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Wolbachia are themostwidely distributed intracellular bacteria, and theirmost
common effect on host phenotype is cytoplasmic incompatibility (CI). A var-
iety of models have been proposed to decipher the molecular mechanism of
CI, among which the host modification (HM) model predicts that Wolbachia
effectors play an important role in sperm modification. However, owing to
the complexity of spermatogenesis and testicular cell-type heterogeneity,
whetherWolbachia have different effects on cells at different stages of sperma-
togenesis or whether these effects are linked with CI remains unknown.
Therefore, we used single-cell RNA sequencing to analyse gene expression
profiles in adultmaleDrosophila testes thatwere infected or uninfected byWol-
bachia. We found that Wolbachia significantly affected the proportion of
different types of germ cells and affected multiple metabolic pathways in
germ cells. Most importantly, Wolbachia had the greatest impact on germline
stem cells, resulting in dysregulated expression of genes related to DNA com-
paction, and Wolbachia infection also influenced the histone-to-protamine
transition in the late stage of sperm development. These results support the
HM model and suggest that future studies on Wolbachia-induced CI should
focus on cells in the early stages of spermatogenesis.
1. Introduction
The intracellular symbiotic bacteria of the genus Wolbachia are widely distribu-
ted in arthropods and nematodes and are mainly located in the testes and
ovaries of arthropod hosts [1,2]. Wolbachia can manipulate host reproduction
in several ways to enhance their own maternal transmission, and the best-
studied host phenotype induced by Wolbachia is cytoplasmic incompatibility
(CI), in which mating between Wolbachia-infected males and uninfected females
leads to embryonic lethality [3]. Numerous studies have discovered that CI is
related to zygotic interphase defects in de novo nucleosome assembly and repli-
cation, leading to delayed activation of the cell cycle kinase Cdk1 and improper
chromosome condensation [4–6].

Although the molecular mechanism of CI has not been fully deciphered, a
series of models have been proposed. The earliest proposed CI model was the
‘mod-resc’ (modification/rescue) model, which hypothesizes that CI is caused
by the modification of sperm by a factor of Wolbachia and that another factor
derived from Wolbachia-infected eggs can rescue this modification [7]. Over
the past few years, Wolbachia-encoded CI factors (CifA and CifB) have been
identified that appear to be the key to explaining the processes of Wolbachia-
induced CI and rescue [8,9]. Correspondingly, a variety of improved CI
models based on the ‘mod-resc’ model have been proposed, including the
HM (host modification) [5,10] and TA (toxin–antidote) [11] models. The HM
model assumes that Cif proteins can modify sperm and that this modification
leads to the segregation failure of paternally derived chromosomes and the phe-
notype of CI in fertilized eggs, unless this modification is reversed or removed
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by CifA derived from Wolbachia-infected females [10]. The TA
model assumes that in embryos, CifB from the male gamete
plays the role of toxin, which can lead to the CI phenotype,
while these defects can be rescued by the CifA antidote
binding CifB in the embryo [11].

Some insightful results about CI have emerged recently,
providing evidence supporting one or more predictions of
these models. Some evidence seems to support the theory
of toxin–antidote binding in the TA model, such as in vitro
pull-down experiments showing that CifA can bind to CifB
[8], and high-resolution structures of CifA and CifB also sup-
port the binding of the two proteins [12]. Studies have shown
that CifB is sufficient to induce CI in males, and this CifB-
induced sterility is rescued by CifA expression in females
[13,14]. However, whether this rescue is due to the binding
of CifA and CifB in the embryo under the assumption of
the TA model is still unclear as no in vivo data in the host
embryos has yet been obtained. Alternatively, the co-
expression of CifA and CifB may be the key to inducing CI,
according to the two-by-one or HM model [10,15]. For
example, in some cases, co-expression of CifA and CifB is
necessary for the induction of CI in transgenic male flies
[8,9,16], and transmission of the same Wolbachia strain into
different hosts may induce CI phenotypes to different degrees
[17,18], which suggests that host factors play an important role
in Wolbachia-induced CI. Moreover, many studies have indi-
cated the importance of the establishment of Wolbachia
modification in the testes during the induction of CI, consistent
with the HM model. For example, for some CI-inducing Wol-
bachia strains, the host sperm cells in the pre-fertilization
stages show abnormal morphology or lower competitiveness,
suggesting that the sperm cells have been modified [19–21].
Importantly, a paper recently published by Kaur et al. [22]
strongly supported the HM model by providing evidence
that Cif proteins localize to the nuclear DNA of the host in
the process of spermatogenesis and cause abnormal histone
retention in elongating spermatids and protamine deficiency
in mature sperm.

