage and can effectively distinguish vegetation from soil and 
water. The ratio vegetation index (RVI) (Major et al., 1990) is more 
sensitive when monitoring high vegetation coverages and can better 
overcome the shortcomings of easy saturation in high-vegetation 
areas of the NDVI. The difference Vegetation Index (DVI) (Jiang 
et al., 2006) and the soil-adjusted vegetation index (SAVI) (Huete, 
1988) can correct the sensitivity of the NDVI to soil background and 
overcome the disadvantage that the NDVI is easily affected by soil 
background in low-vegetation areas. As a sensitive vegetation band, 
the red edge can more effectively reflect the spectral characteristics 
of vegetation. Three red-edge normalized vegetation indices (NDVI 
R705, NDVI R740, and NDVI R783) were constructed to participate in 
the classification (Clevers and Gitelson, 2013). The bareness Index 
(BI) (Chen et al., 2006) can reflect the bare condition of non- 
vegetation soil, whereas the normalized difference water index 
(NDWI) (Gao, 1996) can be used to highlight water information in 
the image. 

This study used the Feature Space Optimization module in eCogni-
tion Developer 9.0 to select appropriate features. Based on the 44 fea-
tures selected above, the feature separation function was constructed. 
Based on the samples of each category and the initial feature set, the 
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feature combination with the maximum average and minimum distance 
between the categories is the optimal feature collection of the classifi-
cation. In this way, problems such as a sharp increase in calculation 
amount, a reduction in classification accuracy, and the redundancy of 
classification features caused by blindly using multiple features in the 
classification process can be avoided. In this study, when the feature 
dimension reached 31 dimensions, the category separability was high-
est; therefore, the optimal feature space was set as 31 dimensions 
(Supplementary Fig. 1, Table 2). 

3.2.4. Random forest classification 
The random forest classifier (RF) uses bootstrap bagging to search a 

random subspace from a given feature and optimal split nodes by 
minimizing the correlation between trees, resulting in an ensemble of 
trees. It can effectively describe the nonlinear relationship between the 
spectral characteristics of ground objects and their physical conditions 
and has the ability to resist noise and overfitting; it can therefore 
effectively deal with unbalanced data. Compared with other classifiers, 
RF is faster and easier to implement (Breiman, 2001; Tian et al., 2016). 
Precise land cover classification and better performance of RF models 
have been described previously (Pelletier et al., 2016; Sharma et al., 
2016; Wessels et al., 2016). First, the selected training samples were 
assigned to the segmented image object, and second, RF in eCognition 
was used for classification. In this study, the eCognition software was 
used to set three parameters by default: Max categories were set to 16, 
Max tree number was set to 50, and Forest accuracy was set to 0.01. In 
similar studies, this parameter showed the best classification results 
(Husson et al., 2016; Oreti et al., 2021; Stefanski et al., 2013). 

3.2.5. Accuracy assessment of land use classification 
We used the producer accuracy (PA), user accuracy (UA), overall 

accuracy (OA), and Kappa coefficients to verify the land-use classifica-
tion results in the confusion matrix. The PA is the ratio of correctly 
classified plots to the actual total number of plots on the ground, 
whereas UA is the ratio of correctly classified plots of land in a given 
category to the total number of plots predicted to fall into that category. 
The OA is the ratio of the number of correctly classified plots to the total 
number of plots (Story and Congalton, 1986). The statistical measure 
Kappa is used to describe the overall classification accuracy and is 
generally superior to simple accuracy measures because it accounts for 

the random agreement between authenticity and estimates (Cohen, 
1960). 

3.3. Extraction of abandoned cropland Within-Year 

3.3.1. Construction of the NDVI time series Within-Year 
The NDVI time series dataset was constructed by analyzing the 

quarterly variation within-year. The year 2019 was taken as an example, 
the classified cropland boundary was extracted as a mask to establish the 
NDVI time series from April to October 2019, the harmonic analysis of 
time series method (Hants) (Zhang et al., 2014a) was used to smooth the 
NDVI time series, and the NDVI change map of the cropland in the study 
area in 2019 was obtained (Fig. 3). 

