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Abstract

Sickle cell syndromes, including sickle cell disease (SCD) and sickle cell trait (SCT), are 

associated with multiple kidney abnormalities. Young patients with SCD have elevated effective 

renal plasma flow and glomerular filtration rates (GFR), which decrease to normal ranges in 

young adulthood and subnormal levels with advancing age. The pathophysiology of SCD-related 

nephropathy is multifactorial — oxidative stress, hyperfiltration and glomerular hypertension 

are all contributing factors. Albuminuria, which is an early clinical manifestation of glomerular 

damage, is common in individuals with SCD. Kidney function declines more rapidly in individuals 

with SCD than in those with sickle cell trait or in healthy individuals. Multiple genetic modifiers, 

including APOL1, HMOX1, HBA1 and HBA2 variants are also implicated in the development and 

progression of SCD-related nephropathy. Chronic kidney disease and rapid decline in estimated 

glomerular filtration rate are associated with increased mortality in adults with SCD. Renin–

angiotensin–aldosterone system inhibitors are the standard of care treatment of albuminuria in 

SCD, despite a lack of controlled studies demonstrating their long-term efficacy. Multiple studies 

of novel therapeutic agents are ongoing, and patients with SCD and kidney failure should be 

evaluated for kidney transplantation. Given the high prevalence and severe consequences of 

kidney disease, additional studies are needed to elucidate the pathophysiology, natural history 

and treatment of SCD-related nephropathy.

Introduction

Sickle cell syndromes, including sickle cell trait (SCT) and sickle cell disease (SCD), are 

characterized by the presence of sickle haemoglobin (HbS), which results from a single 
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base missense mutation in the HBB gene on chromosome 11 that leads to a glutamic acid-

to-valine substitution in the haemoglobin A β subunit1. SCD is inherited as an autosomal co-

dominant trait and affects individuals who are homozygous for the βS allele (HbSS) as well 

as individuals with various compound heterozygous variants, including sickle haemoglobin 

C disease (HbSC), sickle β-thalassemia (HbSβ) and other less common genotypes, in which 

the βS allele is co-inherited with other haemoglobin variants. The β0 thalassemic mutation 

describes a complete absence of production of β-globin, whereas β+ refers to decreased 

production of β-globin, resulting in the presence of variable amounts of normal haemoglobin 

(HbA). Patients with HbSS or HbSβ0 thalassemia typically have a more severe disease 

phenotype compared to those with HbSC or HbSβ+ thalassemia1.

Globally, sub-Saharan Africa and India have the highest burden of SCD. In the USA, SCD 

is considered an orphan disease and affects approximately 100,000 individuals2. In contrast 

to North America, where sickle cell anaemia is detected in around 2,600 births per year, 

an estimated 230,000 children were born with sickle cell anaemia in sub-Saharan Africa in 

20103. Individuals who are heterozygous for the βS allele have SCT, which, in the United 

States, is estimated to occur in 6–9% of the African-American population4. Worldwide, the 

number of individuals with SCT exceeds 300 million, with prevalence rates that can exceed 

25% in regions where malaria is endemic, such as Nigeria and tribal regions of India5.

The polymerization of HbS following deoxygenation is the primary event in the 

pathophysiology of SCD6. The presence of intracellular rigid HbS polymers affects the 

morphology of red blood cells (RBCs), which disrupts their ability to circulate through 

blood vessels and increases their susceptibility to haemolysis. Sickle RBCs also express high 

amounts of adhesion molecules, which enhances their binding to other cells. The clinical 

manifestations of SCD seem to be a consequence of haemolytic anaemia and vaso-occlusive 

events that lead to ischaemia-reperfusion injury7. Vaso-occlusion results from the adhesive 

interactions of leukocytes and sickle RBCs with endothelial cells and matrix proteins, which 

cause microvascular obstruction and subsequent tissue ischaemia7.

Individuals with SCD typically have functional and structural kidney abnormalities. The 

kidney is particularly sensitive to vaso-occlusion-induced hypoxia owing to its high 

oxygen consumption and a unique microenvironment that promotes the polymerization of 

deoxygenated HbS. As more patients with SCD survive to adulthood, the prevalence of 

end-organ damage, including chronic kidney disease (CKD), is increasing8. In addition to 

its morbidity burden, kidney disease is associated with increased mortality in patients with 

SCD.

In this Review, we examine the spectrum of kidney abnormalities in SCD and SCT, and their 

pathophysiology. We also discuss the epidemiology of kidney disease in individuals with 

SCD, including challenges in assessment and early detection of kidney dysfunction, and 

consider the management and treatment of patients with SCD and advanced kidney disease.
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Kidney abnormalities in SCD

SCD is characterized by the presence of multiple alterations in kidney function (FIG. 

1), including abnormalities in the proximal and distal tubules (for example, increased 

reabsorption of phosphate and β2-microglobulin, and increased secretion of uric acid and 

creatinine9), as well as changes in renal haemodynamics that promote hyperfiltration and 

glomerular damage.

Impaired urinary concentration

Polymerization of deoxygenated HbS increases in the setting of relative hypoxia, acidosis 

and hyperosmolarity of the inner renal medulla10. Consequent microvascular occlusions 

in this kidney compartment result in ischaemic injury and microinfarction, and lead to 

the loss of juxtamedullary nephrons, which are essential for maximal urine concentration. 

Accordingly, impaired urine concentration is the most commonly recognized kidney 

abnormality in SCD9. The outer medulla is relatively spared from SCD-related damage 

and patients can thus concentrate urine under most circumstances, but not following 

substantial water deprivation or volume loss11. Following overnight water deprivation, urine 

osmolality in patients with HbSS was substantially lower (414 ± 10 mmol/kg) than that 

observed in healthy individuals (911 ± 39 mmol/kg)12. Low urine osmolality in SCD did 

not improve with vasopressin, which confirms that these individuals do not have central 

diabetes insipidus, in which vasopressin deficiency induces polyuria13. However, urinary 

endothelin 1 (ET1) levels in patients with SCD were significantly higher than in healthy 

controls prior to and following overnight water deprivation, and correlated negatively with 

urine osmolality14. ET1 has been suggested to induce nephrogenic diabetes insipidus in 

SCD through a combination of kidney fibrosis and the lack of improvement of low urine 

osmolality with vasopressin. Nocturnal enuresis is common in children and young adults 

with SCD and might be driven, in part, by an inability to concentrate urine (that is, 

hyposthenuria)15.

Urinary acidification

Urinary acidification in the distal nephron relies on the maintenance of a high tubule-

to-lumen proton gradient, which is an energy-dependent process that is compromised 

by medullary ischaemia9. Defective urinary acidification in SCD manifests similarly to 

incomplete distal renal tubular acidosis16, typically resulting in overt metabolic acidosis 

after the stress of an additional acid load. Abnormal responses to acute acidification are 

more likely to occur in older patients with SCD, and in those with reduced glomerular 

filtration rate (GFR), low plasma bicarbonate, low urine ammonium ion excretion and low 

fasting urine osmolality16.

Potassium excretion

Impaired distal tubule secretion may result in defective potassium excretion in SCD. 

These defects occur despite intact aldosterone and renin responses16,17 although cases of 

hyporeninemic hypoaldosteronism have been reported18. Of note, serum potassium does not 

typically increase, even with potassium loading, until GFR is reduced17, possibly owing to 

potassium shifts from extracellular to intracellular compartments.
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Supranormal renal haemodynamics

Compared with the general population, children and young adults with SCD have 

supranormal renal haemodynamics that are characterized by elevated effective renal plasma 

flow (ERPF) and GFR, even when accurately measured12. These patients have a decreased 

filtration fraction, which indicates that the increase in ERPF substantially exceeds the GFR 

increase. Notably, both GFR and ERPF decline towards normal levels during adolescence 

and then continue to decrease with further ageing19. The pathophysiological factors that 

alter GFR and ERPF seem to result from aberrant glomerular autoregulation that affects 

both afferent and efferent arteriolar tone. Medullary ischaemia drives localized prostaglandin 

release and subsequent vasodilation, which increases renal blood flow and GFR20. Use of 

NSAIDs, which block prostaglandin production, leads to a greater reduction in GFR in 

patients with SCD that in those without SCD12, which suggests that glomerular filtration is 

partly maintained by prostaglandin-mediated afferent arteriolar vasodilation.

Although no uniform definition exists, glomerular hyperfiltration in SCD is commonly 

defined as estimated glomerular filtration rate (eGFR) >130 ml/min/1.73 m2 in women and 

>140 ml/min/1.73 m2 in men21–23. In a multicentre study of infants (aged 9–24 months) 

with SCD, GFR ≥ 110 ml/min/1.73 m2 measured directly by plasma clearance of 99mTc-

DTPA was observed in > 50% of patients aged between 9–12 months and higher GFR values 

were observed in older infants24. Other studies have demonstrated that increases in eGFR 

persist in older children and young adulthood25,26,27 with a subsequent decrease after 30 

years of age21–23,28,27. In mice, glomerular hyperfiltration occurred earlier in males than 

in females, and preceded progressive GFR decline29. In young children, eGFR assessed by 

cystatin C was not significantly different between sexes, although, by age 13, male patients 

had significantly lower eGFR than female patients30. A study of adult patients with SCD 

reported that hyperfiltration was inversely associated with age, male sex, haemoglobin level, 

weight and angiotensin-converting enzyme (ACE) inhibitor and/or angiotensin receptor 

blocker (ARB) use, but positively associated with hydroxyurea use27. Normalization of 

hyperfiltration was less likely with higher baseline eGFR and more likely in male patients. 

