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Abstract

High-throughput (HT) screening drug discovery, during which
thousands or millions of compounds are screened, remains the key
methodology for identifying active chemical matter in early drug
discovery pipelines. Recent technological developments in mass
spectrometry (MS) and automation have revolutionized the appli-
cation of MS for use in HT screens. These methods allow the tar-
geting of unlabelled biomolecules in HT assays, thereby expanding
the breadth of targets for which HT assays can be developed com-
pared to traditional approaches. Moreover, these label-free MS
assays are often cheaper, faster, and more physiologically relevant
than competing assay technologies. In this review, we will describe
current MS techniques used in drug discovery and explain their
advantages and disadvantages. We will highlight the power of
mass spectrometry in label-free in vitro assays, and its application
for setting up multiplexed cellular phenotypic assays, providing an
exciting new tool for screening compounds in cell lines, and even
primary cells. Finally, we will give an outlook on how technological
advances will increase the future use and the capabilities of mass
spectrometry in drug discovery.
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Introduction

The drug discovery and development pipeline is an interdisciplinary

process that engages multiple phases of research to facilitate the

generation of effective therapies (Mohs & Greig, 2017). The histori-

cal aspects of the traditional drug discovery pipeline have been

extensively reviewed and demonstrate the advantages and chal-

lenges of drug discovery throughout R&D including productivity,

attrition, and evolution of new technologies (Moffat et al, 2017; Vin-

cent et al, 2022). The drug discovery phase contains the target iden-

tification and validation phase, as well as hit finding, typically

through high-throughput screening (HTS) campaigns employing

large compound libraries of several hundred thousands of com-

pounds. At the end of this phase, chemistry is performed to optimize

the activity and physicochemical properties of the molecule, both of

which influence its in vivo behavior as it relates to potency, clear-

ance, and safety. Early adoption of new technologies can be critical

to improving R&D as there are often lengthy cycle times and high

failure rates of drug discovery projects prior to pre-clinical develop-

ment. There is, therefore, a focus across industry and academia on

the development of more biologically relevant and diverse

approaches to the discovery of chemical starting points, to address

both the success rates and pace of research.

Mass spectrometry (MS) is a powerful, versatile technique with

applications spanning the full spectrum of the drug discovery and de-

velopment pipeline. For example, MS techniques such as pro-

teomics, metabolomics and analysis of clinical tissue samples are an

important part of target validation, as well as later in discovery

where these techniques can be used to gain insight into a com-

pound’s cellular mechanism of action (MoA). During lead optimiza-

tion, MS has for decades played the central role in determining both

the structure and pharmacokinetic properties of compounds. MS is

also increasingly important in the target identification step of the

drug discovery pipeline. For example, limited proteolysis-coupled

MS (Schopper et al, 2017) is routinely used to determine proteome-

wide specificity and uncover small molecule binding sites, thermal

proteome profiling (Franken et al, 2015) for small molecule target

finding, and data-independent acquisition MS for HT analysis of cell

systems for global proteomics and phosphoproteomics (Kitata

et al, 2021).

Despite MS being a powerful tool within the overall drug discov-

ery process, its application to HT screening has lagged, often due to a

lack of throughput and lack of associated automation. Current HTS

assays are often performed using fluorescence and
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chemiluminescence-based detection modalities that although HT, are

susceptible to compound-dependent screening artefacts leading to

false positives or negatives (Winter et al, 2018). Here, MS presents

itself as an attractive alternative technology as it is already an estab-

lished, sensitive, and versatile technique in research for the analysis

of small and large biomolecules. A key advantage of MS has been the

potential to build label-free assays that improve hit confirmation

rates and ultimately accelerate the drug discovery process. HTS-MS

has been demonstrated to be an effective tool for removing potential

detection-based false positives and thus mitigating sources of assay

interference (Adam et al, 2015). From orthogonal to traditional hit-

finding approaches, MS presents the opportunity to explore alterna-

tive hit-identification strategies that focus on detecting protein-target

binders, or compounds that directly modulate cellular function to

reverse or treat a disease phenotype.

The aim of this review is to provide an overview of the recent

developments in HT-MS for drug discovery. We outline how these

advancements in MS have enabled the development of HTS-MS plat-

forms and their applications. Finally, we provide an outlook of how

technological advances could further drive alternative capabilities of

MS in drug discovery.

Basic principles of mass spectrometry instrumentation

MS is an analytical technique that measures both the mass-to-

charge ratio (m/z) and abundance of ions to generate a mass spec-

trum that can in turn yield chemically relevant information such as

empirical mass or structure about a particular analyte. In its sim-

plest form, a mass spectrometer consists of an ionization source

coupled to a mass analyzer and detector. The ion source transfers

sample molecules into the gas phase as charged ions which then are

transferred into a mass analyzer. Here, ions are separated based on

their m/z and detected, thus generating a mass spectrum. As not

only the m/z but also the number of detected ions is recorded, MS

can be a highly quantitative technique with a linear range of up to

~105 (Collings et al, 2014).