Based on the HM model, many researchers have carried
out various omics studies on the putative modification of
testes by Wolbachia and identified multiple host genes
and metabolic pathways that may be closely related to CI
[23–30]. However, owing to the complexity of spermatogen-
esis and the heterogeneity of cell types in the testes, we still
do not know whether Wolbachia have different effects on
cells at different stages of spermatogenesis or whether
these effects may be associated with CI. For example,
studies have shown that the distribution pattern of Wolba-
chia in Drosophila testicular cells is uneven, Wolbachia are
present in developing spermatocytes and spermatogonia
but absent in mature sperm, so the CI-related effects of Wol-
bachia may start occurring early in sperm development [31–
34]. Furthermore, in the parasitic wasp Nasonia vitripennis,
Wolbachia-induced CI is close to 100%, but Wolbachia are
found in only 28% of developing sperm, suggesting that
Wolbachia may also modify uninfected germ cells by secret-
ing effectors [34]. Based on the above evidence, we
speculate that the effects of Wolbachia on testicular cells at
different stages of spermatogenesis are complex, and the
bacteria may have different modification effects on different
cell types.

While previous studies have shown the complex impacts
of Wolbachia on spermatogenesis that can result in
downstream sperm defects [17], a deeper investigation of
these defects is needed to confirm their connection to CI. In
this study, we employed single-cell RNA sequencing
(scRNA-seq) of 1-day-old adult male Drosophila melanogaster
testes infected or uninfected with Wolbachia. We attempted
to compare the effects of Wolbachia on gene expression pro-
files in different cell types of Drosophila testes in order to
identify the cell type that Wolbachia mainly affects and to
explore the host metabolic pathway and gene alterations.
Our results showed that Wolbachia have the strongest effect
on cells in the early stage of spermatogenesis, and the altera-
tion in the process of DNA compaction in the early stage of
sperm development may be related to the establishment of
HM in the mechanism of CI.
2. Methods
(a) Fruit fly rearing
Drosophila melanogaster naturally infected Wolbachia strain
wMel was available in our laboratory; Wolbachia-uninfected D.
melanogaster strains were established following the previously
reported method [28]. All flies were reared on standard Droso-
phila cornflour medium at 25°C with a photoperiod of 14 h L :
12 h D (light : dark) and 40% relative humidity [35]. Each strain
had been cultivated for more than 40 generations before this
experiment.

(b) Embryo hatch rate experiment
We performed the CI test as previously described by Yamada et al.
[36]. We crossed 3-day-old virgin female flies (Wolbachia-infected
or uninfected) with 1-, 3- and 5-day-old male flies (Wolbachia-
infected or uninfected) to examine the effect of male age on the
strength of CI. We used agarose/apple juice medium and smeared
fresh yeast on the surface for flies to lay eggs. First, a single 3-day-
old virgin female was put into each plastic vial containing
medium. After 4 h of acclimation, a single virgin male was
added to each vial. After mating for approximately 6 h, the
females were transferred to a new vial containing fresh medium
and incubated at 25°C for 24 h for egg laying. Then, the females
were removed, and the eggs were counted immediately; females
that laid fewer than five eggs were discarded from the experiment.
All vials were incubated at 25°C for another 48 h, and the number
of remaining unhatched eggs was counted. Embryo hatch rates
were calculated by determining the ratio of the number of hatched
eggs to the total number of eggs.