The NDVI value of planted cropland was low in April, high in July, 
and decreased sharply in October; the overall change range was large, 
and fluctuation was violent. The NDVI decreased slightly at the end of 
April and increased again at the end of October, which may have been 
caused by weeding during the sowing period and grass growing after the 
harvesting period. In contrast, the change trend of the NDVI of aban-
doned cropland was different, and the change range of the NDVI was 
considerably smaller than that of planted cropland. From May to July, 
the NDVI slowly climbed to the maximum value, followed by a decrease 
after August. In general, the NDVI value of planted cropland in the study 
area in April was slightly lower than that of abandoned cropland, and 
the NDVI value in July considerably differed from that of abandoned 
cropland in July, with a sharp decrease in October, the NDVI value of 
planted cropland was lower than that of abandoned cropland. Based on 
this, the NDVI data for spring, summer, and autumn of 2018, 2020, and 
2021 were generated by the ENVI software to enable the threshold di-
vision and distinction between planted and abandoned cropland. 

3.3.2. Threshold segmentation 
The main purpose of threshold segmentation is to compare the NDVI 

time series curves of planted and abandoned cropland within-year and 
find the best threshold that can distinguish the two. Otsu (Otsu, 1979) is 
an adaptive threshold segmentation algorithm proposed by the Japanese 
scholar Nobuyuki Otsu; it divides the image into target and background, 
based on its gray level. Finding the best segmentation threshold through 
traversal, achieving the largest variance among categories, or obtaining 
the smallest within-class variance, this algorithm is the most widely used 
algorithm of automatic segmentation threshold today. In this study, the 
selection of the segmentation threshold was mainly determined by the 
combination of the following points: comparing the optimal Table 2 

The geographic object-based image classification object features.  

Feature Set Feature Description 

Spectral feature Mean values of red edge 740, red edge 783, NIR, Narrow NIR 
(4 variables) 
Standard deviation of blue, red, red edge 705, red edge 740, 
red edge 783, NIR, Narrow NIR (7 variables) 

Vegetation index 
feature 

NDVI (Carlson and Ripley, 1997), RVI (Major et al., 1990), 
NDVI R705, NDVI R740, NDVI R783 (Clevers and Gitelson, 
2013), SAVI (Huete, 1988), NDWI (Gao, 1996) (7 variables) 

Texture features GLCM Entropy, GLCM StdDev, GLCM Correlation (3 
variables) 

Shape features Border index, Compactness, Density, Shape Index, Elliptic Fit, 
Roundness, Rectangular Fit, Area, Length/Width, Asymmetry 
(10 variables) 

Notes: NDVI (normalized difference vegetation index), the formula is 
(NIR − Red)/(NIR+ Red). RVI (ratio vegetation index), the formula is NIR/R. 
NDVI R705 (normalized difference vegetation index red edge 705), the formula is 
(NIR − Red edge 705)/(NIR + Red edge 705). NDVI R740 (normalized difference 
vegetation index red edge 740), the formula is (NIR − Red edge 740)/(NIR +

Red edge 740). NDVI R783 (normalized difference vegetation index red edge 
783), the formula is (NIR − Red edge 783)/(NIR + Red edge 783). SAVI (soil- 
adjusted vegetation index), the formula is 1.5× (NIR − Red)/(NIR+ Red+ 0.5). 
NDWI (normalized difference water index), the formula is 
(Green − NIR)/(Greeen + NIR).  Fig. 3. NDVI changes in different categories of cropland in Linxia County from 

April to October 2019. NDVI = normalized difference vegetation index. 
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segmentation threshold calculated by Otsu with the NDVI change in-
formation of planted and abandoned cropland and using the feature 
view function provided by the eCognition Developer 9.0 software for 
repeated testing. Finally, the optimal threshold to distinguish planted 
from abandoned land was found, the planted land was extracted by 
eCognition threshold classification, and the abandoned cropland was 
extracted indirectly by subtracting the planted from the total cropland. 