HT-MS-based readouts in drug discovery have been largely domi-

nated by instruments comprising of solid-phase extraction (SPE)

coupled to electrospray ionization (ESI), or surface-based tech-

niques such as matrix-assisted laser/desorption ionization (MALDI).

Self-assembled monolayers (SAMs) coupled with desorption/ioniza-

tion (SAMDI), as well as some more recent approaches such as

acoustic mist ionization (AMI), and acoustic droplet ejection (ADE)

open port interface (OPI) MS have been added to the toolbox. These

principles are described in Fig 1 (surface-based, Fig 1A and

electrospray-based Fig 1B). Each of these ionization techniques can

be combined with different mass analyzers to access different levels

of mass resolution, dynamic ranges, analysis time, and sample

throughput. For a detailed review, please see Challen and Cramer

(2022).

Mass spectrometry screening assays for drug discovery

Biochemical and functional assays to identify inhibitors of
enzymes
Once target proteins have been identified as a potential drug target

in a specific disease, biochemical in vitro assays are often per-

formed to identify molecules that modulate protein function. For

protein targets that are enzymes, target inhibition or activation can

be measured via the generation of a product, or the decrease of a

substrate, in a biochemical reaction (Fig 2A). Unlike most tradi-

tional biochemical assays, MS allows the direct, label-free quantita-

tive measurement of both substrate and product in these in vitro

assays, as long as a mass shift occurs; therefore, most enzyme tar-

gets are principally amenable for mass spectrometric analysis. In

recent years, ion mobility separation has been integrated within

Glossary

BLAZE mode
The name of the RapidFire hardware modification that improves the
speed of the system by enabling cycling times of 2.5 s per sample
Chemoproteomics
A broad set of techniques used to identify and characterize the mode
of action of a drug. This can include quantitative MS-based pro-
teomics
Data-independent acquisition MS
A recently developed global MS-based proteomics strategy that first
isolates precursor ions into pre-defined isolation windows, which are
then fragmented and analysed
Fragment-based drug discovery
Method used to develop potent small-molecule compounds starting
from fragments binding weakly to targets
Limited proteolysis MS
Used to measure protein structural transitions directly in biological
matrices and on a proteome-wide scale
Mechanism of action
Refers to the specific biochemical interaction through which a drug
substance produces its pharmacological effect
PhAbit
PhotoAffinity bits. A reversible ligand with a photoreactive warhead
incorporated to facilitate covalent binding

Phosphoproteomics
Proteomics analysis that seeks to determine the overall level of
protein phosphorylation and the identity of proteins, which are
phosphorylated, and amino acid residues, which hold the phosphate
group
RapidFire
Is a proprietary automated microfluidic sample collection and
purification system that interfaces directly to standard ESI-MS instru-
ments. This system uses high-speed robotics to directly aspirate fluidic
samples from 96- or 384-well screening plates, rapidly removes non-
volatile assay components such as salts, buffers and detergents in an
online fractionation step, and delivers purified analytes to the mass
spectrometer
Size exclusion chromatography
A chromatographic separation technique that separates analytes by
size, and, therefore, relative to molecular weight
Thermal proteome profiling
A quantitative MS-based proteomics tool used to monitor the melting
profile of thousands of proteins simultaneously
Warhead
A reactive group that is strategically incorporated onto a reversible
ligand to facilitate the formation of a covalent bond to a target
biomolecule
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new HTS capable mass spectrometers, thus enabling the separation

of complex and isobaric compounds such as lipid classes (Djam-

bazova et al, 2020). This will likely broaden the development of

HTS-compatible MS assays for challenging enzymes, such as iso-

merases, in future years.

For ESI, different technologies such as the RapidFire system in

BLAZE-mode (Bretschneider et al, 2019) or ADE-OPI MS approach

have been described for enzymatic-type assays (H€abe et al, 2020;

Simon et al, 2021a). The versatility of the instrument setup allows

the analysis of many different biomolecules including lipids
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(Highkin et al, 2011; Dittakavi et al, 2020), peptides (Hutchinson

et al, 2011; Liddle et al, 2020), and metabolites (Soulard et al, 2008;

Maxine et al, 2009), from a wide range of matrix systems including

blood, plasma (Highkin et al, 2011; Bretschneider et al, 2017) and

cell lysates (Gordon et al, 2016; Dittakavi et al, 2020). Ambient ion-

ization, such as desorption electrospray ionization (DESI), which

commonly does not require sample preparation, is a new and attrac-

tive alternative for HT analysis. DESI-MS displays remarkably high

salt tolerance, making this technique ideal for the analysis of com-

plex samples without any sample preparation. Using DESI, samples

are ionized outside of a mass spectrometer under native conditions.