The finding that glomerular permeability to albumin is significantly greater in male sickle 

mice and delayed in female mice, combined with the prevention of hyperfiltration in sickle 

mice following treatment with selective endothelin A receptor (ETA) antagonists, regardless 

of sex, suggests that ET1-dependent ultrastructural changes in the glomerular filtration 

barrier might partly explain sex differences in hyperfiltration31.

Impaired glomerular filtration

Albuminuria, which is an early marker of glomerular injury, is common in SCD. Up 

to 27% of children and young adults32–42, and 68% of older patients with SCD43–58 

have albuminuria, although persistent albuminuria was not confirmed in most studies 

(Supplementary Table 1). Albuminuria is more prevalent in patients with HbSS or 

HbSβ0 than in those with other sickle cell genotypes53,54, and is associated with older 

age33–38,42,50,53,56, low haemoglobin concentrations35,36,38,39,42,46,50,51,54, high levels of 

haemolysis markers39,42,50, high levels of kidney injury molecule 1 (KIM1)50 and elevated 

echocardiography-measured tricuspid regurgitant jet velocity (TRV)52,57. TRV, which 
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provides an estimate of pulmonary artery systolic pressure, is a surrogate measure of 

pulmonary vasculopathy.

Increasing evidence suggests that SCD-related glomerulopathy is progressive. Initial 

hyperfiltration progresses to albuminuria, gradual eGFR decline and eventual kidney failure. 

In a longitudinal study of patients with HbSS or HbSβ0 aged between 5 and 21 years, 

persistent albuminuria was observed at an earlier age and more frequently in those with 

hyperfiltration (determined by cystatin C)59. Moderate albuminuria might occur more often 

in adult patients with SCD and hyperfiltration than in those without hyperfiltration22. 

A prospective, multicentre, longitudinal study of children and adults with sickle cell 

anaemia confirmed that albuminuria increases with age50; urinary albumin-to-creatinine 

ratio (UACR) increased at a linear rate of 3.5 mg/g per year. Other prospective and 

retrospective cohort studies have reported an increase in CKD development over time in 

patients with SCD60,61. Baseline severe albuminuria and increasing systolic blood pressure 

are reportedly associated with CKD development and progression61.

Over 30% of adults with sickle cell anaemia experience rapid eGFR decline23,62 (that is, 

an annual eGFR loss >3 ml/min/1.73m2), which is higher than the prevalence reported in 

African American adults (11.5%)63; patients with SCD and proteinuria have a particularly 

high annual eGFR decline (−3.51 ml/min/1.73 m2) 64. Single-site studies have reported 

eGFR decline rates of 2.05 and 2.35 ml/min/1.73 m2 per year in patients with HbSS and 

HbSβ0 thalassemia, respectively23,64. These declines are steeper than those reported for 

African Americans in the general population (1.27 ± 1.97 ml/min/1.73 m2 per year)63 

suggesting that GFR declines more rapidly in patients with sickle cell anaemia than in the 

general African American population; other studies have confirmed this accelerated rate of 

GFR decline65,66. Faster decline of measured GFR (mGFR) in SCD was also confirmed in 

a small longitudinal cohort of patients with sickle cell anaemia from Jamaica (mean follow 

up of 13.7 years)67. In a multicentre analysis, rapid eGFR decline of >3 ml/min/1.73 m2 per 

year was independently associated with age, male sex and prior stroke65, whereas eGFR loss 

>5·0 ml/min/1.73 m2 per year was independently associated with low haemoglobin and prior 

stroke65.

Haematuria

Haematuria is common in SCD but it is typically mild, painless and self-limited. Often, 

haematuria occurs owing to vascular occlusion in the renal medulla. In ~80% of cases, the 

bleeding originates in the left kidney68 and can be attributed to compression of the left renal 

vein by the aorta and superior mesenteric artery (termed the ‘nutcracker syndrome’)69. In 

addition, haematuria can result from microinfarction-induced papillary necrosis, which can 

be diagnosed radiologically.

Management of haematuria is usually conservative and includes bed rest, maintenance 

of high urinary flow, urine alkalinization and RBC transfusion, if needed70. Vasopressin 

therapy has had variable success in patients who do not respond to conservative 

management71. The use of low-dose antifibrinolytics to treat haematuria is reportedly safe 

and effective72, but should be used cautiously owing to potential for urinary obstructions 

caused by blood clots. Embolization of involved kidney blood vessels and balloon 
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tamponade have been used for refractory bleeding73. Unilateral nephrectomy has also been 

performed in extremes cases74 but is not recommended because bleeding might recur in the 

remaining kidney.

Acute kidney injury

The Kidney Disease Improving Global Outcomes criteria that define acute kidney injury 

(AKI) include an increase in serum creatinine by ≥0.3 mg/dl within 48 hours or 50% 

increase in serum creatinine within 7 days from baseline75. The risk of AKI in SCD 

is increased compared with that of individuals with HbAA and is even more common 

during hospitalizations for acute chest syndrome76–78 or admission to the intensive care 

unit (ICU)79. Decline in GFR following AKI is significantly faster in patients with SCD 

compared with healthy controls80, and a history of AKI predicts an increased long-term 

risk of CKD81. In adult patients with SCD, hospital admissions complicated by AKI 

are associated with longer length of hospital stay and an increased risk of inpatient 

mortality78,81. Potential risk factors for developing AKI in patients with SCD include 

older age, higher white blood cell count, lower haemoglobin concentration, lower systolic 

blood pressure at the time of admission and the use of ketorolac or vancomycin during 

hospitalization78,82.

Mechanisms underlying sickle cell nephropathy

Although the pathophysiology of SCD-related nephropathy is incompletely understood, 

vaso-occlusion with subsequent ischaemia-reperfusion injury, haemolysis, oxidative stress 

and hyperfiltration seem to have important roles (FIG. 1). Glomerular hypertension might 

also have a pathophysiological role in SCD-related nephropathy. ACE inhibitors attenuate 

glomerular hypertension following partial ablative nephrectomy in non-sickle rodents and, in 

patients with SCD, these drugs lead to a rapid and reversible decrease in proteinuria55,83.

Haemolysis and oxidative stress

In the kidneys of transgenic sickle mice (that is, mice that express human HbS), lipid 

peroxidation, which is an indicator of oxidative stress, is enhanced compared with wild-

type controls84,85. An increase in oxidative stress might be partly mediated by exposure 

of the kidney to cell-free haemoglobin and haem that are released into the vasculature 

following haemolysis. Cell-free haemoglobin filters freely through the glomerulus and 

haemoglobinuria is observed in 15–42% of patients with SCD at steady-state48,86,87. 

Magnetic resonance imaging showed that kidney iron deposition correlated positively 

with the degree of haemolysis but not with the transfusion burden, which was assessed 

by quantifying iron concentration in the liver, suggesting a role for chronic filtration of 

cell-free hemoglobin and heme 88,89. Data from independent SCD cohorts showed that 

haemoglobinuria is positively associated with CKD stage and risk of CKD progression86. 

Haem oxygenase 1 (HMOX1) is an inducible, rate-limiting enzyme that degrades haem into 

biliverdin, carbon monoxide and iron, and protects against chronic exposure to cell-free 

hemoglobin 86. HMOX1 mRNA and protein levels are higher in the kidneys of transgenic 

sickle mice than in those of control mice 90. Increased HMOX1 staining was detected in the 

renal tubules of a patient with SCD, whereas kidneys from healthy controls did not express 
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HMOX185. After weekly administration of intravenous cell-free haemoglobin, HMOX1-

knockout mice had significantly greater tubulo-interstitial inflammation and fibrosis than 

wild-type mice91. These findings suggest that HMOX1 might protect the kidney from 

chronic exposure to cell-free haemoglobin and its anti-inflammatory actions might also be 

cytoprotective.

Paediatric patients with SCD and AKI have a larger decrease in haemoglobin from baseline 

levels than patients without AKI77,78. Haemopexin and α−1-microglobulin (A1M) are major 

scavengers of extracellular haem from the circulation. Haemopexin deficiency in SCD 

is associated with a compensatory increase in A1M, resulting in a substantially higher 

A1M-to-haemopexin ratio in individuals with SCD compared than in healthy controls92. 

A1M-to-haemopexin ratio is associated with markers of hemolysis and AKI in both patients 

and mice with SCD. Haemopexin deficiency promotes AKI in sickle mice under haemolytic 

stress, but AKI was prevented with infusions of purified haemopexin prior to the induction 

of haemolytic stress, highlighting a potential role for haemopexin deficiency as a risk factor 

for AKI.