3.3.3. Defining and identifying the cropland type 
In this study, referring to the definition of abandoned cropland by the 

European Union Environmental Policy Institute (Keenleyside et al., 
2010), combined with the actual situation of the study area, the crop-
land that had not been planted for 2 consecutive years or more was 
classified as spontaneously abandoned cropland, and cropland that had 
not been cultivated for only 1 year was classified as fallow cropland. 
Abandonment caused by returning cropland to forest was classified as 
induced abandonment, and cropland occupied by built-up land was 
classified as lost cropland. Judging from the natural succession of 
vegetation coverage after cropland abandonment, in the initial stage, 
the original cropland was dominated by annual herbaceous species, with 
a sparse distribution. Over time, the proportion of these species gradu-
ally decreases, making room for perennial herbs, dwarf woody plants, or 
shrubs (Brown and Southwood, 1987; Alcantara et al., 2012). In the 
absence of human disturbance, the change from bare ground to a site 
with annual or perennial herbs can take 1 to 3 years, whereas dwarf 
woody plants or shrubs occur after 4 to 5 years and mature trees after at 
least 10 years (Smaliychuk et al., 2016; Nguyen et al., 2018). However, 
vegetation succession may be accelerated due to policy factors, such as 
the Chinese policy of returning cropland to forests and some grassland 
restoration programs in the United States, such as the Conservation 
Reserve Program (CRP) (Song and Pijanowski, 2014), which was 
launched in 1985. In such cases, new forests are formed within a shorter 
time after abandonment. Based on the above definition, we generated 
the cropland change trajectory from 2017 to 2021. First, the cropland 
boundary of the classified initial year was used to mask the study area, 
and the changes in the land use type of each object (T) in the initial range 
of cropland in other years were judged respectively. If T was cropland 
during the whole study period, the object was classified as stable crop-
land. If T was eventually replaced by built-up land, the object was 
classified as lost farmland. In case T was subjected to the transformation 
from cropland to grassland and then to woodland, the object was clas-
sified as induced abandoned land. If T was transformed from cropland to 
unused land or grassland, and the continuous period of unused land or 
grassland was more than 2 years, the object was classified as sponta-
neously abandoned. If T had not been cultivated within 1 year during the 
study period and was recultivated in other years, the object was classi-
fied as fallow cropland. 

3.3.4. Extraction of abandoned cropland Within-Year 
By using the cropland boundary obtained by classification as the 

limit range, we excluded the interference of changing ground objects 
outside the cropland range. Based on the seasonal differences in the 
NDVI between planted and abandoned cropland, two changes were 
detected from spring-summer and summer-autumn, and the two detec-
tion results were combined to extract the planted cropland within-year. 
We subtracted the planted cropland from the total cropland to obtain the 
unplanted cropland. Finally, we used the ArcGIS software to intersect 
these areas with the different types of cropland objects extracted from 
the annual land use trajectory, and the distinction of spontaneous 
abandonment, fallow, induced abandonment, and lost cropland was 
made. The equations used for extracting different cropland types were as 
follows: 

AS = AU ∩ TS (2)  

AF = AU ∩ TF (3)  

AI = AU ∩ TI (4)  

AL = AU ∩ TL (5)  

AU = C − D1 ∪ D2, (6)  

where AU is the range of uncultivated land in a certain year during the 
study period, AS is the spontaneously abandoned cropland in a certain 
year during the study period, TS is the spontaneously abandoned crop-
land extracted from the annual land use trajectory, and so on, AF,AI,AL 

are fallow cropland, induced abandoned cropland, and lost cropland, 
respectively, during the study period, TF,TI,TL are fallow cropland, 
induced abandoned cropland, and lost cropland extracted from the 
annual land use trajectory, respectively, C is the range of cropland in a 
certain year during the study period, D1 is the detection result from 
spring to summer, and D2 is the detection result from summer to 
autumn. 

3.3.5. Accuracy assessment of abandoned cropland 
Recall was used to verify the accuracy of the farmland abandonment 

map. In the ArcGIS software, 100 random sampling points were estab-
lished annually on the plots of spontaneously abandoned cropland and 
fallow cropland extracted from 2018 to 2021, and 20 and 50 random 
sampling points were established annually on the plots of induced 
abandoned cropland and lost cropland, respectively. Minimum point 
spacing was 150 m. A visual assessment of Sentinel-2 image time series 
from 2018 to 2021 was used to verify actual land cover categories. To 
avoid misunderstandings caused by within-year changes in crop growth, 
Cloudless images collected in spring (April to May), summer (June to 
August), and autumn (October to November) were selected for inter-
pretation (Prishchepov et al., 2012b; Yin et al., 2018b). A 0.49-m spatial 
resolution image from Google Earth was used to facilitate visual inter-
pretation. Two experts then marked the plots where each point was 
located as positive or negative, i.e., correctly or incorrectly extracted 
abandoned cropland. When the two experts’ assessments differed, a 
third expert was asked to mark the point in order to reach a majority 
decision. Using this validation dataset, we calculated the extraction 
accuracy of abandoned croplands using the following equation (Khur-
shid and Khan, 2014): 

Recall =
TP

TP + FN
× 100% (7)  

where “TP” (true positive) indicates that the prediction is positive, that 
is, correctly extracted abandoned cropland, and “FN” (false negative) 
indicates that the prediction is negative, that is, incorrectly extracted 
abandoned cropland. 