(c) Microbiome analysis
One-day-old Wolbachia-infected and uninfected male flies were
used for intestinal genome extraction and 16S rRNA gene ampli-
con sequencing (see electronic supplementary material, text for
details). FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) was used for raw read quality control, and
fastp was used to quality filter the raw data with the following
parameters: fastp -q 20 -u 20 -n 5 -c. We used DADA2 (v.1.24.0)
to produce amplicon sequence variants (ASVs) based on denois-
ing algorithms [37], used the silver138 database to annotate
ASV sequences, used the R package ’phyloseq’ to normalize the
ASV table to eliminate any bias due to differences in the sampling
sequencing depth, and used the sintax_summary function from
‘usearch’ to determine the frequencies of each named taxon at
different ranks. We performed principal component analysis
(PCA) using the ‘prcomp’ R package. We used ‘vegdist’ to calcu-
late Bray–Curtis dissimilarities and performed principal
coordinates analyses (PCoA) by using the ‘ape’ R package.
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(d) Preparation of single-cell suspensions
One-day-old Wolbachia-infected and uninfected males were used.
For each group, 20–30 pairs of adult male testes were dissected
one by one in cold EBSS (NaCl 6.8 g l−1, NaH2PO4 0.112 g l−1,
KCl 0.4 g l−1, D-glucose 1 g l−1, NaHCO3 2.2 g l−1, without
calcium, magnesium and phenol red). Cells were dissociated by
lysis solution (EBSS containing 4 mg ml−1 elastase and
2.5 mg ml−1 type IV collagenase) and filtered for purification.
Libraries were prepared with the 10X Genomics chromium 30

kit, and sequenced on aMGISEQ2000 instrument (BGI, Shenzhen,
China) using 100 nucleotide (nt) paired-end sequencing, with at
least 7 million reads obtained per library. A detailed description
of the methods can be found in electronic supplementary
material, methods.
90:20221963
(e) Downstream single-cell RNA sequencing analysis
The FASTQ file of each sample (WinfM and WuninfM) was used
for Cell Ranger (v.6.1; https://support.10xgenomics.com/single-
cell-gene-expression/software/downloads/latest) analysis. This
output was then imported into the Seurat (v.4.0.1) R package
[38,39] for quality control and downstream analysis of our
scRNA-seq data. Data link: https://dataview.ncbi.nlm.nih.gov/
object/PRJNA788731?reviewer=n7svq5k71ohhepvg14k41k4hhs.
( f ) Identification of cell types in single-cell RNA
sequencing data

Specific markers in each cluster were identified by the ‘FindAll-
Markers’ function in the ’Seurat’ package’ (options: only.pos =
TRUE, min.pct = 0.25, logfc.threshold = 0.25). All predicted
marker genes for each cell type are shown in electronic sup-
plementary material, table S1. We used well-known reported
marker genes for cell type identification [40,41].
(g) Functional enrichment analysis of differentially
expressed genes

We identified differentially expressed genes (DEGs) for each cell
type between Wolbachia-infected and uninfected samples
through the ’FindMarkers’ function in ‘Seurat’ (logfc.threshold =
0.25, min.pct = 0.25 and test.use =wilcox), and |log2FC| > 0.25
and p-value < 0.05 were considered statistically significant. For
the DEGs of each cell type, the ‘clusterProfiler’ (v.3.18.1, [42])
was used with enrichGO for functional analysis, with Fisher’s
exact tests (two-sided) performed, and p-value adjusted by the
Benjamini–Hochberg (BH) procedure, with adjusted p-value
(p-adjust) < 0.05 defined as statistically significant.
(h) Pseudotime inference analysis and identification of
differential gene expression patterns

The Monocle3 package (v.1.0.0) [43] was used to analyse single-
cell trajectories to reveal differential gene expression patterns
associated with cell-state transitions. We reconstructed the
expression pattern of some selected genes of interest involved
in spermatogenesis or CI in germ cells of WuninfM and WinfM
samples along pseudotime, and genes with significant diver-
gence in expression dynamics are displayed. Details are
provided in electronic supplementary material, text.
(i) Distribution of Wolbachia reads in single-cell RNA
sequencing data and annotation of Wolbachia genes

