Skip to main content
. 2023 Jan 10;24:8. doi: 10.1186/s12875-023-01965-2

Table 4.

Performance evaluation of RF and other machine learning algorithm

Cross-validation Algorithm Performance evaluation parameters
ACC(%) SE(%) SPE(%) PPV (%) NPV (%) AUC
K2 DT 70.12 42.10 87.52 67.66 70.86 0.6712
SVM 70.95 44.36 87.46 68.75 71.66 0.6642
NB 66.33 45.00 79.60 57.83 69.95 0.6874
RF 71.03 34.88 91.01 70.88 69.20 0.7291
K5 DT 70.14 42.09 87.50 67.57 70.89 0.6788
SVM 70.96 44.46 87.46 68.77 71.71 0.6601
NB 66.32 44.99 79.56 57.79 69.93 0.6885
RF 71.96 35.35 91.03 71.45 69.31 0.7316
K10 DT 70.11 42.11 87.56 67.76 70.90 0.6686
SVM 70.94 44.45 87.43 68.78 71.68 0.6619
NB 70.92 44.40 87.46 68.83 71.64 0.6774
RF 71.37 33.53 91.63 71.34 68.91 0.7286

Abbreviation: DT Decision tree, SVM Support Vector Machine, NB Naïve Bayes, RF Random forest, ACC Accuracy, SE Sensitivity, SPE Specificity, PPV Positive predictive value, NPV Negative predictive value, AUC Area under the curve, K2 Twofold cross-validation, K5 Fivefold cross-validation, K10 Tenfold cross-validation