Angiotensin receptor signalling seems to be required for urine concentration but promotes 

glomerular pathologic conditions in SCD. Reactive oxygen species (ROS) increase the 

conversion of oxidized angiotensinogen to angiotensin II (ATII), and ROS levels are elevated 

in patients with SCD compared with healthy individuals93,94. Blockade of ATII signalling by 

ACE inhibitors or ARBs in transgenic sickle mice reduces profibrotic transforming growth 

factor β1 (TGFβ1)–SMAD 2/3 signalling in the glomerulus and ameliorates albuminuria, 

glomerulosclerosis and mesangial cell proliferation94. ATII acts via two major receptor 

subtypes — type 1 (AT1R) and type 2 (AT2R). AT1R is expressed throughout the kidney, 

including in the vasculature, glomeruli and tubules, and participates in the regulation of 

renal haemodynamics, sodium reabsorption and glomerular filtration95. By contrast, AT2R 

is primarily expressed in the vasculature and proximal tubule. AT2R signalling seems to 

oppose AT1R signalling and promotes vasodilation via nitric oxide and bradykinin, promotes 

natriuresis and has anti-inflammatory effects96. In transgenic sickle mice, genetic deficiency 

in AT1R, but not AT2R, prevents the development of albuminuria and focal segmental 

glomerulosclerosis lesions, and the increase in TGFβ1-SMAD2/3 signalling94. However, 

the reduced ability to concentrate urine observed in sickle mice worsened following AT1R 

inhibition with ACE inhibitors (and, to a lesser extent, with ARBs). These data suggest that 

increased AT1R signalling promotes glomerular pathology, although AT signalling, via both 

AT1R and AT2R, is also required to maintain the ability to concentrate urine in SCD.

Endothelial dysfunction

Albuminuria in SCD is associated with endothelial dysfunction, as demonstrated by 

impairment in flow-mediated dilation of the brachial artery97. Soluble vascular endothelial 

growth factor receptor 1 (sVEGFR1; also known as sFLT1),98 contributes to the 

pathophysiology of preeclampsia, which is characterized by hypertension, proteinuria and 

endothelial dysfunction99, and sVEGFR1 levels are elevated in patients with SCD100,101, 

particularly in those with severe albuminuria52. Serum sVEGFR1 levels also correlate 

directly with markers of haemolysis102. sVEGFR1 acts as an VEGF antagonist and 
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inhibits Akt phosphorylation, which prevents the activation of endothelial nitric oxide (NO) 

synthase and reduces the generation of NO103. This sVEGFR1-induced decrease in NO 

bioavailability leads to endothelial dysfunction. The positive association between soluble 

vascular cell adhesion molecule 1 (sVCAM1) with sVEGFR1 levels, combined with the 

positive association between sVCAM1 and albuminuria suggest that sVEGFR1 contributes 

to albuminuria in SCD by promoting endothelial dysfunction52.

ET1 is a potent vasoconstrictor secreted by endothelial cells in response to injurious 

stimuli, including shear stress and hypoxaemia, and exposure to haemin, inflammatory 

cytokines, angiotensin II or thrombin104. Binding of ET1 to ETA leads to vasoconstriction, 

inflammation, mitogenesis, and nociception105. Plasma and urinary levels of ET1 correlate 

positively with albuminuria in SCD14,97. In transgenic sickle mice, selective ETA 

antagonism reduced glomerular ROS production and mRNA expression of oxidative 

stress markers, and significantly decreased protein and nephrin excretion in urine104. Long-

term treatment of sickle mice with ambrisentan, which is a selective ETA antagonist, 

preserved GFR to levels observed in HbAA-expressing control mice, prevented proteinuria, 

albuminuria and nephrinuria, and reduced the urinary excretion of KIM1 and N-acetyl-β-

D-glucosaminidase (NAG)105. Furthermore, ambrisentan prevented proximal tubular brush 

border loss, interstitial fibrosis and immune cell infiltration, and diminished tubular iron 

deposition.

Genetic modifiers of kidney disease risk

Several genetic modifiers that affect the severity of haemolysis, the risk of kidney disease 

in people of African descent, cell-free haemoglobin processing and inflammatory chemokine 

clearance have been implicated in SCD-related nephropathy (TABLE 1). The α-globin genes 

HBA1 and HBA2 are typically duplicated on chromosome 16, which creates four α-globin 

genes (αα/αα); the α−3.7k and α−4.2k deletions result in decreased production of α-globin 

chains. Alpha thalassemia caused by inheritance of single or double α-deletions is observed 

in approximately one-third of patients with SCD and leads to lower intracellular HbS 

concentration and less haemolytic anaemia than in patients with SCD and intact α-globin 

genes.106. Co-inheriting α-thalassemia consistently protects against albuminuria in sickle 

cell anemia40,44,107,108, but this effect is attenuated in patients with HbSC44.

Homozygous or compound heterozygous inheritance of APOL1 G1 and G2 risk variants 

occurs in 10–15% of African Americans and is an important risk factor for CKD in 

African Americans without diabetes109–111. Trypanosomes are susceptible to apolipoprotein 

1 (APOL1) but Trypanosoma brucei rhodesiense neutralizes APOL1 via a serum resistance-

associated protein (SRA) and is thus resistant to its toxicity. The APOL1 G1 and G2 

variants are not susceptible to the effects of SRA and can therefore protect against T. b. 
rhodesiense 110. Co-inheritance of APOL1 risk variants is observed in 7–16% of patients 

with SCD40,112–116, and is associated with increased risk of haemoglobinuria, albuminuria 

and low eGFR. Patients with SCD and APOL1 risk variants have a 7-fold higher risk of 

CKD progression117 and a 7–30-fold greater risk of kidney failure112,113.

The HMOX1 rs743811 variant is also associated with lower eGFR, higher UACR, 

worsening CKD stage and kidney failure in SCD, although the effect of this variant on 
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HMOX1 expression or function is unknown112. Another variant is characterized by the 

presence of long GT-tandem repeats in the HMOX1 promoter (rs3074372) that lead to 

reduced HMOX1 expression in cultured cells after H2O2 exposure118. However, data on the 

association of long GT-tandem repeats (>25) in HMOX1 with compromised kidney function 

in patients with SCD are inconsistent82,112,40,116.

The atypical chemokine receptor 1 (ACKR1; also known as the Duffy antigen receptor) 

is expressed on RBCs and provides a chemokine sink that reduces systemic chemokine 

levels and prevents white blood cell activation119.The ACKR1 rs2814778 polymorphism is 

located in the promoter region of the gene and decreases GATA binding, which is necessary 

for the transcription and expression of ACKR1 in RBCs120. In patients with HbSS from 

the United States, the absence of ACKR1 expression on RBCs was associated with lower 

white blood cell counts, and increased risk of proteinuria and albuminuria114,120. However, 

the association between RBC ACKR1 expression and kidney dysfunction was not observed 

in patients with SCD from Egypt, although the study included patients with and without 

HbSS121. These discrepancies might be due to differences in the SCD genotype and/or 

environmental exposures between cohorts.

Detection of kidney disease in SCD

Kidney disease is associated with increased mortality in SCD58,62,122–126. Worsening eGFR 

is consistently an independent predictor of early mortality58,125. In the Cooperative Study 

of Sickle Cell Disease (CSSCD), which is a multicentre natural history study, kidney failure 

(defined as 20% increase in baseline creatinine and creatinine clearance <100 ml/min) was 

associated with a high risk of early death in patients with HbSS122. Rapid kidney function 

decline, regardless of the annual eGFR decline threshold (>3·0 mL/min/1·73 m2 or >5·0 

mL/min/1·73 m2), is associated with increased mortality in SCD.62,65 Multiple studies also 

confirm the substantially higher mortality rate among patients with SCD and kidney failure 

than in patients with kidney failure without SCD.123,124,126 Identifying the patients with 

SCD at greatest risk of progressive loss of kidney function is therefore crucial to enable 

optimal disease management and reduce the risk of mortality, but this task might be more 

complex in SCD than in other CKD aetiologies — persistent albuminuria is a reliable early 

marker of kidney injury, but estimating GFR remains challenging.

Albuminuria

Owing to its association with eGFR decline, the presence of albuminuria warrants 

intervention to prevent progressive loss of kidney function127. Given that albuminuria might 

present in childhood in patients with SCD, current recommendations suggest screening by 

age 10 and at least annually thereafter; a positive result should be followed up with testing of 

a subsequent first-morning void sample or a repeat spot sample to confirm albuminuria (FIG. 

2)127,128. Screening for albuminuria earlier than age 10 might be beneficial in children with 

SCD and hyperfiltration, a family history of kidney disease or known APOL1 risk variants, 

who might be at risk of developing albuminuria earlier in life59,115. However, current data 

are insufficient to recommend routine screening for APOL1 risk variants.
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Persistent albuminuria is more likely to occur in patients with high baseline levels. In a 

prospective, multicentre study of patients with SCD, among those with baseline UACR ≥100 

mg/g, 83% had persistent albuminuria (defined as UACR ≥ 30 mg/g on more than two 

annual measurements) compared with only 16% of those with baseline UACR <100 mg/g50. 