To detect the presence of Wolbachia genes in scRNA-seq data, we
first selected Wolbachia reads from scRNA-seq data of the WinfM
sample and calculated the density of Wolbachia reads by matching
each read with a 10× barcode to each cell type. Then, we used Tri-
nity (v.2.8.5; https://github.com/trinityrnaseq/trinityrnaseq/
releases) to assemble and eggNOG-mapper (http://eggnog-
mapper.embl.de/) to annotate Wolbachia reads in each cell type.
As a control, we also mapped scRNA-seq reads of the WuninfM
sample to the Wolbachia wMel reference genome, and no Wolbachia
reads were detected.
( j) cif gene expression assays
To identify cif genes in theWolbachia genome, DNAwas extracted
from Wolbachia-infected male flies using a QIAGEN DNeasy
Blood & Tissue DNA kit (Qiagen, Germany), with uninfected
males as the negative control. cif-specific primers were used to
amplify cif gene fragments (WD0631-F: ATAAAGGCGTTTCAG-
CAGGA, WD0632-R: TTGCCAGCCATCATTCATAA) [44]. The
PCR mixture contained forward primer (1.25 µl), reverse
primer (1.25 µl), Q5 High-Fidelity 2X Master Mix (12.5 µl; New
England Biolabs, Ipswich, MA, USA), DNA template (2 µl) and
nuclease-free water (8 µl). The PCR programme used was as fol-
lows: 98°C for 30 s, followed by 35 cycles of 98°C for 10 s, 54°C
for 30 s, and 72°C for 1 min, with a final extension at 72°C for
5 min. The PCR products were detected with 1% agarose gel
electrophoresis and Sanger sequencing.

Quantitative reverse transcription PCR (qRT-PCR) was per-
formed to determine the relative expression dynamics of cif
genes with increasing Drosophila male age. One-, 3- and 5-day-
old virgin male flies were collected for RNA extraction (siblings
from hatch rate assays). The male testis tissues were dissected in
cold phosphate-buffered saline (PBS), and 10 pairs of testes were
placed into a single 1.5 ml tube with 500 μl of TRIzol. We used
the TransZol Up Plus RNA Kit (TransGen, Beijing, China) to
extract and purify RNA. First-strand synthesis of cDNA was
completed by using TransScript First-Strand cDNA Synthesis
SuperMix with random primers (TransGen, Beijing, China).
The specific primers used for the Wolbachia cif genes for qPCR
were as described by Shropshire et al. [33], and all the primers
are listed in electronic supplementary material, table S2. qPCR
was performed using a CFX96 system (Bio-Rad) with PerfectStart
Green qPCR SuperMix (TransGen, Beijing, China). The qPCR
programme was as follows: 50°C for 2 min, 95°C for 2 min, fol-
lowed by 39 cycles of 95°C for 15 s, 54°C for 15 s and 72°C for
20 s, and a final dissolution step. All samples were tested in tri-
plicate. The Wolbachia ftsZ and D. melanogaster β-spec genes
were used as reference genes for normalization. The fold
change was calculated as 2–ΔΔCq.
3. Results
(a) Wolbachia induced the strongest cytoplasmic

incompatibility in 1-day-old males
To test the CI strength of the Wolbachia strain wMel, we per-
formed a hatch rate experiment on male flies of different
ages. The results showed that the strength of CI induced by
Wolbachia was closely related to male age, since Wolbachia
induced almost 100% CI in 1-day-old males, while 5-day-
old males expressed no CI (figure 1). We thus focused on
1-day-old males for subsequent studies. p-values are reported
in electronic supplementary material, table S3.
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Figure 1. Embryo hatch rate analyses showing the effect of Wolbachia-induced cytoplasmic incompatibility (CI), which decreased with male age. The horizontal axis
shows the hatch rate, and the vertical axis shows different cross groups (days represent male age, black solid circles represent Wolbachia-infected samples, and open
circles represent uninfected samples). CI crosses are coloured red, boxplots represent median and interquartile ranges. Letters to the right represent statistically
significant differences based on α = 0.05 calculated by Kruskal–Wallis test followed by Dunn’s test with corrections for multiple comparisons between all
groups; crosses with different letters are significantly different. These data demonstrate that 1-day-old males show the strongest CI.
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(b) The gut bacterial community structures of male flies
were highly correlated with Wolbachia infection

