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Learning the dynamics of realistic 
models of C. elegans nervous 
system with recurrent neural 
networks
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Given the inherent complexity of the human nervous system, insight into the dynamics of brain 
activity can be gained from studying smaller and simpler organisms. While some of the potential 
target organisms are simple enough that their behavioural and structural biology might be well-known 
and understood, others might still lead to computationally intractable models that require extensive 
resources to simulate. Since such organisms are frequently only acting as proxies to further our 
understanding of underlying phenomena or functionality, often one is not interested in the detailed 
evolution of every single neuron in the system. Instead, it is sufficient to observe the subset of neurons 
that capture the effect that the profound nonlinearities of the neuronal system have in response to 
different stimuli. In this paper, we consider the well-known nematode Caenorhabditis elegans and 
seek to investigate the possibility of generating lower complexity models that capture the system’s 
dynamics with low error using only measured or simulated input-output information. Such models 
are often termed black-box models. We show how the nervous system of C. elegans can be modelled 
and simulated with data-driven models using different neural network architectures. Specifically, we 
target the use of state-of-the-art recurrent neural network architectures such as Long Short-Term 
Memory and Gated Recurrent Units and compare these architectures in terms of their properties and 
their accuracy (Root Mean Square Error), as well as the complexity of the resulting models. We show 
that Gated Recurrent Unit models with a hidden layer size of 4 are able to accurately reproduce the 
system response to very different stimuli. We furthermore explore the relative importance of their 
inputs as well as scalability to more scenarios.

Recent developments in experimental neuroscience have considerably increased the availability of novel record-
ings and reconstructions shedding further light into the structure and function of the brain as well as many other 
systems. But understanding the complexities behind the relations between structure and function as well as the 
behaviour of such systems across multiple scales in these neuronal collections is constrained by the methods 
available to study them. This challenge has raised interest in many related fields, such as electrophysiological 
analysis, imaging techniques, brain-related medicine, computational modelling, simulation, and model reduc-
tion. Many of these efforts, while not directly providing specific information regarding structural or functional 
dynamics, do supply large volumes of recordings, measurements or simulations of observable input-output 
behaviour. The availability of these large datasets raises the question of whether low complexity, data-driven, 
black-box models can be used to model such input-output relations with low error, avoiding the reliance on 
detailed inner structures that may not be known or available.

To determine whether such an approach can be used for large, complex systems, one research direction is the 
study of smaller and simpler nervous systems, for which the underlying principles of network organization and 
information processing are easier to postulate. These organisms can become useful models to gain insight into 
the fundaments of neuronal dynamics and whole brain organization, validate hypotheses and develop and test 
modelling methods, simulation instruments and model reduction techniques. The hope is that the knowledge 
gained from these analyses and the techniques developed for these simpler organisms can later be used to model 
more complex systems.

OPEN

1INESC-ID Lisboa, Rua Alves Redol 9, Lisbon  1000‑029, Portugal. 2IST Técnico Lisboa, Universidade de Lisboa, 
Av. Rovisco Pais 1, Lisbon 1049‑001, Portugal. *email: ruxi@inesc-id.pt

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-25421-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |          (2023) 13:467  | https://doi.org/10.1038/s41598-022-25421-w

www.nature.com/scientificreports/

Caenorhabditis elegans (C. elegans) belongs to this category of organisms and is quickly becoming one of the 
benchmarks in whole brain organization studies. C. elegans is a nematode (roundworm) of about 1 mm in length 
with a compact nervous system consisting of less than 1000 cells across all sexes and around 15,000 connections1. 
This rather small nervous system allows the worm to solve basic problems such as feeding, predator avoidance 
and mate-finding. Moreover, at least the cell-lineage and the anatomy of C. elegans are invariant, in the sense 
that every individual possesses the same number of neurons and they occupy fixed positions in the organism; 
the invariance of the synaptic connections is still under debate2.

The relative simplicity of C. elegans allowed for its almost complete description from different perspectives and 
scales, from its genetics and genomics to the molecular biology, structural anatomy, neuronal function, circuits 
and behaviour. This information is available in comprehensive databases of genetics and genomics3, electron 
micrographs and associated data, online books and atlases of the neurobiology, structural and behavioural 
anatomy4. Creating a realistic model that encapsulates all this information is not a trivial task. Open-source 
databases of digitally reconstructed neurons5, computational models6 and collaborative solutions7 are opening 
the door for more flexible, multi-scale and multi-algorithm simulation environments for C. elegans and other 
complex biological systems.