4. Results 

4.1. Multiple resolution segmentation 

In this study, the optimal level of MRS was obtained using the 
combination of ESP2 and the maximum area method, and the MRS Al-
gorithm was run using weights of 0.1 for color and shape and 0.5 for 
compactness and smoothness. By testing the number of segmentation 
objects at different segmentation scales, the SP of 10 was the starting 
point, and the step size of 5 was used to segment the image. When the SP 
is small, the number of the segmented objects varies dramatically, and as 
the SP gradually increases, the change amplitude becomes extremely 
slow (Supplementary Fig. 2A). We chose SP 40 as the starting point of 
image segmentation scale selection and took SP 150 as the end point 
(Supplementary Fig. 2B). The step length was set to 5, and the number of 
cyclic segmentation times was set to 100. The above parameters were 
fed into ESP2, and the optimal segmentation scales identified were 71, 
100, and 119, respectively (Supplementary Fig. 3). The parameters of 
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the maximum area method were set as above, the maximum area of the 
image object increased in the form of a ladder with the increase in the 
segmentation scale, and the platform periods with an unchanged middle 
area were 75–80, 90–95,100–105, and 125–130 (Supplementary Fig. 4), 
respectively. Combining ESP2 and maximum area methods, 100 was 
finally selected as the most appropriate SP for the image. 

4.2. Land use classification 

4.2.1. Land use classification accuracy 
We used the object-based method to generate five different land use/ 

cover maps of Linxia County for the period from 2017 to 2021 and used 
the confusion matrix to calculate the overall, producer, and user accu-
racy, respectively, with the aim to verify the accuracy of land cover 
types in Linxia County (Table 3). Although the accuracy of different 

Fig. 4. Land use classification results for Linxia County from 2017 to 2021.  
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categories differed, that of our overall mapping was between 87 % and 
98 %, the producer accuracy of cropland ranged between 87 % and 99 
%, the user accuracy was between 84 % and 99 %, and the Kappa co-
efficient of the results of the five phases was greater than 0.8. This leads 
us to infer that the method is ideal for land use/cover types and can be 
used for the subsequent analysis of the land use change trajectory. 

4.2.2. Land use change 
Based on the land use map from 2017 to 2021 (Fig. 4), cropland in 

Linxia County was mainly distributed in the eastern and northern re-
gions, whereas forest and grassland areas were more dominant in the 
western and southern areas. Over time, the cropland area showed a 
trend towards fragmentation. Built-up areas were distributed in the 
middle and northeast areas of Linxia County, on both sides of the river. 
With economic development, the built-up area increased slightly, 
mainly in the eastern and northern parts of the study area. 

4.3. Distribution of abandoned cropland Within-Year 

4.3.1. Abandoned cropland extraction accuracy 
We used Sentinel-2 time series and Google Earth images to verify the 

extraction accuracy for different cropland types in Linxia County from 
2018 to 2021. The recall of spontaneously abandoned cropland ranged 
from 79 % to 82 %, and that of fallow cropland was slightly lower, from 
71 % to 76 %, mainly due to confusion between these two categories. 
The recall values of induced abandoned cropland and lost cropland were 
high, and the 4-year average annual recall values were 91.25 % and 
89.5 %, respectively (Table 4). 

4.3.2. Extraction results of abandoned cropland Within-Year 
According to our method, cropland abandoned in Linxia County from 

2018 to 2021 was extracted (2017 was taken as the initial year, not 
included in the cropland type statistics) (Fig. 5). From 2018 to 2021, 
significant cropland abandonment occurred in the central, eastern, and 
northern regions of the study area. Fig. 6 shows the statistics of the 
different cropland types. From 2018 to 2021, the spontaneous aban-
donment rate in Linxia County ranged between 7.70 % and 15.80 %; this 
abandonment type was most pronounced in 2019, with an area of 28.97 
km2. The fallow rates ranged between 5.11 % and 16.76 %, with the 
highest fallow area of 30.72 km2 in 2019. Both induced abandoned 

cropland and lost cropland reached maximum values 2021, accounting 
for 1.75 % and 7.19 %, respectively, with areas of 3.80 and 15.58 km2, 
respectively. Based on these findings, cropland abandonment in Linxia 
County peaked in 2019. 

