Skip to main content
. 2023 Jan 10;23:6. doi: 10.1186/s12876-022-02626-x

Table 4.

Hyperparameters selected to be fed into the classifiers for the early prediction of gastric cancer

Num ML models Hyper-parameters F-score
1 RF (‘verbose’:2,’random_state’:888,’n_estimators’:10,’max_deph’:9,’criterion’: gini’) 85.31
2 MLP ‘Learning rate’ = ’constant’, hidden_layer_size’ = (80, 80, 80), ‘alpha’ = 0.08, ‘activation’ = ’rulo’ 87.6
3 SVM (kernel = linear) C = 100, G = 0.0001 83.04
4 SVM (kernel = RBF) C = 10, G = 0.001 81.9
5 XGBoost ‘min_chid_weigh’ = 1’max_depht’ = 14,’learning_rate’ = 0.2, ‘gamma’ = 0.4, ‘colsample_bytree’ = 0.5 81.02