The underlying models are based on the connectome, the map of the neuronal connections in the brain. Usu-
ally described as a neuronal network, the connectome is a graph where the nodes are the neurons and the edges 
represent the synapses. The complete connectome of C. elegans contains 302 neurons for the adult hermaphrodite8 
and 385 neurons for the male1, but for the latter, the respective 3D reconstructions are not yet published. Digital 
reconstructions for the male are only available for the posterior nervous system of 144 neurons9.

The more complex the organism, the more complicated the resulting model, needing more computationally 
demanding and potentially intractable simulations of its dynamic behaviour. This increased complexity stems 
from the detailed modelling of the internal structure. However, in many cases, especially of highly complex 
systems, this detail is not available since the internal mechanisms may not be well known or mapped or it may 
be simply impossible to examine and record. Notwithstanding, frequently one is really only interested in the 
peripheral, or input-output behaviour, which can be checked against recorded or measured data. This motivates 
our efforts not only to place the focus more on observable input-output data, as well as to try and generate 
reduced models that avoid extraneous detail not necessary to explain these peripheral relations.

In this work we propose a methodology for generating a reduced order model of the neuronal behaviour of 
organisms using only peripheral information. We use C. elegans as a proxy for our study.

Realistic models of C. elegans, which take into account spatial distribution and biophysical properties of 
neuronal compartments have been reported in the literature10. We start with a similar model created in-house11. 
Our model comprises the complete connectome of the adult hermaphrodite of C. elegans, with 302 multi-com-
partmental neurons and 6702 synapses8. The model is described in Python and implemented in NEURON12, 
one of the traditional neural simulators that has support for biologically realistic multicompartmental models 
of neurons. A 3D reproduction is extracted from NEURON in Fig. 1. To reproduce a certain behaviour of the 
worm model, stimulus is applied to the touch sensitive sensory neurons and interneurons known to be part of its 
corresponding circuit and we check the activity of the motor neurons and interneurons associated with that sce-
nario. Finding strong activity in most of these neurons means that the worm performs the associated behaviour. 
The model was validated11 against four behavioural scenarios described in related literature13: Forward Crawling 
Motion (FCM) for the full network, Ablation of AVB interneurons + FCM, Ablation of AVA interneurons + 
FCM and the Nictation behaviour. We first reproduce here the FCM scenario, and for the purposes of this study 
we identified four input neurons (two sensory, two interneurons) and four output neurons (two motor, two 
interneurons) known to be strongly associated with forward movement11,13. Other dynamics can be validated 
similarly, and we can obtain single models that allow reproduction of multiple scenarios simultaneously14—see 
Experiment 5.

Using this full 302-neuron connectome model with all its synapses, which we designate as the high-fidel-
ity model, and the NEURON simulator, we obtain a collection of synthetic datasets representing the system’s 
response to different input signals. Next, assuming no prior knowledge of the original system’s structure and 
equations, we create a completely equation-free data-driven model using neural networks trained on these 
datasets. The immediate goal is to generate a reduced model to replace the original, detailed one. This reduced 

Figure 1.   The C. elegans connectome described in NEURON.



3

Vol.:(0123456789)

Scientific Reports |          (2023) 13:467  | https://doi.org/10.1038/s41598-022-25421-w

www.nature.com/scientificreports/

model should be able to reproduce with reasonably low error (the error metric used here being RMSE - Root 
Mean Squared Error) the behaviour of the realistic model while having fewer degrees of freedom. In this work we 
focus on the issue of reduced RMSE, which we equate to fidelity in reproducing the system dynamics, showing 
that we can produce sufficiently accurate models for analyzing the behavioural response of the C. elegans con-
nectome under the described scenarios, using neural networks. The ultimate goal, however, is to show that our 
methodology is able to produce reduced-order, compressed models, that can be efficiently used in simulation 
to test and validate hypotheses regarding the behaviour and functionality of the neuronal systems of complex 
organisms. An illustration of our methodology is presented in Fig. 2.

Related work and context
The connectome-based models mentioned above are often termed white-box models, as they are based on direct 
knowledge and access to the internal structure and parameters’ values of the modelled system. These are dis-
tributed models, where each neuron has a 3D description and position in space and the synapses are associated 
with neuronal sections. Such models enable highly accurate simulation of the dynamics of the systems but easily 
become extremely complex as they incorporate detailed structural and functional information of the system.