If a high UACR is detected on a first assessment, the likelihood that albuminuria might 

persist warrants immediate intervention.

Measuring and estimating GFR

CKD is currently defined as the presence of kidney damage (e.g. urinary albumin excretion 

≥30 mg/day or equivalent) or eGFR <60 ml/min/1.73 m2 for ≥ 3 months, irrespective 

of the cause129. Enhanced tubular secretion of creatinine in patients with SCD results 

in an overestimation of GFR when traditional creatinine-based assessments are used — 

up to a 30% difference when comparing creatinine clearance to the gold standard of 

inulin clearance12. Consequently, patients with SCD might already have substantial kidney 

impairment at the time of diagnosis and the use of a higher eGFR cut-off to define CKD 

in these patients has therefore been suggested64. In 98 Jamaicans with HbSS, various 

creatinine-based equations were compared with GFR measured by 99mTc-DTPA nuclear 

renal scan130. The mean mGFR in this group was 94.9 ± 27.4 ml/min/1.73 m2.and the 

creatinine-based MDRD equation produced the greatest bias, with a mean difference of 

70.4 ml/min/1.73 m2 compared with mGFR; the chronic kidney disease epidemiology 

(CKD-EPI) equation estimates were the closest to mGFR but still had a bias of 41.2 ml/min/

1.73 m2. A prior study from France reported a similar CKD-EPI bias (30.2 ml/min/1.73 

m2), which improved substantially (10.7 ml/min/1.73 m2) when the adjustment for race was 

removed131.

Cystatin C is an alternative GFR biomarker that is less influenced by muscle mass or 

diet than creatinine because it is produced by all nucleated cells, whereas creatinine is 

released following the breakdown of creatine in muscle. Moreover, in contrast to creatinine, 

cystatin C is not secreted by proximal tubule cells and its levels are thus less skewed by 

the enhanced tubular secretion observed in patients with SCD. In a Jamaican cohort of SCD 

adults, cystatin C correlated better with mGFR than serum creatinine and, when used in the 

CKD-EPI cystatin C formula, produced better agreement with mGFR than the CKD-EPI 

creatinine-based formula132. Using the CKD-EPI equation with both creatinine and cystatin 

C led to greater bias and less precision than using creatinine alone. A subsequent US study 

of 14 adults with HbSS yielded similar results but reported less bias with CKD-EPI cystatin 

C than that observed in the Jamaican cohort, although the combined cystatin C–creatinine 

estimation still had the greatest bias133. Currently, the CKD-EPI equation using cystatin C 

alone seems to be the optimal choice for estimating GFR in adults (TABLE 2). However, 

given that cystatin C testing is not widely available, the CKD-EPI creatinine equation 

without race adjustment should be used as an alternative. In 2021, an updated CKD-EPI 

equation was developed excluding race as a coefficient; to date, this equation has not been 

evaluated in patients with SCD134.

In the paediatric population, eGFR equations based on creatinine and/or cystatin C have 

also been examined. The BABY-HUG study evaluated infants with SCD and determined that 
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the Chronic Kidney Disease in Children (CKiD) Schwartz formula, which uses both serum 

creatinine and cystatin C, had the best agreement with measured99mTc-DTPA-GFR adjusted 

for body surface area135. In another study of 198 patients with mean age of 8.2 (range 

2.1–18) years, the CKiD Schwartz formula also correlated best with mGFR, with reasonably 

low (but not the lowest) bias compared with the other eGFR equations tested (TABLE 2)136. 

The CKiD Schwartz formula might therefore be the best current option for estimating GFR 

in children.

Ascertaining the best approach to estimate GFR in patients with SCD is crucial because 

CKD definitions, which are used in management decisions regarding medication adjustment, 

dialysis access planning and transplantation referral, are based on eGFR values. If eGFR 

is overestimated, patients with undiagnosed CKD might experience delays in care and 

transplant referral, and receive inappropriately-dosed medications. These concerns parallel 

the discussions of health disparities related to use of Black race as a variable in eGFR 

estimation137. When comparing a cohort of individuals with SCD with African Americans 

in the National Health and Nutrition Examination Survey cohort, manifestations of CKD, 

including hyperkalaemia, acidosis and elevations in alkaline phosphatase, occurred at higher 

eGFR values in patients with SCD (80 ml/min/1.73 m2) than in African Americans in 

the National Health and Nutrition Examination Survey cohort (40 ml/min/1.73 m2)138. 

These data further support the use of a higher than typical eGFR cutoff, as measured by 

conventional measures, for identifying CKD in patients with sickle cell disease (that is 

eGFR <90 ml/min/1.73m2 rather than <60 ml/min/1.73m2)64.

Role of kidney biopsy

Generally, in patients with SCD with a prior history of albuminuria or hyperfiltration, and 

in the absence of other urinary or systemic findings, a biopsy is not necessary to confirm 

the diagnosis of SCD-related CKD. However, as with any patient with a new presentation 

for CKD, a full assessment should be made to assess other potential causes. For example, 

in the setting of abrupt onset of nephrotic syndrome, dysmorphic haematuria or features 

of other systemic diseases, a kidney biopsy might be helpful to rule out other causes of 

kidney disease139. Although no available data suggest an inherently higher risk of kidney 

biopsy-related adverse events in SCD patients, post-biopsy bleeding events might be more 

consequential given the degree of anaemia already present in most patients.

Biomarkers of kidney disease

Biomarkers might enable the detection of subclinical damage and highlight mechanisms 

underlying sickle cell nephropathy. Proteins of interest include biomarkers of endothelial 

dysfunction (ET1 and sVEGFR1), of glomerular (nephrin) and tubular (KIM1 and NAG) 

injury, and inflammation (CC-chemokine ligand 2 (CCL2) (FIG. 1).

Nephrin, which is an integral component of the slit diaphragm, maintains the podocyte foot 

process architecture140. Elevated urinary nephrin precedes the development of albuminuria 

in animal models of kidney injury and might be a more sensitive biomarker of nephropathy 

than albuminuria or reduced eGFR in patients with diabetes141. Urinary nephrin levels 

correlate positively with albuminuria in adults22 and children41 with SCD.
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NAG is a lysosomal enzyme found predominantly within proximal tubular cells and is 

released into the urine after kidney injury. In patients with diabetes, hyperglycaemia 

is associated with elevated urinary NAG levels and precedes the development of 

albuminuria142. KIM1 is a transmembrane protein that is overexpressed on the 

luminal side of proximal tubule cells after acute or chronic tubulointerstitial injury143. 

Urine concentrations of NAG and KIM1 were positively associated with increased 

haemoglobinuria, albuminuria and proteinuria in several independent cohorts of patients 

with SCD112,144,145.

CCL2 is another potentially useful biomarker in SCD. This protein is a chemoattractant for 

blood monocytes and tissue macrophages, and is released by glomerular and tubular cells 

in response to pro-inflammatory stimuli146. Glomerular macrophage infiltration increases in 

SCD mice compared with controls, and blocking macrophage activation of the RON-kinase 

pathway ameliorated glomerular hypertrophy and endothelial injury in SCD mice147. Urine 

CCL2 concentration correlates positively with interstitial macrophage accumulation in lupus 

nephritis and in diabetic kidneys.148,149 In an adult cohort of patients with SCD, urinary 

CCL2 was positively associated with lipid peroxidation, nitric oxide consumption and 

albuminuria150; a direct correlation with albuminuria was also observed in children with 

SCD151.

Metabolomic profiling might identify additional biomarkers and provide insight into 

pathophysiologic processes that drive kidney damage in SCD. Six metabolites — betaine, 

proline, dimethylamine, glutamate, leucine and lysine — were elevated in adult SCD 

patients with versus without albuminuria ≥ 30 mg/g152. In patients with primary focal 

segmental glomerulosclerosis153, which is a histopathologic lesion that is commonly 

observed in SCD-related kidney disease, those with proteinuria >3 gm/day had elevated 

urinary concentrations of proline and dimethylamine compared to those with proteinuria < 3 

gm/day55. Dimethylamine is a metabolic product of asymmetric dimethylarginine (ADMA), 

which is an endogenous inhibitor of nitric oxide synthases that might have deleterious 

effects on endothelial function154. Plasma ADMA concentrations are positively associated 

with haemolysis, elevated TRV and early mortality in SCD155. In another cohort of patients 

with SCD, high plasma ADMA levels and quinolinic acid were associated with rapid eGFR 

decline23. In cohorts with non-SCD kidney disease, plasma ADMA was associated with 

increased progression to kidney failure, cardiovascular morbidity and early mortality154.