4.4. Analysis of the spatial change characteristics of abandoned cropland 

Generally, spontaneously abandoned cropland is located in moun-
tainous areas with higher slopes or near road networks; the reasons for 
abandonment are usually socioeconomic, ecological, or political factors 
(Song and Deng, 2017; Næss et al., 2021). In addition, labor migration 
leads to an increase in abandoned cropland in emigration areas (Li and 
Tan, 2018). In this study, we selected slope, distance from the road 
network, and distance from rural settlements to study their effects on 
spontaneous cropland abandonment. 

4.4.1. Slope 
By calculating the abandonment rates of different types of plots 

under each slope (Fig. 7), we found that with increasing slope, cropland 
abandonment generally became more pronounced. In 2018 and 2020, 
the relationship between slope and abandonment rate was first positive 
and then negative, which was more pronounced at slopes greater than 
24◦, where the area of cropland decreased sharply, resulting the aban-
donment rate under the slope decreased slightly. 

4.4.2. Distance from the road network 
As seen in Fig. 8, the distance from the road network greatly 

impacted cropland abandonment. The area of abandoned cropland 
within 50–100 m from the road network was smallest, and with 
increasing distance to the road, cropland abandonment was more 
pronounced. 

4.4.3. Distance from rural settlements 
According to Fig. 9, cropland abandonment was clearly related to the 

distance from rural settlements. Within the range of 100–200 m from 
rural settlements, the abandonment rate was low, indicating that this 
distance is more suitable for farmers to cultivate their land. Cropland too 
far or too close to rural settlements was more likely to be abandoned. 

Table 3 
Producer Accuracy (PA), User Accuracy (UA), Overall Accuracy (OA), and Kappa Coefficient for Linxia County from 2017 to 2021.  

Type 2017 2018 2019 2020 2021 

PA UA PA UA PA UA PA UA PA UA 

Cropland 0.98 0.99 0.99 0.97  0.87  0.84 0.96 0.95 0.93 0.89 
Forest 1 0.98 0.98 0.98  0.92  0.97 0.96 0.98 0.96 0.9 
Grassland 0.96 0.98 0.92 0.98  0.88  0.91 0.91 0.94 0.74 0.86 
Water 1 1 1 1  0.9  0.69 1 1 1 1 
Built-up land 1 0.92 1 0.9  0.71  0.77 0.97 0.97 1 0.94 
Unused land 0.88 1 1 0.8  0.78  0.58 1 1 1 1 
OA 0.98 0.97 0.87 0.95  

0.89 
Kappa 0.97 0.96 0.83 0.93  

0.84  

Table 4 
Accuracy of the assessment of abandoned cropland in Linxia County from 2018 to 2021.   

SA FL IA LC  

TP FN Recall TP FN Recall TP FN Recall TP FN Recall 

2018 81 19 81 % 74 26 74 % 20 0 100 % 46 4 92 % 
2019 81 19 81 % 76 24 76 % 17 3 85 % 45 5 90 % 
2020 79 21 79 % 73 27 73 % 18 2 90 % 45 5 90 % 
2021 82 18 82 % 71 29 71 % 18 2 90 % 43 7 86 % 

Notes: SA: spontaneously abandoned cropland, FL: fallow cropland, IA: induced abandoned cropland, LC: lost cropland, TP: “true positive”, FN: “false negative”. 
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Fig. 5. Distribution of different abandoned cropland types in Linxia County from 2018 to 2021.  
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Fig. 5. (continued). 
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5. Discussion 