While the white-box approach ensures access to and evaluation of inner parameters during simulation, it has 
been shown that the activity of complex networks of neurons can often be described by relatively few distinct 
patterns, which evolve on low-dimensional manifolds15. This knowledge, together with the ever-present need 
to avoid potential numerical intractability in large-scale networks with many degrees of freedom, has generated 
renewed interest in applying model reduction, often also referred to as model compression, to these neuronal 
networks, including techniques such as Dynamic Mode Decomposition (DMD)16, Proper Orthogonal Decom-
position (POD)17 and Discrete Empirical Interpolation (DEIM)18. Depending on the level of morphological 
accuracy of the underlying models, reduction techniques can have any shade of grey from white-box to black-
box, the latter assuming no preliminary knowledge of the system structure and building the model solely out of 
knowledge of its input-output behaviour.

Black-box approaches are often built upon data-driven models, sometimes learning-based, which have the 
ability to grasp more naturally and more efficiently the complexity induced by the profound nonlinearities in 
the neuronal transmission of information. Machine-learning techniques are used to extract data-driven reduced 
order models for systems arising from differential equations describing the intrinsic dynamics19 and even to 
extract the governing equations of the estimated model20. It is therefore quite natural to consider using state of 
the art learning methods for developing reduced models of neuronal behaviour using data obtained from avail-
able recordings or even simulations obtained with more complex models.

Especially designed to capture temporal dynamic behaviour, Recurrent Neural Networks (RNNs), in their 
various architectures such as Long Short-Term Memory (LSTMs) and Gated Recurrent Units (GRUs), have been 
extensively and successfully used for forecasting or detecting anomalies in multivariate time series data21–24. 
Bidirectional LSTMs were used to model genome data by25, whereas a combination of CNNs and LSTMs gener-
ates a model for epileptic seizure recognition using EEG signal analysis in26. An attempt to model the human 
brain activity based on fMRI using RNNs (LSTMs and GRUs) is reported in27. In recent years, deep network 
approaches were used to model realistic neural activity data28–30. Few studies examined the behavioural output 
of network models of C. elegans using machine-learning techniques. RNNs are generated in a grey-box manner 

Figure 2.   Modelling methodology. The learning machine is trained with input–output data reproducing 
selected behaviours and then tested against inputs it has not seen before.
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to study the chemotaxis behaviour31 or to predict the synaptic polarities32 of C. elegans, yet these models only 
include a subset of the connectome.

Methods
Given that the starting point is in fact represented by time series data obtained from simulations of the realistic 
connectome-based model, the modelling task is akin to a sequence to sequence conversion for which the most 
suitable neural network models are the recurrent ones.

In this work we analyze the suitability of three recurrent neural networks architectures. We start with the least 
complex unit, the simple RNN, originally proposed in the 1980’s to model sequence data33–35. The second model 
used for the recurrent layer is the LSTM unit36,37, and finally we analyze its sibling, the GRU​38.

Recurrent neural networks.  RNNs33–35 are a family of neural networks used for processing sequential 
data, particularly adept to processing a sequence of values x(1), ..., x(t) , and in most cases capable to process 
sequences of variable length. RNNs appear from the relaxation of the condition on Feedforward Neural Net-
works (FFNNs) that neurons in a given layer do not form connections among themselves.

Although simple RNNs (Fig. 3-left), which are trained using Backpropagation Through Time (BPTT)39, seem 
to be a good model for sequential tasks, they are known to suffer from various issues, mainly vanishing and 
exploding gradients40. Exploding gradients refer to a large increase in the norm of the gradient during training, 
which appears due to the explosion of long term components that can grow exponentially faster than short term 
ones. This is the less common of the two problems and there are known solutions to handle it, such as the clip-
ping gradient technique41. A harder to solve issue is the vanishing gradient40, which refers to when long term 
components go exponentially fast to zero, making it impossible for the model to learn the correlation between 
temporally distant events.

In our case, for a faithful reproduction of the dynamics, the simulations require the use of fine time steps, 
leading to long sequences in the datasets. This in turn implies that the response at a given time will depend on 
values which are far back in the sequence. This situation, however unavoidable, may lead the RNN to experience 
difficulties in learning our data resulting in a model with unacceptable RMSE.