Other biomarkers and mechanistic pathways in sickle cell nephropathy might be identifiable 

through the urine proteome. Ceruloplasmin, which is a ferroxidase enzyme that is elevated 

in acute and chronic inflammatory conditions, acts as a pro-oxidant by donating free copper 

ions156. A 31-fold higher urine concentration of ceruloplasmin was detected in patients 

with HbSS and haemoglobinuria, and in this cohort, urinary ceruloplasmin concentrations 

were progressively higher with increased CKD stage157. Orosomucoid is an acute phase 

protein expressed in response to tissue injury and is associated with diabetic or systemic 

lupus erythematosus-related kidney disease158,159. Urinary orosomucoid was also detected 

in patients with HbSS and haemoglobinuria, and was associated with CKD stage160,161.
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Treatment of sickle cell nephropathy

The treatment of SCD-related kidney disease has focused on either therapies that have been 

demonstrated to improve other SCD-related complications (for example, hydroxyurea or 

chronic red blood cell transfusion therapy) or adopted from diabetic or hypertensive-related 

kidney disease (for example, ACE inhibitors or ARBs).

SCD-specific therapy

Hydroxyurea (also known as hydroxycarbamide) is a ribonucleotide reductase inhibitor 

that increases fetal haemoglobin (HbF) and reduces rates of vaso-occlusive crises, acute 

chest syndrome and RBC transfusion requirements in patients with SCD162. The BABY 

HUG study was a prospective, randomized, placebo-controlled, double-blind study that 

evaluated the effects of hydroxyurea on organ damage in infants (mean age 14 months) 

with HbSS or HbSβ0 thalassemia135. Infants treated with hydroxyurea for 24 months had 

higher urine osmolality and lower renal volumes, but no effect was observed on mGFR. 

An initial analysis of the Hydroxyurea Study of Long-Term Effects study, which was a 

prospective, observational study of children with SCD treated with hydroxyurea for accepted 

clinical indications25, showed that escalation of hydroxyurea to maximum tolerated dose 

for three years increased HbF levels, reduced haemolysis and led to a decrease in mGFR 

from a hyperfiltration range (mean 167 ± 46 ml/min/1.73 m2) to values closer to the 

normal range (mean 145 ± 27 ml/min/1.73 m2). Moreover, analysis from Hydroxyurea 

Study of Long-Term Effects and the Sickle Cell Clinical Research and Intervention Program 

demonstrated greater risk of persistent albuminuria in children starting hydroxyurea after 

10 years of age (HR 2.3; 95% CI 1.2–4.6)163. The effect of hydroxyurea on albuminuria 

in adults with HbSS was prospectively evaluated in an open-label, single-centre study164. 

Treatment with hydroxyurea at a mean dose of 15 mg/kg for six months improved UACR 

(from median of 27 mg/g to 15 mg/g; P < 0.01) and the UACR improvement was primarily 

observed in patients with moderate albuminuria. These studies suggest that hydroxyurea 

might protect against sickle cell nephropathy, particularly in the early stages of disease, 

but confirmatory prospective studies are required. The Siklos on Kidney Function and 

Albuminuria Clinical Trial (NCT03806452) is an ongoing phase IIb, multicentre, double-

blind, randomized, placebo-controlled study focused on adults (age ≥18 years) with HbSS or 

HbSβ0 thalassemia, and albuminuria (UACR 27–885 mg/g). Participants are being randomly 

assigned to receive hydroxyurea (15 mg/kg per day) or placebo, and the primary outcome 

is a 30% improvement in albuminuria after 6–12 months of therapy. Hydroxyurea can lead 

to myelosuppression and the optimal dose that preserves kidney function while maintaining 

safe blood counts still needs to be determined.

Chronic RBC transfusion increases haemoglobin concentration, reduces HbS and improves 

oxygen delivery165. Data from paediatric SCD cohorts suggest that RBC transfusion might 

protect against development of hyposthenuria and moderate albuminuria, particularly if 

started before 10 years of age166. In a paediatric study of patients with HbSS or HbSβ0 

thalassemia, albuminuria was less prevalent in those randomly assigned to receive chronic 

RBC transfusion in the Transcranial Doppler with Transfusions Changing to Hydroxyurea 

study (10%) than in two age-matched cohorts of patients who did not receive chronic 
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transfusions (14–22%)167. The benefits of using chronic transfusion to stabilize or improve 

kidney function in adults with SCD are less clear. Sickle Cell Disease and Cardiovascular 

Risk-Red Cell Exchange Trial is an ongoing prospective, randomized, multi-centre study 

(NCT04084080) comparing the effect of chronic RBC exchange transfusion to that of 

standard of care on cardiovascular and kidney complications, including albuminuria, eGFR 

and CKD progression.

Kidney-specific therapy

Several small prospective cohorts have evaluated the efficacy of ACE inhibitors and ARBs 

in sickle cell nephropathy. Urine protein excretion was reduced by 57% in 10 adults with 

HbSS and proteinuria after two weeks of enalapril (5–10 mg/day)55. In another study, 

22 normotensive adults with HbSS and persistent moderate albuminuria were randomly 

assigned to receive captopril (6.25 mg/day for month 1, 12.5 mg/day for months 2–3 

and 25 mg/day for months 4–6) or placebo168. Captopril was well tolerated and led to a 

37% reduction in albuminuria compared with a 17% increase in the placebo group. Other 

studies have investigated losartan, an ARB that selectively inhibits AT1R while preserving 

the potentially renoprotective signalling through AT2R169. A single-centre study of patients 

aged ≥ 10 years with HbSS or HbSβ0 thalassemia and persistent albuminuria were treated 

with hydroxyurea and losartan and reported a reduction in albuminuria of (−134 mg/min 

median decrease in albumin excretion rate) in 12 patients who received a short-term course 

of losartan (4–10 weeks); a reduction in albuminuria persisted in 8 patients who received 

losartan for ≥12 months170. In a multicentre study of 36 children and adults with HbSS 

or HbSβ0 thalassemia, 58% of those with moderate albuminuria and 83% of those with 

severe albuminuria treated with losartan met the primary endpoint of ≥25% reduction in 

albuminuria171. These improvements in albuminuria after treatment with ACE inhibitors or 

ARBs are consistent with observations in transgenic sickle mice94. No prospective studies 

have evaluated the effects of ACE inhibitors or ARBs on eGFR decline, but retrospective 

data suggest that patients with SCD receiving these agents have a slower eGFR decline 

(−2.8 ml/min/1.73 m2 per year) than those not receiving such therapy (−4.7 ml/min/1.73 

m2 per year)125. Given the predisposition of patients with SCD to develop hyperkalaemia, 

potassium levels should be monitored in patients treated with renin-angiotensin-aldosterone 

blockade.

Novel therapeutic options

Several studies have focused on the renoprotective effects of therapies that target endothelial 

dysfunction. Ambrisentan was evaluated in a Phase I, double-blind, placebo-controlled study 

of 26 patients with SCD172. UACR declined in patients randomly assigned to receive 

12 weeks of ambrisentan (−37 mg/g), whereas it increased in those receiving placebo 

(+92 mg/g). The cholesterol-lowering agent atorvastatin improves endothelial function by 

upregulating nitric oxide and reducing oxidative stress mediators173. A 6-week exploratory, 

randomized, double-blind, crossover pilot study of 13 patients reported trends of reduced 

plasma ET1 and soluble P-selectin with atorvastatin therapy compared with placebo174. In 

transgenic sickle mice, 8 weeks of atorvastatin lowered levels of sVCAM1, attenuated urine 

concentration defects, reduced albuminuria and KIM1 levels, and improved GFR175.
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In 2019, the FDA approved the use of voxelotor and crizanlizumab to treat SCD. 

Voxelotor reversibly binds and stabilizes oxygenated haemoglobin, which prevents HbS 

polymerization. In a phase III, double-blind, randomized, placebo-controlled trial, a 24-

week course of voxelotor significantly improved haemoglobin concentrations and reduced 

haemolysis in patients with SCD176. A pilot study (NCT04335721) is recruiting patients 

with HbSS or HbSβ0 thalassemia with a combination of albuminuria and haemoglobinuria 

to determine the effects of 48 weeks of voxelotor on the kidney. Crizanlizumab, which 

is a P-selectin inhibitor, reduced the rate and time-to-first vaso-occlusive pain episodes in 

patients with SCD in a double-blind, randomized, placebo-controlled, phase II study177. 

Another phase II, multicentre, randomized study, is evaluating the kidney effects of 52 

weeks of crizanlizumab compared with standard of care alone in patients with SCD 

(NCT04053764).

Management of advanced CKD in SCD

Given the myriad complications associated with SCD, when these patients develop advanced 

CKD, several important management issues must be considered.

Anti-hypertensive therapy

Historically, hypertension was reported to be uncommon in SCD patients as blood 

pressure has been thought to be typically lower than in otherwise healthy individuals. 