5.1. Object-oriented classification 

In previous studies on abandoned cropland, the pixel level was the 
dominant level (Pueyo and Beguería, 2007; Prishchepov et al., 2012a, 
2013; Lasanta et al., 2017). Here, Sentinel-2 images were segmented, 
and the object was taken as the basic unit for monitoring abandoned 
cropland. The main advantages are as follows: 1) Object-oriented image 
analysis technology delineated polygonal plots closer to real cropland 

characteristics through image segmentation, which could be directly 
stored and linked to the database as attributes or features, thus facili-
tating managers to directly guide and formulate policies on cropland 
abandonment in a given region (Ming et al., 2015; Gil-Yepes et al., 
2016). 2) By eliminating the “salt-and-pepper effect” caused by pixel- 
level classification, inadequate classifications of abandoned cropland 
caused by mixed pixels were avoided, and the error transmission caused 
by classification accuracy in the extraction of abandoned cropland by 
the trajectory of land use was reduced, thus achieving a higher detection 
accuracy (Yin et al., 2018b). 3) Spatial segmentation reduces intra-class 

Fig. 6. Statistics of cropland types in Linxia County from 2018 to 2021.  

Fig. 7. Spontaneous cropland abandonment rates under different slopes in Linxia County from 2018 to 2021.  
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Fig. 8. Spontaneous cropland abandonment rate as a factor of distance to the road in Linxia County from 2018 to 2021.  

Fig. 9. Spontaneous cropland abandonment rate as a factor of distance to rural settlements in Linxia County from 2018 to 2021.  
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spectral heterogeneity by dividing the image into relatively uniform 
areas, effectively using Sentinel-2′s high spatial resolution and neigh-
borhood information, such as size, shape, texture, and topological re-
lations (Benz et al., 2004; Blaschke, 2010; Johnson and Xie, 2011). 

Image segmentation is a challenge in object orientation because it 
requires user intervention to define the best segmentation parameters 
for describing objects of interest (Belgiu and Csillik, 2018). To determine 
the optimal segmentation scale parameters, we used the optimal seg-
mentation scale estimation (ESP2) combined with the maximum area 
method to control the internal heterogeneity of objects, which is more 
labor-, time-, and cost-efficient. Notably, multi- resolution segmentation 
can achieve top-down or bottom-up segmentation of different object 
scales by creating multiple levels. The main purpose of this study was to 
extract cropland boundaries, and only one of the hierarchies was 
selected for segmentation. If the goal is to identify the actual crop or 
other plant types, further refinement is required (Oreti et al., 2021). 

5.2. Comparisons with previous studies 

Our work uses Sentinel-2 images to extract abandoned cropland. 
Compared with the plots of abandoned cropland based on Landsat 
annual time series (Prishchepov et al., 2012b; Kraemer et al., 2015; 
Song, 2019), high spatial resolution enables us to successfully identify 
the boundaries of fragmented cropland in mountainous areas and reduce 
underestimating the abandoned cropland area. A high time resolution 
throughout the year allows us to map changes in different vegetation 
types throughout the growth cycle, which is especially important when 
monitoring abandoned cropland (Alcantara et al., 2013; Estel et al., 
2015). Moreover, the original image was subjected to orthographic 
correction and subpixel level geometric precision correction, and the 
image after 2019 was subjected to atmospheric correction; this approach 
saves time and costs. We also applied the vegetation red edge bands 
(705, 740, and 783) specially used for cropland mapping in the classi-
fication process, which showed high values in the feature construction, 
consistent with previous findings (Immitzer et al., 2016). 

The abandoned cropland within-year was extracted by threshold 
segmentation and subsequently combined with the interannual dynamic 
database obtained from the land use trajectory. The complementarity of 
the two methods was used to reduce the extraction errors; simulta-
neously, different cropland types within-year could be easily distin-
guished, which alleviated the pressure of manpower to identify heavy 
sample databases. The reliability of our method was tested by compar-
ison with other relevant studies in mountainous areas of China. For 
example, Shi et al. (2018) obtained the distribution map of abandoned 
cropland from 2002 to 2011 by superimposing two phases of cultivated 
map layers in typical counties in Chongqing, China, for 2002 and 2011, 
obtaining abandonment rates between 15 % and 20 %. Li et al. (2017) 
conducted a sample survey on cropland abandonment in mountainous 
areas and counties in China and calculated an average abandonment 
rate of 14.32 %. The cropland abandonment rate extracted by our 
method was 13.03 %, which is consistent with the result of Li et al. 
(2017) and is slightly lower than that of Shi et al. (2018); this discrep-
ancy is likely a result of the spatial pattern of cropland abandonment in 
mountainous areas of China, which is high in the south and low in the 
north (Li et al., 2017). Alcantara et al. (2012) adopted the MODIS NDVI 
time series product and combined it with support vector machine clas-
sification to monitor abandoned cropland in the Baltic States, Belarus, 
and Poland, obtaining an accuracy rate of 65 %. Based on the annual 
map of active cropland and non-cropland areas in 14 regions of the 
world from 1987 to 2017, Yin et al. (2020) extracted abandoned crop-
land by analyzing the land-use trajectories of each pixel, with an iden-
tification accuracy of approximately 75 %. The accuracy rate of our 
method was approximately 81 %, slightly higher than that of the study 
mentioned above. 

