Table 4.
Hyperparameters selected to be fed into the classifiers for the early prediction of gastric cancer
Num | ML models | Hyper-parameters | F-score |
---|---|---|---|
1 | RF | (‘verbose’:2,’random_state’:888,’n_estimators’:10,’max_deph’:9,’criterion’: gini’) | 85.31 |
2 | MLP | ‘Learning rate’ = ’constant’, hidden_layer_size’ = (80, 80, 80), ‘alpha’ = 0.08, ‘activation’ = ’rulo’ | 87.6 |
3 | SVM (kernel = linear) | C = 100, G = 0.0001 | 83.04 |
4 | SVM (kernel = RBF) | C = 10, G = 0.001 | 81.9 |
5 | XGBoost | ‘min_chid_weigh’ = 1’max_depht’ = 14,’learning_rate’ = 0.2, ‘gamma’ = 0.4, ‘colsample_bytree’ = 0.5 | 81.02 |