The Cooperative Study of Sickle Cell Disease reported lower systolic and diastolic blood 

pressure over most age ranges for patients with SCD compared with control individuals 

matched for age, race and sex178; hypertension was diagnosed in < 10% of adults 

with SCD179. Investigations have evaluated what was previously termed relative systemic 

hypertension (that is, systolic blood pressure 120–139 mmHg or diastolic blood pressure 70–

89 mmHg)178,180 and found associations with an elevated serum creatinine as well as high 

risks of stroke and early mortality 178,180. Notably, these ranges are now considered elevated 

blood pressure or stage 1 hypertension in the general population181. Subsequent data 

suggest hypertension is more common than previously thought in patients with SCD179,182. 

Although most studies have not reported its prevalence with current definitions, one study 

from adults with SCD in Ghana noted elevated systemic hypertension in 45% of patients 

and hypertension (defined as >140/90 mmHg) in 19%182. By modern definitions, all of 

these patients would have elevated blood pressure or hypertension. Recommendations for 

blood pressure targets in patients with SCD are not currently available and thus the use of 

targets similar to those established for the general population have been suggested127. Of 

note, although thiazide diuretics are often suggested as the most appropriate first-line agent 

for treating hypertension 181,183, in patients with SCD diuretics are often avoided owing 

to the risk of volume depletion (discussed below). Therefore, an ACE inhibitor or ARB 

(particularly in the setting of albuminuria or CKD), or a calcium-channel blocker might be 

reasonable first-line agents to treat hypertension181.

Diuretic use

Diuretics are generally avoided in patients with SCD owing to the risk that volume 

depletion and subsequent dehydration might precipitate vaso-occlusive crises184. However, 
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with worsening CKD, volume retention might become clinically relevant, particularly as 

ageing patients accumulate additional comorbidities, including right ventricular failure and 

congestive heart failure. In these settings, diuretics are warranted and can be used cautiously. 

Patients should be educated to stop any prescribed diuretics during intercurrent acute 

illnesses to avoid excess dehydration.

Erythropoiesis-stimulating agents

Erythropoiesis-stimulating agents (ESAs) have been used in patients with SCD who 

are intolerant to optimal hydroxyurea doses due to reticulocytopenia and can allow an 

increase in hydroxyurea dosage185. As CKD progresses and endogenous erythropoiesis 

wanes, anaemia worsens and the use of ESAs might be necessary to maintain acceptable 

haemoglobin levels. A retrospective study of 32 patients treated with an ESA for at least 

one year demonstrated no increase in vaso-occlusive crises after ESA initiation186, despite 

earlier anecdotal reports; data from an insurance claims repository also showed that crisis 

rates after ESA initiation were similar in patients with SCD receiving ESAs (n=24) and 

those SCD patients not receiving ESAs186. Patients with the best haemoglobin responses had 

received both an ESA and hydroxyurea.

Based on current recommendations, patients with SCD and CKD who experience a drop 

in absolute reticulocyte count might benefit from concomitant ESA and hydroxyurea 

therapy127. Although higher ESA doses might be required than in patients with CKD not 

due to SCD, the target haemoglobin should be individually tailored to maintain quality of 

life and reduce the need for transfusions, and should not exceed 10–11 g/dl187.

Iron chelation therapy

Iron overload is common in SCD owing to frequent RBC transfusions. When indicated, 

management requires chelation therapy with one of three available agents — deferoxamine 

administered parenterally, or the oral agents deferasirox and deferiprone187,188. Deferasirox 

is associated with a (usually reversible) acute rise in creatinine and should thus be used 

cautiously and with close monitoring in patients with CKD187. Of note, in a long-term study 

of 62 adult and paediatric patients treated with deferasirox for 5 years, only two patients had 

AKI events and neither event was considered to be drug-related189. Deferasirox excretion 

is primarily faecal, whereas deferiprone is primarily excreted via urine187. A pilot study 

in eight patients without SCD who were receiving haemodialysis evaluated two doses of 

deferasirox (10 or 15 mg/kg daily). The optimal dosing remains uncertain — the lower 

dose did not achieve therapeutic levels and the higher dose achieved greater than expected 

levels, but no adverse events occurred190. Recurrent hypocalcaemia in a patient with SCD 

receiving haemodialysis while on deferasirox has been reported191, and although the risk 

is probably low, patients treated with haemodialysis should be monitored closely when 

treated with deferasirox. Deferoxamine can be used in patients receiving dialysis but must 

be administered during dialysis to allow removal, especially given the risk of Yersinia sepsis 

and mucormycosis associated with this agent187,192. Deferoxamine has been administered 

intraperitoneally in patients receiving peritoneal dialysis193.
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Kidney failure

In two US studies (from 1992–1997 and 2005–2009), patients with SCD comprised only 

0.1% of the entire population with kidney failure123,194; information to guide optimal 

management of these patients remains minimal. Several studies have demonstrated that, 

among patients with kidney failure, those with SCD have higher mortality and lower 

likelihood of transplantation than those without SCD123,194,195. Of note, the mortality risk 

of SCD in patients with kidney failure is attenuated by kidney transplant194. Moreover, 

compared with patients with SCD and kidney failure who are awaiting transplantation, 

kidney recipients with SCD trended to lower mortality, even at 90 days following transplant 

(relative risk 0.14; P=0.056)196. Mortality among patients with SCD and kidney failure is 

also associated with lower haemoglobin levels, higher ESA dose, higher ultrafiltration rates, 

presence of a dialysis catheter, hypoalbuminaemia and the use of high sodium dialysate 

(>145meq/L)195.

Dialysis

Patient with SCD and kidney failure who establish nephrology care in the pre-dialysis period 

have a reduction in mortality in the first year of dialysis compared with patients without 

pre-dialysis nephrology care123. In one French study, dialysis initiation did not affect the 

incidence of vaso-occlusive crises in patients with SCD124. Of note, patients with SCD 

are at a higher risk of vascular access failure than patients with kidney failure without 

SCD195, perhaps owing to activated coagulation and endothelial injury in SCD. Peritoneal 

dialysis might be beneficial in SCD to avoid overly aggressive volume removal, bleeding 

complications and vascular access complications, and should perhaps be considered as a first 

option in the able patient. Indeed, initial data from a US Renal Data System-based study 

suggested a survival benefit for patients with SCD and kidney failure receiving peritoneal 

dialysis compared with hemodialysis.197 However, similar to most individuals with kidney 

failure, the use of peritoneal dialysis among SCD patients with kidney failure is low (5%). 

For patients receiving haemodialysis, high sodium concentrates, high ultrafiltration rates and 

low dialysis temperatures (owing to vasoconstriction) should be avoided, as these conditions 

could promote vaso-occlusive crises.

Kidney transplantation

Kidney transplantation remains a viable option for patients with SCD and advanced kidney 

disease or kidney failure, with acceptable graft survival and probable survival advantage 

over dialysis. However, patients with SCD who develop kidney failure might have additional 

disease-related comorbidities and medical barriers to transplantation45,52, which might 

partly explain why they are less likely to receive a kidney transplant123,124,194.

Several studies have evaluated kidney transplant outcomes in SCD. The rates of delayed 

graft function and one-year graft survival from the period 1984–1996 in the US Renal Data 

System were similar in kidney transplant recipients with SCD (78%) and those without 

SCD (77%)196. However, patients with SCD had lower graft survival at three years than 

those without SCD (48% versus 60%), and lower one-year (78 versus 90%) and three-year 

patient survival (59% versus 81%). Of note, although mortality was also greater in transplant 

recipients with SCD than in those without SCD according to data collected from 1988–
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1999 and 2000–2011, the overall survival at 6 years had improved for SCD patients in 

the more recent time period (68.8% versus 55.7%)198. Compared with transplant recipients 

with kidney failure due to diabetes, 6-year mortality was similar (73.1% vs. 74.1%) in the 

more recent time period198. Moreover, a 2019 study of kidney transplant recipients with 

SCD in France did not report a difference in death-censored graft survival compared with 

recipients without SCD (median follow up of 17.4 months)199. A somewhat contrasting US 

Organ Procurement and Transplantation Network/United Network for Organ Sharing study 

evaluated patients with SCD transplanted between 2010 and 2019 reported lower patient 

and graft survival in recipients with SCD compared with recipients without SCD, including 

in recipients with diabetes200. Outcomes in patients with SCD during this period were 

similar to those seen in an earlier period (2000–2009); however, unlike in prior eras, patients 

with diabetes fared as well as non-diabetic patients, suggesting that improved outcomes 

in diabetes may have accounted for the observed difference between the studies. Another 

Organ Procurement and Transplantation Network/United Network for Organ Sharing study 

of data from the period 1998–2017 compared 189 kidney transplant recipients with SCD 

with patients with SCD who remained on the waiting list, and noted that transplantation 

was associated with a 20% reduction in the 10-year absolute risk of death, which is similar 

to the transplantation benefit observed in patients without SCD201. Overall, these studies 

demonstrating favourable transplant outcomes in SCD patients suggest that SCD alone 

should not be a contraindication to kidney transplantation. Further, the improved mortality 

with transplant highlights that early referral for transplantation, if appropriate, is paramount.