5.3. Method transferability 

We used Sentinel-2 satellite images to identify abandoned cropland. 
These open-source data cover the entire world and are freely available, 
which can be extended to other parts of the world. We tested our method 
in a mountainous area of China (Linxia County), and our findings were 
consistent with the characteristics of cropland fragmentation in moun-
tainous areas. We used the EU Environmental Policy Institute’s defini-
tion of cropland abandonment (i.e., cessation of farming for more than 2 
years), which is the same as the local government department’s defini-
tion of cropland abandonment (Linxia County People’s Government 
Network, 2022b). This implies that our method can be used to map 
cropland abandonment in other parts of China and of the world with 
similar land-use change processes. However, adjustments may be 
needed before applying our approach directly to other areas with 
different social and natural environments. Due to differences in climate, 
soil conditions, and agricultural policies in different regions, the fallow 
periods may exceed 5 years in some areas (Rudel et al., 2009; Estel et al., 
2015). In this case, other satellite images (such as the Landsat series), 
with earlier launch time and longer operating time, should be selected, 
and in the selection of segmentation scale parameters, changes in image 
spatial resolution may need to be considered. When the study area is 
shifted to a larger scale, a pixel may contain multiple land use types, and 
pixel or subpixel analysis should be preferred (Blaschke, 2010). In 
addition, the temporal resolution of Landsat data is not high, and some 
areas of individual images are easily covered by clouds; in this case, it 
may not be possible to construct NDVI time series changing with the 
growth cycle of vegetation. On these grounds, multi-source remote 
sensing data should be combined to complete the research. Our method 
can also be applied to other land use change studies, such as crop clas-
sification (Immitzer et al. 2016; Belgiu and Csillik, 2018), urban build-
ing and road identification (Myint et al. 2011), forest mapping 
(Conchedda et al., 2008), and wetland monitoring (Dronova et al., 
2011). 

5.4. Suggestions on the reclamation of abandoned cropland in Linxia 
County 

From 2018 to 2021, approximately 13.03 % of the cropland in Linxia 
County, Gansu Province, was abandoned yearly. Among the four crop-
land types, spontaneously abandoned cropland was relatively densely 
distributed in the plain area of Linxia County, accounting for the highest 
proportion (11.98 %) of abandoned cropland. For example, in areas with 
a slope below 24◦, the average annual area of spontaneously abandoned 
cropland was 23.34 km2, accounting for approximately 93 % of the 
abandoned cropland in this area. We estimated the production potential 
of this part of abandoned cropland of Linxia County using the cropland 
production potential data of the Chinese Academy of Sciences (RESDC, 
2017). Based on the results, if all these abandoned cropland sites can be 
reclaimed, the local grain production can be increased by 5,147.7 tons, 
accounting for 3.6 % of the county’s total grain output in 2021 (Linxia 
County People’s Government Network, 2022a). However, reclamation 
needs to be combined with information on the local physical geography 
and human activities. Since 2003, agricultural labor costs in China have 
been increasingly rapidly (Zhang et al., 2014b; Fang et al., 2009), and 
farmers usually take mechanical measures as alternative to labor to cope 
with the loss of profits caused by rising labor costs. However, in some of 
the more remote areas, the lack of transportation has hindered the 
mechanization of agriculture, cropland reclamation in such areas re-
quires more labor and management input (MacDonald et al., 2000; 
Strijker, 2005; Raj Khanal and Watanabe, 2006). Our analysis of the 
distance between abandoned cropland and rural settlements showed 
that the optimal distance of cropland to rural settlements is 100–200 
(also referred to as the Euclidean distance, considering the impact of the 
terrain, and the actual distance is farther). Previous research has shown 
that farmers have shifted from mere food production to high-value 