Uninfected Drosophila strains are mainly obtained through
antibiotic treatment. However, many studies have shown
that antibiotic treatment can significantly change the host’s
microbiome [45–48], which may lead to changes in host
gene expression. To detect changes in the microbiome of
the uninfected Drosophila strain after recovery from antibiotic
treatment for more than 40 generations, we performed micro-
biome analyses. PCA showed that Wolbachia-infected and
uninfected samples were well divided into two clusters.
Consistent with this, the two Drosophila strains were also sig-
nificantly separated in the PCoA (PERMANOVA: R2 = 0.728
and p < 0.001) (figure 2a,b). To further determine which bac-
terial group in Drosophila was changed owing to the long-
term differences in Wolbachia infection and non-infection,
we compared the differences in the bacterial community
based on the top 10 bacterial groups at the phylum and
genus levels. There was no significant difference in abun-
dance between the groups at the phylum level (figure 2c).
However, at the genus level, Wolbachia was the dominant
genus in the Wolbachia-infected samples, and Wolbachia was
also the genus with the largest difference between the two
groups (figure 2d ). Therefore, we speculate that the change
in host gene expression is mainly related to Wolbachia
infection.
(c) Single-cell expression atlas and cell typing in adult
Drosophila testes infected and uninfected with
Wolbachia

To understand the modification effects of Wolbachia on differ-
ent cell types in testes, we performed scRNA-seq on
Wolbachia-infected (WinfM) and uninfected (WuninfM) one-
day-old male Drosophila testes. After the initial quality control
step (see Methods), we acquired a total of 8372 high-quality
cells, with 4385 cells from WinfM and 3987 from WuninfM
samples. To explore the cellular compositions, we applied
PCA to DEGs across all cells for dimensionality reduction.
We further used unsupervised graph clustering to partition
the cells into 10 clusters and visualized them via t-distributed
stochastic neighbour embedding (t-SNE) (figure 3a). We gen-
erated cluster-specific marker genes via differential gene
expression analysis and used previously reported marker
genes to identify the cell types. These well-known cell type
markers, such as soti for late spermatids, prosalpha, aly and
bam for germline stem cells (GSCs), hdc for hub cells, and
Act5C for somatic cells [36,37], were used to determine the
cellular identity of the clusters (figure 3b). We finally ident-
ified a total of 10 cell types, with seven germ cell types,
including GSC early spermatogonia, mid spermatogonia,
late spermatogonia, early spermatocytes, late spermatocytes,
early spermatids and late spermatids, and three somatic
cell types, hub, cyst and epithelial cells. The relative
expression of markers in all cell types is shown in electronic
supplementary material, table S1.

Following initial cell-type characterization, we calculated
the percentage of each cell type in both samples. In the
WuninfM sample, the vast majority of cells (63.78%) were
in the late spermatogonia stage, and the cell type with the
lowest proportion (0.65%) was GSC early spermatogonia,
while in the WinfM sample, the cell type with the highest
proportion (36.42%) was mid spermatogonia and the lowest
proportion was observed in late spermatids (0.39%)
(figure 3c). We further compared the differences in the pro-
portion of each cell type between the two samples and
found that the proportions of most cell types varied greatly
upon Wolbachia infection. For germ cells, the proportions of
GSC early spermatogonia, late spermatogonia, mid sperma-
togonia, early spermatocytes and late spermatids differed
greatly between the WinfM and WuninfM samples, among
which the proportions of GSC early spermatogonia, early
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spermatocytes and mid spermatogonia were higher in the
WinfM sample, and the proportions of late spermatogonia
and late spermatids were lower in the WinfM sample, than
in the WuninfM sample (figure 3c). For the three somatic
cell types, the proportions in the WinfM sample were slightly
higher than those in the WuninfM sample, and the difference
was not as significant as those of germ cells (figure 3c). All
these findings indicate that several cell types are affected by
Wolbachia infection, suggesting that the cell-type-specific
effects of Wolbachia deserve further exploration.

(d) Cell-type-specific aberrant gene expression in
Wolbachia-infected samples

Next, we compared transcriptome profiles between WinfM
and WuninfM samples for each cell type (electronic sup-
plementary material, table S4). We found that the number
of upregulated genes was higher than the number of down-
regulated genes in all cell types in the WinfM sample
compared with the WuninfM sample; moreover, the
number of DEGs varied greatly among different types of
germ cells. GSC early spermatogonia contained the largest
number of DEGs among all germ cells, followed by late sper-
matids and early spermatocytes, suggesting that Wolbachia
might have a greater effect on these cell types (figure 3d ).
In addition, a total of 1653 DEGs were found in all germ
cells; however, only three of them (CG43800, hydra and
Sclp) displayed differential expression in all germ cells
(figure 3e), implying that the majority of the DEGs were
cell-type-specific. These results indicate the cell-type-specific
impact of Wolbachia on gene expression in Drosophila testes.