Specific interventions might improve transplant outcomes in patients with SCD. Pre-

transplant (in particular for planned living donation), RBC exchange transfusion of 

leuko-reduced blood, which minimizes HLA alloimmunization, can be considered to 

reduce the proportion of HbS and thereby the likelihood of sickling 187,202; warming 

of the allograft and intraoperative hyperoxygenation of the recipient might also be 

beneficial202. Although prior recommendations have suggested corticosteroids should 

be minimized as they are thought to potentially trigger SCD-related pain crises, 

steroid-containing immunosuppression regimens have been used successfully202. Post-

transplantation, hydroxyurea might reduce ongoing SCD-related allograft injury, but should 

be used carefully when co-administered with other myelosuppressive medications (such as 

sulfamethoxazole, valganciclovir or mycophenolate)203. A 2020 study of kidney transplant 

recipients with SCD reported that post-transplant exchange transfusion was associated with 

better patient and graft survival, and preserved eGFR without a greater risk of rejection 

or development of donor-specific antibodies compared with historical SCD transplant 

recipients who had not received exchange transfusion post-transplant 204.

Kidney abnormalities in SCT

SCT was traditionally thought to be a benign state. Although less likely to occur than 

in patients with SCD, HbS can still polymerize in individuals with SCT205. SCT is 

associated with multiple kidney complications, although they are often less severe than 

those observed in SCD. Rhabdomyolysis and sudden death are the most recognized 

complications of SCT, but kidney complications, including impaired urinary concentration, 

haematuria and papillary necrosis, occur commonly206. The prevalence of supranormal 
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renal haemodynamics in individuals with SCT is unclear but a small study of Congolese 

children suggested that hyperfiltration was more common in children with SCT than in 

HbAA controls207. Impaired urinary concentration in patients with SCT is attenuated by 

co-inheritance of α-thalassemia208. High intracellular HbS concentration is a crucial risk 

factor for HbS polymerization. In a Nigerian study, individuals with SCT who had papillary 

necrosis had a higher mean HbS concentration than those without papillary necrosis (34% 

versus 25%, respectively; P<0.05)209. Another important consideration in patients with SCT 

with gross haematuria is the evaluation for renal medullary carcinoma (BOX 1)206.

Multiple studies have confirmed a relationship between SCT and CKD. In a large meta-

analysis of 15,975 African Americans, participants with SCT had an increased risk of 

baseline CKD and incident CKD, as well as a higher rate of eGFR decline, compared with 

individuals without SCT210. Another population-based cohort of 9,909 African Americans 

in the Reasons for Geographic and Racial Differences in Stroke study, confirmed an 

association between SCT and incident CKD; patients with SCT had a nearly two-fold higher 

risk of kidney failure than those without hemoglobinopathies211. Of note, co-inheritance 

of high-risk APOL1 variants conferred no additional risk. In another large patient data 

registry that included self-identified Black patients who had haemoglobin electrophoresis, 

patients with SCT had a faster rate of eGFR decline (0.45 ml/min/1.73 m2 greater) than 

individuals with normal haemoglobin electrophoresis66. Additional studies in Hispanic and 

Latinx populations noted a similar association between SCT and kidney disease risk212. 

Interestingly, data from the African American Study of Kidney Disease and Hypertension 

found no association between SCT and CKD progression or kidney failure risk in patients 

with established CKD213. These findings suggest that SCT is a risk factor for development 

of CKD but might not influence disease progression. Collectively, these data suggest that 

SCT is a modest risk factor for the development of CKD, although further studies assessing 

whether SCT affects the risk of CKD progression are needed. At present, no data suggest 

that screening for CKD in patients with SCT is beneficial. However, in those with other 

CKD risk factors (for example, hypertension, diabetes or family history of CKD), awareness 

of this heightened risk might enable patients to adopt lifestyle modifications that reduce 

the risk of disease development and inform clinicians to be particularly observant for the 

development of CKD. These considerations are particularly important as SCT status is 

determined at birth in many countries due to universal newborn SCD screening programs.

The association between SCT and AKI is less well established. Several case reports have 

described AKI in individuals with SCT, often with associated rhabdomyolysis. One study 

using diagnostic codes found no association between SCT and AKI214, but another that 

evaluated African Americans in the US Military reported that the risk of AKI was higher 

in individuals with SCT detected by hemoglobin electrophoresis than in those without SCT 

(odds ratio (OR) 1.74; 95% CI 1.17–2.59)215. A 2021 study that used the same previously 

noted multicentre registry of Black patients with haemoglobin electrophoresis found that 

individuals with SCT had a 1.6-fold higher risk of incident severe AKI (defined as creatinine 

≥1.5 times above baseline for ≥ 72 hours) than those without haemoglobin variants80. 

Following AKI, individuals with SCT also had a more rapid eGFR decline than those 

without SCT80.
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Among patients with kidney failure receiving dialysis, SCT was associated with the use of 

higher doses of ESAs than those used in patients without detectable hemoglobin variants 

to achieve similar haemoglobin levels216,217. Data on outcomes for individuals with SCT 

who undergo kidney transplantation are scarce202, although immediate post-transplant 

complications have been reported218. With regard to organ donation, some centres screen 

living donors for SCT during assessment of eligibility. In a 2008 US survey, only 17.5% 

of responding transplant centres had an established policy for donors with SCT but 37.2% 

reported excluding these donors most or all of the time219. In the UK, 20% of respondent 

centres reported a formal policy although all would consider SCT donors202. In the absence 

of data to suggest adverse outcomes after kidney donation, evaluation of SCT donors should 

be performed on a case-by-case basis.

CONCLUSIONS

Kidney disease is highly prevalent in SCD but many questions remain about its 

pathophysiology, natural history and optimal treatment, and additional studies are required. 

Given the limitations of current eGFR equations, the CKD-EPI equation using cystatin 

C alone presently seems to be the optimal choice. However, as cystatin C tests are not 

widely available, the CKD-EPI creatinine equation without race adjustment should be used 

in adults, whereas the combined cystatin C and creatinine CKiD Schwartz formula might 

be preferable in children. This is consistent with recent recommendations by the NKF-ASN 

taskforce that the CKD-EPI creatinine equation without the race variable be used in all US 

laboratories to estimate GFR in adults, as well as increased efforts to facilitate routine and 

timely use of cystatin C to confirm eGFR, especially in adults at risk of or have CKD220. 

The most recent 2021 CKD-EPI equation that has eliminated inclusion of race has not 

yet been evaluated in the SCD population134. Current recommendations suggest screening 

children with SCD for albuminuria by the age of 10 and at least annually thereafter. The use 

of genetic, proteomic and metabolomic tools, which could perhaps be integrated to calculate 

risk scores, might facilitate the early identification of individuals at risk of kidney disease.

Early identification of kidney damage and subsequent initiation of disease-modifying 

therapies, adequate blood pressure control and avoidance of nephrotoxic agents (BOX 

2) could slow progression of CKD and decrease risk of death in SCD. Albuminuria 

associated with CKD development and progression as well as rapid eGFR decline in 

SCD, consistent with the relationship of albuminuria as an independent risk predictor 

of progressive CKD and ESKD in diabetic and non-diabetic individuals221,222. Although 

ACE inhibitors, ARBs and hydroxyurea decrease albuminuria in short-term studies, no 

long-term studies have yet been performed to show that reduction of albuminuria will 

slow kidney disease progression. Sodium-glucose co-transporter 2 (SGLT2) inhibitors have 

demonstrated benefits in diabetic kidney disease and other forms of kidney disease with 

albuminuria223–225. Combined with these data and with the roles of hyperfiltration and 

glomerular hypertension in SCD nephropathy, these drugs should be evaluated in SCD 

patients at risk of progressive kidney disease. At present, however, no data exist to 

support their use in SCD, in which adverse events such as volume depletion may be a 

particular concern. Adequately designed studies that determine the long-term effects of 

disease-modifying therapies on progressive CKD are highly warranted. Several studies 
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have shown that the survival of patients with SCD and kidney failure improves after 

kidney transplantation and these patients should therefore be considered for this treatment 

modality. More data are needed to define optimal immunosuppressive treatments after 

kidney transplant, and the role of chronic RBC transfusion and other disease-modifying 

therapies to minimize the recurrence of kidney disease. Although SCT is less severe than 

SCD, it is also associated with kidney abnormalities and CKD. Because SCT is identified 

via universal newborn screening programs in many resource-rich countries, clinicians should 

consider its potential contribution to CKD risk. Answers to these and other questions will 

require carefully designed clinical and laboratory studies and collaboration among multiple 

centres.
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Glossary terms

Compound heterozygous variants
refers to the presence of two different mutated alleles at a particular gene locus, e.g. 

inheritance of βS allele and βC allele.

Nocturnal enuresis
persistence of night-time urination in bed two or more times per week for at least 3 months 

after the age of 5.