Long short‑term memory.  The Long Short-Term Memory unit36 appeared as a solution to the vanishing 
gradient problem, later improved with the inclusion of the forget gate to adaptively release internal resources 
when necessary37.

A LSTM unit consists of three main gates, the input gate it that controls whether the cell state is updated 
or not, the forget gate ft defining how the previous memory cell affects the current one and the output gate ot , 
which controls how the hidden state is updated. Note that LSTM units exhibit a major difference from RNN 
simple units, since besides the hidden state they also output a cell state to the next LSTM unit, as is apparent in 
Fig. 3-center. The LSTM mechanism is described by the following equations:

where Wi , Ui , Wf , Uf , Wo , Uo , Wc , Uc are weights and bi , bf , bo and bc are biases. All these 12 parameters are 
learned, while σ(·) and φ(·) are the logistic sigmoid and the hyperbolic tangent activation functions, respec-
tively. The outputs of the LSTM unit are the hidden state ht and the cell state ct . The computation of the cell state 
requires the candidate cell state c̃t.

Gated recurrent units.  The use of LSTM units in recurrent neural networks already produced models able 
to learn very distant dependencies37, but these units are complex structures composed of three gates. For that 
reason, in 2014 a new type of unit, the GRU​38, was suggested, described by:

where the weights Wz , Uz , Wr , Ur , Wh , Uh and the biases bz , br , bh are the learned parameters.

it = σ(Wixt + Uiht−1 + bi), c̃t = φ(Wcxt + Ucht−1 + bc),

ft = σ(Wfxt + Ufht−1 + bf ), ct = ft ◦ ct−1 + it ◦ c̃t ,

ot = σ(Woxt + Uoht−1 + bo), ht = ot ◦ φ(ct),

zt = σ(Wzxt + Uzht−1 + bz), ĥt = φ(Whxt + Uh(rt ◦ ht−1 + bh),

rt = σ(Wrxt + Urht−1 + br), ht = (1− zt) ◦ ht + zt ◦ ĥt ,

Figure 3.   Comparison between the three different units: RNN, LSTM and GRU.
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The GRU (Fig. 3-right) is only composed of two gates, the update gate zt and the reset gate rt . The GRU only 
outputs the hidden state ht computed based on the candidate hidden state ĥt . The update gate controls how much 
of the past information needs to be passed along to the future, while the reset gate is used to decide how much 
information the model should forget.

Experimental setting
Data.  The starting model is based on the complete connectome of the adult hermaphrodite of C. elegans, with 
302 multi-compartmental neurons and 6702 synapses. The neurons are described by 3D geometrical informa-
tion extracted from NeuroML and LEMS files5 for C. elegans. We added membrane biophysical properties and 
connectivity data (chemical synapses and gap junctions) from10 for the complete connectome. We term this as 
a high-fidelity model, since due to the level of detail taken into account we assume it reproduces with fidelity 
the output of physical models of C. elegans neurons. The simulations reproduce the Forward Crawling Motion 
scenario, by applying varying input currents to two sensory neurons (“PLML”, “PLMR”) and two interneurons 
(“AVBL”, “AVBR”) and record the responses of four neurons known to have strong activity during forward loco-
motion (“DB1”, “LUAL”, “PVR” and “VB1”; in reality we record the responses of the entire set of neurons, but 
analyse only these four). The resulting system is described in Python and simulated in NEURON12. The Python 
code invokes NEURON to generate the neuronal network, simulate its behaviour with respect to certain input 
signals (currents) and save the responses in time of the four output neurons (voltages).

We simulate the full high-fidelity model for 500 ms with two time steps—0.5 ms and 0.1 ms—and 40 differ-
ent shapes for the input currents. The input-output waveforms are extracted into two datasets of 40 snapshot 
files each, which are further fed to the learning framework. These datasets are available in the online repository.

To train and tune the hyperparameters, learning rate and batch size, the data was divided into three sets: 
training, validation and test. The separation of data is done as follows: the training set uses 50% of the data, the 
validation set 25% and the test set the remaining 25% . The separation is partially done by hand, so that valida-
tion and test sets are as diverse and demanding as possible. Alternatively, one can use an automatic separation 
procedure, but given the small number of sample files, visualizing the shapes was sufficient for a reliable decision 
for this case. Three examples from the diverse set of inputs and outputs are shown in Fig. 4.