(e) Functional enrichment analyses of cell-type-specific
differentially expressed genes revealed differential
effects of Wolbachia on different cell types

To further clarify the function of DEGs between WinfM and
WuninfM samples, we performed functional enrichment
analysis on DEGs of each cell type (electronic supplementary
material, table S5). Among germ cells, GSC early spermatogo-
nia, late spermatids and early spermatocytes showed larger
changes in cell proportion and more DEGs than other cell
types, which led us to focus on these three germ cell types in
subsequent analyses. For the three germ cell types, we found
that the upregulated DEGs in the infected samples were
mostly enriched in microtubule-based, ubiquitin-dependent
protein catabolic, proteolysis involved in protein catabolic,
reproduction-related and ATP metabolic processes. The
downregulated genes in GSC early spermatogonia were
significantly enriched in translation, ribonucleoprotein com-
plex biogenesis, regulation of cellular response to stress,
nucleus organization and male gamete generation processes
(figure 4a).

To further target the key genes in the above biological
processes, we selected genes with three criteria (fold
change, p-value, previously reported related to CI) and deter-
mined their differential expression patterns in the three types
of cells; these genes were mainly differentially expressed in
GSC early spermatogonia (figure 4b). Then, we performed
protein–protein interaction network analysis on these genes
and found that the interaction network of these genes is
mainly divided into two clusters: protein catabolism-related
genes (such as multiple testis-specific proteolysis genes) and
reproduction-related genes (such as His3.3A, His3.3B, ProtA,
ProtB, Nap1 and ATPsynbetaL). Therefore, the DEGs involved
in these two biological processes in germ cells, especially in
GSCs, may be the key host factors for Wolbachia-mediated
modification of sperm (figure 4c).

Interestingly, the functional enrichment results of DEGs in
the three somatic cell types were quite different from those of
germ cells. Somatic DEGs were mainly involved in transcrip-
tion, cellular secretion, cell redox homeostasis, NADH
metabolism, cellular response to toxic substances and other
processes (figure 4d ). These results indicate that Wolbachia
have distinct interactions with somatic and germ cells.

( f ) Wolbachia infection caused various differentially
expressed genes to exhibit different dynamic
expression patterns during spermatogenesis

Different genes tend to have different expression patterns at
different stages of sperm development. To decipher the tran-
scriptomic dynamics during spermatogenesis, we performed
pseudotime analysis on the germ cells of the WinfM and
WuninfM samples using Monocle3 and found that both
samples had similar cell development trajectories (electronic
supplementary material, figure S1).

We reconstructed the dynamic expression patterns for the
selected DEGs as shown in figure 4b. We found that multiple
genes, such as Nap1, ProtA, ProtB, CycB, bol, Diap1, Pomp,
bond, sod2, orb2, pAbp, ATPsynbetaL, Pkd2, Prosalpha4T2,
Mst84Db and eIF4E3, exhibited significant dynamic differ-
ences in expression between the two samples (figure 5a and
electronic supplementary material, figure S2). Among them,
six candidate genes, Nap1, ProtA, ProtB, orb2, Diap1 and ATP-
sybetaL, were selected according to two independent criteria—
the differences in expression patterns along the trajectories and
the fold changes in expression levels between the two samples.
These genes were related to male gamete generation; they
showed significant dynamic expression differences between
WinfM andWuninfM samples in early spermatogenesis; how-
ever, in late spermatogenesis, the expression patterns
converged (figure 5b–g). These patterns suggest thatWolbachia
have a greater effect on the early stage of spermatogenesis. In
addition, we found that the expression levels of ProtA and
ProtB were significantly increased at the later stage of sperm
development (figure 5c,d ).