B. Liu and W. Song                                                                                                                                                                                                                             



Catena 223 (2023) 106924

15

farming systems based on livestock and dairy production to increase 
their incomes. For example, the construction of dairy factories, slaugh-
terhouses, and shared freezers near residential areas occupy cropland 
(Dixon et al., 2001; Pretty 2008). The reclamation of abandoned crop-
land sites that are far away may be more expensive because of the long 
distance to be travelled and inconvenient transportation (MacDonald 
et al., 2000). In recent years, the price of agricultural means of pro-
duction continued to increase as an effect of a low farming efficiency. 
Numerous rural laborers sought employment outside the farm, and those 
living close to roads had more opportunities to find jobs in the non-farm 
sector (Khanal and Watanabe, 2006), which led to a shortage of agri-
cultural laborers near the road network (Hatna and Bakker, 2011). The 
lack of labor force may further impede the reclamation of abandoned 
cropland. Therefore, we suggest that for abandoned cropland sites with 
small slopes and moderate traffic conditions, the management depart-
ment should organize reclamation as soon as possible and give priority 
to their use for food production. Regarding abandoned sites due to 
outmigration, the farmland contractor or collective organization should 
be urged to transfer such sites to large farmers or cooperatives for 
reclamation and planting within a certain time limit. In the case of 
abandoned farmland because of inconvenient transportation, it is 
necessary to improve the farmland infrastructure conditions through the 
construction of mechanical cultivation roads and other measures. In the 
unstable and vulnerable global food security landscape, policymakers 
can introduce a series of subsidies for land and food prices to encourage 
local farmers to reclaim their cropland in these moderate areas. 

6. Conclusions 

Based on high-resolution Sentinel-2 time-series data, this study used 
an object-oriented method and RF to draw a land use map of Linxia 
County from 2017 to 2021. Abandoned cropland was extracted from 
2018 to 2021 via intra-annual change detection, and four cropland types 
were determined: spontaneously abandoned cropland, induced aban-
doned cropland, fallow cropland, and lost cropland. The overall accu-
racy of land use classification was 89 %–98 %, and the average annual 
extraction accuracies for spontaneously and induced abandoned crop-
land were 81 % and 91 %, respectively, which confirms the reliability of 
our method. We also analyzed the spatial and temporal changes of 
abandoned cropland to study the influence mechanisms of slope, traffic, 
and other factors on the reclamation of abandoned cropland. 

From 2018 to 2021, the average spontaneous abandonment rate in 
Linxia County was 11.98 %, with the highest value in 2019. Spontane-
ously abandoned cropland accounted for the largest proportion, fol-
lowed by fallow, lost, and induced abandoned cropland. Most of the 
abandoned cropland was located in areas with relatively moderate 
quality, and cropland abandonment was highest in areas close to roads 
and far from rural residential areas. The reclamation of abandoned 
cropland of moderate quality can increase the local grain yield by 3.6 %. 
The method proposed in this study may be applied to map abandoned 
cropland in other areas or in other land use mapping studies. 

Data Availability Statement. 
The majority of the datasets used in this study are publicly available 

and can be accessed through public repositories. All used data re-
positories are cited either in the main text. 

The remote sensing image data includes 44 periods of Sentinel-2A/B 
satellite images with cloud cover less than 20 % from April 2017 to 
November 2021 in Linxia County, Gansu Province, China. Data from 
European Space Agency. This website allows real name applications. 
The Google Earth Image with a spatial resolution of 0.49 m was used to 
assess the accuracy of the land-use classification and abandoned crop-
land maps. Data from 91 Weitu Assistant (https://www.91weitu.com/). 

The 2015, 2018 and 2020 remote sensing datasets of land use and 
land cover in Linxia County, which were used as a reference for delin-
eating samples and rural settlements in the research were obtained from 
the Resources and Environmental Sciences and Data Center, Chinese 

Academy of Sciences (https://www.resdc.cn/). 
The GDEMV3 30 M resolution digital elevation model data in Linxia 

County, Gansu Province, China comes from the Geospatial Data Cloud 
site (https://www.gscloud.cn/). This website allows real name 
applications. 

Road network vector data in Linxia County, Gansu Province, China 
comes from Open street map (https://master.apis.dev.openstreetmap. 
org/). This website allows real name applications. 

A dataset of farmland productivity potential in China comes from 
Resource and Environment Science and Data Center (https://www. 
resdc.cn/). This website allows real name applications. 
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