Modelling.  The machine learning models are developed in Python42, using the libraries Keras43 and 
TensorFlow44. Details on the code and dependencies to run the experiments are listed in a Readme file available 
together with the code in the online repository.

All architectures consist of one recurrent layer described in “Methods” followed by a dense layer. The dense 
layer performs a simple linear transformation for each sequence point to convert the output of the recurrent 
layer, of size “hidden size”, into the four outputs.

For a consistent comparison, we fixed the optimizer to Adam45 and the loss function to the root mean squared 
error. The other two hyperparameters, the learning rate and the batch size, as well as the activation function were 
tuned separately for the three architectures, by keeping one fixed and varying the others, for a fixed hidden size 
of 16 units. Each model was trained for 1000 epochs, with the final model chosen as the best iteration on the 
validation set. We then fixed the hyperparameters at the optimal values yielded from this search: the batch size 
at 32 for all three, the activation functions kept to the default and the learning rate at 0.001 for the RNN and 0.05 

Figure 4.   Example input (top row) and output (bottom row) time sequences.



6

Vol:.(1234567890)

Scientific Reports |          (2023) 13:467  | https://doi.org/10.1038/s41598-022-25421-w

www.nature.com/scientificreports/

for the LSTM and the GRU​14. Note that these represent the upper limits of the learning rates, since the Adam 
optimizer computes individual adaptive learning rates for each parameter.

Experiments and results
In Experiment 1 (“Experiment 1: RNN vs. LSTM vs. GRU (performance)”) we compare the performance of the 
three types of layers, RNN, LSTM and GRU. Experiment 2 (“Experiment 2: LSTM vs. GRU (reduction)”) carries 
a comparison between different sizes of the GRU recurrent layer to determine the optimal size under some RMSE 
constraints. Experiment 3 (“Experiment 3: GRU (long sequences)”) is an investigation upon the models’ ability 
to reproduce data resulting from simulations with a finer time step, therefore involving longer sequences with 
more data points. In Experiment 4 we investigate the relative importance of certain inputs with respect to the 
outputs and finally, in Experiment 5, we examine both the scalability and generalization potential of the result-
ing models, by significantly increasing the number of inputs and outputs, as well as mixing data from multiple 
scenarios. For all the experiments, the loss is computed as the average RMSE of ten runs.

Experiment 1: RNN vs. LSTM vs. GRU (performance).  In this experiment we compare the perfor-
mances of the three types of units on the dataset corresponding to the coarser time step (0.5 ms).

In the interest of fairness we use layers with comparable number of parameters, e.g. a RNN with 16 hidden 
units (404 total parameters) against a LSTM and a GRU, both with 8 units (452 and 348 parameters, respec-
tively); and a RNN with 64 units (4676 parameters) against a LSTM and a GRU with 32 units (4868 and 3684 
parameters, respectively).

Figure 5 shows the evolution of the training and validation losses during the training process. The simple 
RNN unit tends to take more time to learn, being also slightly less stable towards the end of the training process. 
Although this is not a good indicator, it is not as alarming as the behaviour shown in Fig. 6, where it is clear that 
the simple RNN unit is not able to reproduce the outputs with the desired reduced RMSE, while the LSTM and 
the GRU perform well. A summary of this experiment’s results is shown in Table 1. Since the simple RNN unit 
did not perform sufficiently well by not being able to reproduce the output with minimal RMSE, we are left with 
the LSTMs and GRUs units. Given that the GRU is the less complex unit of the two, we consider it the main 
option and keep the LSTM as an alternative architecture.

Experiment 2: LSTM vs. GRU (reduction).  The GRU, due to its low RMSE and relative simplicity, there-
fore emerged as the prime candidate unit for our modelling purposes. However, we now want to determine 
how small the models can be without compromising the overall error. The focus of this second experiment is 
therefore to test different sizes of the recurrent layer and determine the smallest size that is still able to generate 
a model with sufficiently low RMSE.

We test both the LSTM and GRU units using the dataset with the coarser time step of (0.5 ms). Since the 
LSTM does not produce noticeable improvement over the GRU with a similar number of parameters, we only 
report here the results obtained with the GRU for six sizes of the recurrent layer: 2 , 4 , 8 , 16 , 32 , 64 (Table 2). Fig-
ure 7 illustrates the evolution of the training and validation losses during the learning process, where one can see 
that for a size as small as 8 the model reaches a low and stable loss. In fact, from Fig. 8 and Table 2 we can state 
that a GRU with a size of 4 hidden units is optimal to reproduce the outputs with low RMSE.