(g) The presence of active Wolbachia genes in different
cells suggested differential interaction of Wolbachia
with different cell types

Based on the HM model that Wolbachia-induced CI depends
on the modification of sperm by Wolbachia effectors, such as
CifA and CifB, we attempted to determine the expression pat-
tern of Wolbachia genes from the scRNA-seq data. We
assumed that the number of detected Wolbachia sequences
was positively correlated with the number of active Wolbachia
cells. Based on this assumption, we discovered that the distri-
bution of Wolbachia among different cells was uneven. The
highest Wolbachia density was in somatic cells, mostly in
hub cells, while among germ cells, the highest density was
in GSC early spermatogonia, and there was a decreasing
trend in Wolbachia density during the process of
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spermatogenesis (electronic supplementary material, figure
S3a). Then, we performed assembly and functional annota-
tion of the Wolbachia sequences in each cell type, with a
total of 38 Wolbachia genes annotated (cifA and cifB were
not detected). We found that the number of Wolbachia genes
annotated in different cells varied, with the most genes anno-
tated in the hub cells (electronic supplementary material,
figure S3b,c). In hub cells, the annotated Wolbachia genes
were involved in translation, amino acid transport, vesicular
transport, cell membrane/cell wall synthesis and other pro-
cesses (electronic supplementary material, figure S3d),
implying that Wolbachia proliferation occurs primarily in hub
cells. Interestingly, in several cell types, the iscU gene was
annotated; this gene encodes a component of the iron–sulfur
(Fe–S) cluster scaffold, and Fe–S clusters are important cofac-
tors in the functioning of diverse enzymes involved in
iron homeostasis and oxidative stress response. WD_1250
expressed in hub cells is also associated with redox homeosta-
sis. Thus, the expression of Wolbachia genes with different
functions detected in different cell types suggests that Wolba-
chia genes interact differently with different cell types in
Drosophila testes.

Since we did not detect any expression of cif genes from the
scRNA-seq data, to further confirm whether there are cif genes
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in the Wolbachia genome and to measure the expression of cif
genes, we performed amplification, sequencing and qPCR
expression analyses on cifs. The cif sequences of Wolbachia
obtained by amplification and sequencing were completely
consistent with the cif gene reference sequences of Wolbachia
wMel (electronic supplementary material, figure S4a,b). The
expression of cifA and cifB had no significant correlation
with male age, but the expression ratio of cifA and cifB
decreased with male age (not statistically significant) (elec-
tronic supplementary material, figure S4c). Therefore, the
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expression of cif genes does not sufficiently explain the vari-
ation in CI strength, which has been confirmed in previous
studies [33].
 lsocietypublishing.org/journal/rspb
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4. Discussion
The Wolbachia-induced reproductive regulation phenotype of
CI has been extensively studied in a variety of insects; how-
ever, the molecular mechanism of CI remains controversial.
In the present study, through microbiome analysis, we first
determined that changes in host gene expression may be
mainly associated with Wolbachia infection. Next, through
single-cell RNA sequencing, our results revealed that Wolba-
chia have the greatest effect on cells in the early stages of
sperm development from three perspectives. First, the pro-
portion of early spermatogenesis cells, such as GSC early
spermatogonia, in the WinfM sample was significantly
higher than that in the WuninfM sample, suggesting that in
the Drosophila testes, Wolbachia infection causes more cells to
be retained in the early stages of sperm development.
Second, the number of DEGs in GSC early spermatogonia
was the largest among all cell types, suggesting thatWolbachia
may cause more modifications in early spermatogenesis, such
as in GSCs. Finally, in the analysis of gene expression
dynamics, multiple DEGs related to spermatogenesis or
male gamete generation, such as Nap1, Diap1, ProtB, ProtA,
orb2 and ATPsynbetaL, also showed differential expression
patterns along the developmental trajectories between
samples of WinfM and WuninfM, since these genes showed
a pattern of significant differential expression in the early
stage of spermatogenesis and were more similar in the late
stages, suggesting that Wolbachia mainly affect the early
stages of spermatogenesis.