Hyporeninemic hypoaldosteronism
is characterized by both diminished renin release and an intra-adrenal defect, which result in 

decreased systemic and intra-adrenal angiotensin II production and a decline in aldosterone 

secretion

Dysmorphic haematuria
abnormally shaped red blood cells in the urine whose presence suggest glomerular injury

Relative hypertension
defined as systolic blood pressure 120–139 mmHg or diastolic blood pressure 70–89 mmHg

Exchange transfusion
a procedure in which a patient’s blood or components (e.g. red blood cells) of it are replaced 

by other blood or blood products
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Box 1 –

Renal medullary carcinoma

Renal medullary carcinoma (RMC) is a rare, aggressive malignancy most commonly 

described in young individuals with sickle cell syndromes, predominantly SCT227,228. 

The reason for the high prevalence in sickle cell syndromes is not fully known but 

may be related to chronic medullary hypoxia. Data obtained from patients suggest that 

high-intensity exercise may be a risk factor for RMC in individuals with SCT, with 

additional studies in SCT mice showing higher renal medullary hypoxia compared to 

wild-type controls following high-intensity exercise229. These data suggest that high-

intensity exercise may be a modifiable risk factor for RMC in individuals with SCT. Loss 

of expression of the chromatin remodeling factor and tumour suppressor SMARCB1, 

strong expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible 

factor, and positivity for cellular tumour antigen p53 have all been implicated in RMC 

development230,231. Patients commonly present with haematuria, flank pain, weight loss 

and abdominal masses, and the disease is often metastatic at presentation. In a systematic 

review of 217 cases, 88% of patients had SCT, 8% had SCD, 50% were children and the 

risk of RMC was more than two-fold higher in males228. Interestingly, RMC has been 

noted to have a predilection for the right kidney, seen in 70% of patients227,228. Isolated 

haematuria, or in combination with abdominal or flank pain, was present at diagnosis 

in 66% of cases and tumour-related mortality was 95%228. Although screening is not 

currently recommended, the poor prognosis of RMC demands a thorough evaluation of 

individuals with sickle cell syndromes who present with haematuria.
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Box 2 –

Pain management and nephrotoxicity

Avoidance of nephrotoxic agents might prevent additional kidney damage in SCD. 

Administration of NSAIDs, which are important for treating vaso-occlusive pain, causes 

a more pronounced decline in GFR and renal plasma flow in patients with SCD 

compared with healthy individuals12. In a paediatric SCD cohort, the odds ratio of AKI 

increased 1.8-fold for each additional day of ketorolac therapy during a vaso-occlusive 

crisis78. In adult patients with SCD, vancomycin use during a vaso-occlusive crisis was 

associated with 4.5-fold greater risk of AKI82.

Morphine is an opioid that is commonly used to manage SCD-related pain but might 

have a pathophysiologic role in SCD-related nephropathy. Chronic treatment of sickle 

mice with morphine increased glomerular volume, mesangial cell proliferation, parietal 

cell metaplasia, podocyte effacement and microvillus transformation; HMOX1 activity 

and albuminuria also increased232. Morphine-related kidney injury was ameliorated by 

the non-selective opioid antagonist, naloxone. In a single-centre preliminary study, we 

found that the use of opioid analgesics was associated with albuminuria in adult patients 

with SCD233 but further studies are required confirm this finding and further evaluate the 

association of opioid analgesics with albuminuria in SCD.
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Key Points

• Albuminuria is common in patients with sickle cell disease (SCD) and 

predicts the progression of chronic kidney disease (CKD).

• Haematuria is usually benign in individuals with sickle cell trait (SCT) and 

SCD, but might be a presenting symptom of renal medullary carcinoma.

• The pathophysiology of SCD-related nephropathy is likely driven by 

hyperfiltration, increased oxidant stress and glomerular hypertension.

• Genetic modifiers, including APOL1, HMOX1, HBA1 and HBA2 variants, 

are implicated in the development and/or progression of CKD.

• Kidney function declines more rapidly in individuals with sickle cell trait 

and SCD than in the general African American population; baseline CKD 

and rapid decline in estimated glomerular filtration rate are associated with 

increased mortality in SCD.

• Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers 

and hydroxyurea decrease albuminuria in short-term studies; adequately 

controlled studies are required to evaluate the long-term effects of these 

agents on progressive kidney disease.
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Figure 1: Proposed mechanisms and biomarkers of sickle cell nephropathy.
Sickle cell disease is complicated by multiple functional and structural abnormalities that 

occur along the nephron — clinical complications include hyposthenuria, haematuria, 

albuminuria and progressive estimated glomerular filtration rate (eGFR) decline. Medullary 

ischaemia drives localized prostaglandin release and results in marked vasodilation, 

increasing effective renal blood flow and GFR. In the glomerulus, the pathogenesis 

of albuminuria seems to be multifactorial — ischaemia-reperfusion injury, haemolysis, 

oxidative stress, hyperfiltration and glomerular hypertension have all been implicated. ANP, 

atrial natriuretic peptide; CCL2, CC-chemokine ligand 2; ET1: endothelin 1; KIM1: kidney 

injury molecule 1; NAG, N-acetyl-β-D-glucosaminidase; NH4
+: ammonium ion; NO, nitric 

oxide; sVEGFR1, soluble vascular endothelial receptor 1; RBC, red blood cell; ROS, 

reactive oxygen species.
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Figure 2: Approach to screening, evaluation and management of CKD in SCD.
From age 10, patients should be screened for albuminuria at least annually. Repeat 

evaluation using first-morning void or random urine sample should be obtained to confirm 

albuminuria, if the initial test is positive. Earlier screening might be considered in the 

presence of high-risk factors, including glomerular hyperfiltration at an early age, a strong 

family history of kidney disease or the known presence of APOL1 risk-variants. Renin–

angiotensin–aldosterone system (RAAS) blocking agents should be considered in patients 

with persistent albuminuria or urinary albumin-to-creatinine ratio (UACR) ≥ 100 mg/g. 

Kidney function (GFR) and serum potassium should be monitored after starting RAAS 

inhibition. *Although APOL1 testing is available clinically, current data do not support 

routine screening for APOL1 risk variants.
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Table 1:

Replicated gene variants implicated in sickle cell nephropathy

Gene Gene product Variants Effects associated with variant in patients 
with SCD

Refs

HBA1 Haemoglobin subunit α1 α-3.7K deletion
α-4.2K deletion

Reduction in albuminuria, higher eGFR and 
lower risk of CKD progression

40,44,107,108,117

APOL1 Apolipoprotein L1, which is a major 
component of the trypanosome lytic 
factor complex

G1 (S342G or 
S342G and I384M 
substitution)
G2 (N388 and Y389 
deletion)

Homozygous or compound heterozygous 
inheritance of APOL1 G1 & G2 
variants: associated with increased risk of 
urine dipstick-defined proteinuria, higher 
albuminuria, lower eGFR, higher CKD stage, 
faster CKD progression and increased risk of 
kidney failure

112,113,115–117,226

HMOX1 Haem oxygenase 1, which is a 
rate-limiting inducible enzyme that 
metabolizes haem to biliverdin, 
carbon monoxide and iron

GT-repeat in 
promoter region or 
rs743811

Long GT-tandem repeats (> 25): lower 
baseline eGFR and higher AKI risk
rs743811: lower eGFR, greater albuminuria, 
higher CKD stage and increased risk of 
kidney failure

82,112,116

ACKR1 Atypical chemokine receptor 1 
(also known as the Duffy antigen 
receptor 1, which is a receptor for 
Plasmodium vivax and serves as a 
chemokine-scavenging receptor

rs2814778 Higher risk of urine dipstick-defined 
proteinuria and more severe albuminuria

114,120

AKI, acute kidney injury; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; SCD, sickle cell disease.
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Table 2:

Bias of eGFR equations compared with measured GFR

eGFR equation

Bias (ml/min/1.73 m2)

Adult Population Paediatric population

Arlet 2012 131 Asnani 2013 
130 

Asnani 2015 132 

Yee 2017 133 Lebensburger 2020 136 

Cockcroft–Gault 45.3 37.9 58.9 NA

MDRD 48.7 70.4 82.5 NA

MDRD (without adjustment for race) 20.7 NA NA NA

CKD-EPI 30.2 41.2 45.4 NA

CKD-EPI (without adjustment for race) 10.7 NA NA NA

CKD-EPI_CysC NA 28.3 0.2 NA

CKD-EPI_Cr–CysC NA 41.8 29.7 NA

JSCCS_Cr NA 0.67 −12.0 NA

JSCCS_CysC-Cr NA NA 17.9 NA

CKiD-_Cr–CysC
a NA NA NA 17.0

Filler_CysC NA NA NA 12.5

Schwartz_CysC NA NA NA 47.7

Schwartz_Cr–BUN NA NA NA 10.7

Schwartz_Cr NA NA NA −21.4

BUN, blood urea nitrogen; CKD-EPI, chronic kidney disease epidemiology collaboration equation; CKiD, chronic kidney disease in children study 
equation; Cr, creatinine; CysC, cystatin C; eGFR, estimated glomerular filtration rate; JSCCS, Jamaica sickle cell cohort study equation; MDRD, 
modification of diet in renal disease study equation.

a
CKiD_Cr–CysC had best correlation with measured GFR.
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