Experiment 3: GRU (long sequences).  We now explore the models’ behaviour on data sampled with 
different time steps as in the same simulation interval this leads to sequences of different lengths. From a meth-
odology standpoint this is important since even though time-wise the dynamics do not change, the temporal 
dependencies that the model has to learn are farther back in the sequence, which increases the difficulty of the 

Figure 5.   Average training and validation RMSE out of ten simulations, with recurrent layers of size 16 and 8 
(left) and 64 and 32 (right).
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learning process. We run the model for two datasets, one with the coarser (0.5 ms) time step and one with a finer 
(0.1 ms) one. The experiment is done only for the GRU, with 4 and 8 units.

Even though the model takes more time to converge for the finer time step, it ends up stabilizing with a loss 
of the same order in both cases and the model fits the test data well, as shown in Fig. 9 and Table 3. The plots in 
Fig. 10 further strengthen this idea.

Experiment 4: LSTM & GRU (input importance).  Throughout this work we guaranteed the models are 
tested against unseen input signals, by deliberately placing in the test set data with inputs with unique and varied 
shapes. We now want to investigate the relative importance of certain inputs with respect to the outputs. Hence, 
in this experiment we train the models on the same simulation datasets as before, except we discard the data for 
two input neurons during the learning process, and see how the resulting models predict the outputs. We do this 
in two separate settings. First we train the models with recurrent layers of 8, 16 and 32, without the input infor-
mation for the AVB neurons (No-AVB case). Next we repeat the process without the PLM data (No-PLM case).

Figure 6.   Experiment 1: realistic (red and blue) and predicted (green and black) sequences for DB1 and 
LUAL (1st and 3rd rows) and PVR and VB1 (2nd and 4th rows) for two sequences of the test set (one selected 
simulation out of ten).

Table 1.   The average RMSE out of ten simulations, for RNN with 16 and 64 hidden units and for LSTM and 
GRU with 8 and 32 hidden units, for the iteration with the smallest validation loss. Significant values are given 
in bold.

RNN-16 LSTM-8 GRU-8 RNN-64 LSTM-32 GRU-32

Training 1.04e−01 9.93e−03 7.79e−03 6.28e−02 7.60e−03 6.71e−03

Validation 1.29e−01 3.61e−02 3.47e−02 8.87e−02 3.64e−02 3.50e−02

Test 1.34e−01 1.49e−02 1.00e−02 9.54e−02 1.52e−02 1.23e−02

Table 2.   The average RMSE of ten simulations obtained with the GRU model, for different sizes of the 
recurrent layer. Significant values are given in bold.

2 Units 4 Units 8 Units 16 Units 32 Units 64 Units

Training 4.29e−02 1.05e−02 7.79e−03 6.78e−03 6.71e−03 5.80e−03

Validation 5.37e−02 3.48e−02 3.47e−02 3.49e−02 3.50e−02 3.62e−02

Test 6.00e−02 1.17e−02 1.00e−02 9.36e−03 1.23e−02 1.68e−02
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The models perform similarly from an accuracy perspective and the size does not influence the overall RMSE. 
We notice that in each case, the models are able to accurately replicate the voltage of two output neurons but do 
a poor job at predicting the other two outputs. In the No-AVB case, the two neurons well reproduced are LUAL 
and PVR, as shown in Fig. 11, whereas in the No-PLM case the opposite occurs as the outputs of DB1 and VB1 
are accurately reproduced while the other two exhibit a large RMSE. Table 4 shows the average RMSE of the 
two settings. In both cases the error reflects the models’ inability to accurately predict one pair of neurons. The 
larger absolute RMSE in one of the settings is merely a result of the increased voltage magnitude of LUAL and 
PVR neurons compared to DB1 and VB1 as in both cases the prediction is inaccurate for those respective nodes.

This result indicates that the AVB neurons are important for accurate prediction of the behaviour of LUAL 
and PVR, while the PLM inputs have more influence on the DB1 and VB1 neurons. This result is interesting from 
an interpretability standpoint, as it shows that some inputs are more relevant than others for specific outputs 
and behavioural scenarios.

Figure 7.   Average training and validation RMSE of ten runs, for 6 different hidden sizes of the GRU-based 
recurrent layer, for the iteration with the smallest validation loss.