Wolbachia not only affect processes related to reproduction
in germ cells but also significantly affect the processes of
mitochondrial energy metabolism and proteolysis. On the
one hand, the upregulated DEGs in the three germ cells
were significantly enriched in biological processes related to
ATP metabolic processes, and studies have shown that
Wolbachia infection can significantly enhance host energy con-
sumption, resulting in excessive oxidative stress and
intracellular DNA damage, which in turn affects sperm
development [49–51]. On the other hand, the ubiquitin
proteolysis pathway plays a key role in chromosomal remo-
delling and is involved in the conversion of histones to
protamine during the later stages of spermatogenesis [52],
and mutations in some testis-specific proteolysis genes may
even lead to defects in sperm nuclear morphology, with his-
tones being not effectively removed [53]. In our results,
multiple testis-specific proteolysis genes, including Prosal-
pha4T1, Prosbeta5R, Prosalpha3, Prosbeta6, Prosbeta7, Rpn12
and Rpn6, were upregulated in germ cells, especially in
GSC early spermatogonia and late spermatids. We speculate
that Wolbachia can modify the protein catabolic process and
mitochondrial energy metabolic process, leading to abnormal
sperm cell production.

In addition to the effect on germ cells, the influence of
Wolbachia on somatic cells cannot be ignored, since hub
cells and cyst cells also play a crucial role in the development
of germ cells by secreting various signalling molecules
[54,55]. Here, we found that Wolbachia induced more differen-
tial gene expression between WinfM and WuninfM samples
in hub cells and cyst cells than in most germ cells, and in
these somatic cells, the DEGs were significantly enriched in
processes of translation, cellular response to toxic substances,
cellular homeostasis, cell redox homeostasis, NADH meta-
bolic process and secretion by cells, significantly different
from the results for germ cells. In addition, we found that
the density of Wolbachia sequences was the highest in hub
cells, indicating that Wolbachia metabolic activity may be
more active in hub cells, therefore resulting in alterations in
many pathways involved in metabolism and cellular
homeostasis in these cells.

According to the HM model, Wolbachia factors can modify
host factors [10], indicating that host factors play an important
role in CI. A recent study has shown that Wolbachia modifies
developing sperm at the canoe stage [22]. Here, we found
that the cells of the sperm developmental stage most affected
by Wolbachia were GSC early spermatogonia and that
Wolbachia-induced downregulated genes in GSC early sperma-
togonia were significantly enriched in male gamete generation.
Importantly, three genes involved in chromosome conden-
sation, including Nap1, His3.3B and mod(mdg4), were only
downregulated in GSC early spermatogonia, among which
Nap1 encodes a host protein closely related to CI [56,57].
Therefore, we speculate that the DNA compaction process in
early spermatogonia is affected by Wolbachia. These results
are also highly consistent with the newly discovered results
showing that the CifA and CifB proteins are localized to
nuclear DNA in the early stage of spermatogenesis, indicating
that Wolbachia-mediated modification of sperm may be estab-
lished in the early stage of sperm development [22]. Our
results also indicate the influence of Wolbachia in the later
stage of spermatogenesis. During sperm development, his-
tones bind to the nucleosomes in the early stage, being
replaced by protamine at later stages for the tight packaging
of DNA in the nucleus within the sperm head [58]. We
found that the expression levels of the Protamine A (ProtA)
and Protamine B (ProtB) genes were significantly higher in
late spermatids than in early germ cells and were significantly
upregulated in Wolbachia-infected samples. ProtA and ProtB
play important roles in chromosome remodelling during the
transition from histones to protamine in the late stage of
sperm development, where they are integrated into the
sperm nucleus, contributing to the formation of condensed
sperm chromatin, and mutations in ProtA and ProtB genes
can cause improper nuclear morphology [58–60]. The new
results of Kaur et al. [22] show that Cifs can cause abnormal
histone retention in elongating spermatids and protamine
deficiency in mature sperm. Our results showing higher
expression of the protamine genes ProtA and ProtB in late sper-
matids in Wolbachia-infected testes also indicate that the
modification of sperm by Wolbachia is also closely related to
this chromosome remodelling stage.
5. Conclusion
Overall, we thoroughly analysed the effects of Wolbachia on
gene expression in Drosophila testes at the single-cell tran-
scriptome level. We identified the metabolic pathways most
affected by Wolbachia in germ cells, such as reproduction
and protein degradation. We also revealed that early sperma-
togenesis cells are the cell type strongly impacted by
Wolbachia and recapitulate previous finding that the sperm
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DNA compaction is the key target for CI modification. Thus,
our data support the hypothesis that Wolbachia factors can
modify sperm cells prior to fertilization and suggest that
further studies of the establishment of CI should focus on
cells in the early stages of sperm development and in the
cellular stages of chromosome remodelling.
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