Figure 8.   Experiment 2: realistic (red and blue) and predicted (green and black) sequences for DB1 and 
LUAL (1st and 3rd rows) and PVR and VB1 (2nd and 4th rows) for two sequences of the test set (one selected 
simulation out of ten).
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Experiment 5: LSTM & GRU (scalability and generalizability).  We create a dataset composed of 
data for two completely different behaviours, FCM and Nictation. For the FCM scenario the data is the same 
as described in “Data”, with the difference that we now record the responses of 16 output neurons instead of 
4. In the Nictation case, we apply stimuli to 6 sensory neurons and we record 12 output neurons associated 
with neck and head muscles11,13,46. This new dataset therefore has a total of 80 examples, 4+ 6 = 10 inputs 
and 16+ 12 = 28 outputs. This experiment examines both the scalability potential of the resulting models, by 
significantly increasing the number of inputs and outputs, as well as their ability to predict more general data, 
coming from two different behaviours. LSTMs and GRUs with recurrent layer sizes of 8, 16 and 32 are trained 
on this data and the results are shown in Table 5. Both types of layers, and GRU in particular, are able to predict 
for a certain behaviour the output of the neurons of interest in that scenario, using a number of neurons for 
the recurrent layer inferior to the total of output neurons for which the voltage is predicted. This is apparent in 
Fig. 12, where we show various output sequences extracted from the test set for GRU with 16 hidden units. The 
model is indeed quite accurate overall in terms of RMSE, with some relative error showing for nodes where there 
is little to no activity, which is discarded since their response magnitude is within the absolute error metric used. 
However, this should not be an issue for most applications, as the important neurons for a given scenario are the 
ones with strong responses.

Discussion
Accuracy of the low‑order model.  Our analysis shows that a GRU with as low as 4 hidden units is con-
sistently able to reproduce the outputs of the original model with a reasonably low RMSE and it adapts well to 
longer sequences, resulting from data sampled with both coarser and finer time steps. There is no noticeable dif-
ference in the errors between the two datasets in Experiment 3, the model consistently showing a RMSE below 
1.3e-02 for the test set. What is interesting to note from Experiment 2 (see the RMSEs for Test in Table 2) is that 
increasing the number of hidden units to more than 16 worsens the predictions, so much that it is better to use 
a 4-units GRU than a 64-units GRU. As the RMSEs for the training sets are still decreasing for more units, this is 
probably due to overfitting of the data, a known problem in learning settings.

Interpretability.  We are interested in further understanding to what degree we are able to make some 
assumptions on the structure of the (reduced) model and extract a description, perhaps mathematical, for it. 
The fact that we are able to replace a complex biophysical model with a simpler recurrent neural network with 
few neurons also means the interpretability improves (helps to better understand the modelled neural circuits). 
Furthermore, in Experiment 4 we show that the models are able to accurately predict only certain outputs when 
deprived of certain inputs during training. This already suggests specific input-output dependencies, which a 

Figure 9.   Average training and validation RMSE of ten runs, for the two datasets with a GRU-based recurrent 
layer with two different hidden sizes.

Table 3.   The average RMSE of ten simulations obtained with the GRU model, for the two datasets and two 
sizes of the recurrent layer (4 and 8 hidden units).

Dataset 1–4 Dataset 2–4 Dataset 1–8 Dataset 2–8

Training 1.05e−02 1.08e−02 7.79e−03 8.17e−03

Validation 3.48e−02 3.45e−02 3.47e−02 3.54e−02

Test 1.17e−02 1.21e−02 1.00e−02 1.04e−02
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Figure 10.   Experiment 3: realistic (red and blue) and predicted (green and black) sequences for DB1 and 
LUAL (1st and 3rd rows) and PVR and VB1 (2nd and 4th rows) for two sequences of the test set (one selected 
simulation out of ten).

Figure 11.   Experiment 4: realistic (red) and predicted (black) sequences for GRU-8 trained without input 
information of the AVB neurons for one sequence of the test set (one selected simulation out of ten).



11

Vol.:(0123456789)

Scientific Reports |          (2023) 13:467  | https://doi.org/10.1038/s41598-022-25421-w

www.nature.com/scientificreports/

systematic study on input importance can further reveal and quantify. For a deeper analysis of what the RNNs 
learn, future work will focus on interpretability techniques, both model-agnostic and model-aware. Attention 
mechanisms and saliency maps can show the importance of inputs and features in the final prediction, which can 
further facilitate solving the inverse problem of extracting a small network from the RNN model for NEURON.

Methodology.  Generalizability indicates a (low-order) model’s ability to predict the original system 
response beyond the data used for modelling. From a machine learning perspective, this can be understood as 
prediction for a test set with input-output data unseen during training. While this is an expected merit of the 

Table 4.   The average RMSE of ten simulations obtained with the LSTM and GRU with different sizes, when 
trained without input information of the AVB or PLM neurons.

LSTM-8 LSTM-16 LSTM-32 GRU-8 GRU-16 GRU-32

No-AVB 6.74e−02 6.79e−02 6.81e−02 6.83e−02 6.79e−02 6.57e−02

No-PLM 2.00e−01 2.03e−01 2.01e−01 1.96e−01 1.96e−01 1.97e−01

Table 5.   The average RMSE of ten simulations for the dataset replicating the FCM and Nictation behaviours.

LSTM-8 LSTM-16 LSTM-32 GRU-8 GRU-16 GRU-32

Avg RMSE 4.32e−02 3.96e−02 4.03e−02 3.74e−02 2.37e−02 2.63e−02

Figure 12.   Experiment 5: realistic (red and blue) and predicted (green and black) sequences for various output 
neurons of the test set (one selected simulation out of ten) corresponding to FCM behaviour (first two rows) and 
Nictation behaviour (last two rows).
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neural networks in general and also demonstrated here, this is not the only implication of our modelling efforts. 
We are modelling a system having biophysical descriptions with well-established accuracy. However we are 
treating it as a black-box, using only peripheral input-output information from the initial high-fidelity simula-
tions. Even though for many other more complex neural circuits the internal details are less known or completely 
unknown, this peripheral information can still potentially be obtained, hence the effectiveness of our models 
extends to these systems as well. This could especially be useful for specific cases (e.g. wet-labs extracting neural 
data from experiments on animals, or settings related to specific pathologies), where the system dynamics can be 
learned and predicted so that the number of real experiments further needed would be reduced.

Conclusions
In this paper we create reduced order models for the C. elegans nervous system with three different recurrent 
neural networks architectures: simple RNNs, LSTMs and GRUs. The objective is to further generate a low-order 
description to replace the original, detailed model in the NEURON simulator. To achieve this goal we seek a 
model as simple as possible and therefore the ideal unit would appear to be the simple RNN. However, this unit 
does not perform sufficiently well compared to the other two architectures. The LSTM and GRU give compa-
rable results in terms of overall fidelity, measured through RMSE, for different sizes of the recurrent layer. Due 
to its simplicity, GRU is preferable, and with a hidden size of 4 units, is able to reproduce with high fidelity, i.e. 
low RMSE, the original model’s responses to different types of stimuli. Furthermore, from a computational 
standpoint, explicitly inferring the response of the GRU model to such stimuli will vastly outperform the cost 
associated with simulating the high-fidelity model within NEURON, which has to solve the set of nonlinear 
equations implicit in the connectome network. Quantifying the potential advantage would require solving an 
inverse problem and performing an identical simulation of the extracted low-order model in NEURON, which 
is not the subject of this paper.

Further work will concentrate on improving the automation in choosing appropriate stimuli for the training, 
validation and test sets as well as optimal parameter selection. This will require a systematic analysis of com-
pression possibilities of the learning-based models with error control. The novel concept of physics-informed 
machine learning will also help improving not only the predictions, but also the interpretability and generaliz-
ability of the neural nets. It implies adding structural or context information like physical constraints (domain, 
boundary conditions, initial conditions) to the training process. The resulting models will be more reliable, as 
they are guaranteed to satisfy physical laws, and they will potentially need less training data, making them even 
more suitable for experimental neuroscience, where there is a limited amount of labelled datasets available and 
in some cases it is not viable, for financial or ethical reasons, to procure additional data.

These results nonetheless show that it is feasible to develop recurrent neural network models able to infer 
input-output behaviours of realistic models of biological systems, enabling researchers to advance their under-
standing of these systems even in the absence of detailed level of connectivity.

Data and code availability
The datasets, models, the source code and the instructions to run them are available in the following GitHub 
repository: https://​github.​com/​gmest​re98/​Celeg​ans-​Forwa​rdCra​wling-​RNNs.
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