Due to its ability to rapidly scan a surface, DESI-MS has been amen-

able to HT applications (Wleklinski et al, 2018), at rates approach-

ing 10,000 reactions per hour, and for the analysis of enzymatic

reactions directly from the bioassay matrix (Morato et al, 2020).

The development of instrumentation and improvements in sam-

ple preparation have enabled MALDI- time-of-flight (TOF) MS to

rival the more conventional HTS assays with throughputs of 10–20

samples per second for conventional MALDI (Haslam et al, 2015)

and liquid atmospheric pressure MALDI (Krenkel et al, 2022)

reported. The first drug discovery studies using the high speed

(1,536 spots in less than 8 min) of these new-generation MALDI-

TOF mass spectrometers for drug discovery was the development of

a HTS compatible assay to study the specificity and drugability of

deubiquitylases (DUBs; Ritorto et al, 2014). In this work, individual

DUBs were incubated with ubiquitin dimers of different linkage type

and the quantitation of mono-ubiquitin using an isotopically

labelled internal standard enabled the determination of DUB speci-

ficity, and this was further applied to drug screening. This assay

was unique to the field as it used native substrates, rather than

the previously used rhodamine fluorescently labelled reagents

(Hassiepen et al, 2007), and also had the potential to be expanded

to a HT drug screening platform.

HT MALDI-TOF MS assays targeting post-translational modifica-

tions have grown rapidly in the past decade as the technique can be

applied to potentially any reaction that involves a mass change. This

importantly allows label-free quantitation, a gold standard for

assays in the drug discovery field with respect to simplicity and cost.

Successful MALDI-TOF MS assays now include the study of kinases

(Beeman et al, 2017; Heap et al, 2017), methyltransferases (Guitot

et al, 2017), and phosphatases (Winter et al, 2018).

Most of the MALDI-TOF-based HTS-compatible approaches con-

ducted so far have focused on in vitro assays with simple readouts

(with often just a single substrate and product) and have been lim-

ited to peptide/protein-centric activity assays (Ritorto et al, 2014;

Guitot et al, 2017; Heap et al, 2017; De Cesare et al, 2018; Winter

et al, 2018; Simon et al, 2020). Applying this technology for cellular

assays and metabolomics-based drug discovery remains a challenge

mostly due to (i) interference from matrix peaks in the low-mass

range, (ii) matrix-dependent analyte selectivity, and (iii) limited

metabolite coverage due to low sensitivity of certain classes of

metabolites. Although, recently, individual metabolites such as

trimethylamine (Winter et al, 2019), acetylcholine (Chandler et al,

2016), 3-methoxytyramine (Winter et al, 2022), and cyclic GMP-

AMP (at a throughput of ~60,000 samples per day; Simon et al,

2020) have been used in MALDI-TOF HTS campaigns, new tools

and methods need to be developed to meet the opportunities and

challenges toward HT metabolic profiling for drug discovery.

The SAMDI technology is a promising strategy for HTS that uses

the same MALDI-TOF MS instrumentation but in a more targeted

approach where immobilized proteins are used to capture substrates

or products (Gurard-Levin et al, 2011). Although generally not

label-free, as the protein needs to have a tag to be immobilized, this

technology enables the specific capture of analytes and is well suited

for measuring a broad range of enzyme activities as SAMs can be

customized to use a variety of immobilization chemistries (Mrk-

sich, 2008). An exemption to this statement is traceless-SAMDI

(Helal et al, 2018). This work introduced a truly label-free approach

for analysing HT reactions by using a photogenerated carbene to

non-selectively attach molecules to the SAMs, from which can then

◀ Figure 1. Schematic of main ionization techniques employed for HTS-MS.

(A) Surface-based: MALDI. Samples are co-crystallized with a matrix on a conductive target plate. Laser shots are used to activate matrix molecules and evapo-

rate analyte and matrix. In the reactive cloud, protons are transferred from the matrix to ionize the analyte molecules (Karas et al, 1985). SAMDI. Components of

an enzymatic reaction (either enzymes or substrates) are immobilized onto self-assembled monolayers (SAMs) in an array format, and upon irradiation with a

laser, the monolayers are desorbed from the surface through cleavage of the thiolate-gold bond and ionized (Gurard-Levin et al, 2011). (B) Electrospray-based:

ESI. The analytes are dissolved in a liquid carrier phase, and a high voltage is applied to the tip of the metal capillary relative to the mass spectrometer’s sam-

pling cone. The electric field causes the dispersion of the sample solution resulting in nebulization. Charged droplets containing the analytes are generated at the

exit of the electrospray tip. The solvent of the droplets is vaporized by a drying gas or heat and the charged analytes are guided by a potential gradient toward

the analyzer region of the MS (Fenn et al, 1989; El-Aneed et al, 2009). AMI. An acoustic transducer and charging cone are used to generate nanolitre-sized

charged droplets that are guided through an ion transfer line into a MS (Sinclair et al, 2015). ADE-OPI. A pulse of acoustic energy ejects sample droplets upward

into the inverted OPI, where a fluid pump delivers carrier solvent to a sample capture region. The sample is captured, diluted, and guided to MS by conventional

ESI (Zhang et al, 2021).

▸Figure 2. Types of high-throughput mass spectrometry drug discovery assays.

(A) Enzyme activity screening by mass spectrometry. In vitro reactions of enzymes with substrates are stopped at appropriate time points and the resulting mixture

analysed by mass spectrometry to identify substrate to product conversion. Addition of chemical compounds that affect the reaction are identified by reduced product

conversion. (B) Affinity Selection Mass Spectrometry. Compounds bind to a protein of interest and non-binding compounds are removed by size-exclusion chromatogra-

phy. Binding compounds are identified by mass spectrometry. (C) Cellular and phenotypic screening by mass spectrometry. Cellular phenotypes of “healthy” and “dis-

eased” controls are defined by a read-out of a cellular “fingerprint” of specific biomolecules. Chemical compounds that shift the “diseased” phenotype to “healthy” are

considered hits.
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be analyzed by MS. SAMDI has also been used for in vitro recombi-

nant enzyme/substrate screen on diverse enzyme classes, such as

methyltransferases (Swalm Brooke et al, 2013), glycosyltransferases

(Ban et al, 2012), and deacetylases (Gurard-Levin et al, 2010).

Selected publications describing HTS compatible MS assays can be

found in Table 1.

Affinity and binding assays
Affinity selection mass spectrometry (ASMS) is a HT and cost-

effective binding assay that enables rapid screening of a large num-

ber of compounds against a specific target biomolecule of interest

(Prudent et al, 2021). In a traditional HT ASMS approach (Fig 2B),

the biomolecular target is typically present in molar excess relative
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to the potential ligands that are then captured by the protein. Non-

bound ligands are separated from the protein using usually either an

affinity enrichment or size exclusion chromatography (SEC). Bound

ligands are then dissociated from the target protein and identified by

their accurate mass with a suitable MS technique. Alternatively,

ASMS can also be employed as an assay to further characterize

ligand-binding properties, such as to demonstrate proof of binding

as well as performing competition experiments (Simon

et al, 2021b). ASMS has emerged over the past two decades as a

strategy complimentary to functional HTS assays (Annis

et al, 2007). This approach leverages the label-free and direct detec-

tion capability of MS and is most often coupled to SEC. In particular,

it has been widely adopted in industry due to its scalability and led

to the development of fully automated systems, such as the Auto-

mated Ligand Identification System (Annis et al, 2004), as well as

the SpeedScreen system (Muckenschnabel et al, 2004; Zehender

et al, 2004; Zehender & Mayr, 2007). Typically, a 1 million com-

pound screen with a pooling strategy can take 5–7 days with follow-

up experiments ranging 1–3 weeks to re-confirm and characterize

compound binding depending on the strategy employed. The

rationale behind the affinity selection approach is that binding must

precede activity, therefore, the identification of small molecule

binders can be a surrogate to reading out activity in a traditional HT

biochemical assay during the first stages of a hit ID campaign.

Advantageously, this can identify ligands that exhibit multiple MoA,

potentially identifying agonists and antagonists in a single screen.

An ASMS HTS can often be less complex to develop than a tradi-

tional biochemical HTS and can accommodate targets where very

little knowledge of protein function or structure exists. By designing

ASMS specific collections or mass encoded libraries, a broader

screening of chemical space could be possible to reduce complex

downstream deconvolution and redundancies. (Prudent et al, 2021).

MS has been instrumental in the development of ASMS strategies

and HT screens of more than one million compounds have been

achieved across in-solution ASMS platforms. These include a

diverse range of targets like beta-secretase (Coburn et al, 2004), G-

protein coupled receptors (Whitehurst & Annis, 2008), RNA poly-

merase (Walker et al, 2017), CHK1 (Comess et al, 2006) and to

probe druggable target space within the NF-kb pathway (Kutilek

et al, 2016). These screens have historically been performed using

Table 1. Selected publications describing HTS MS-compatible assays in drug discovery.

Enzyme Substrate Product Platform Citation

Phosphatidylserine
decarboxylase

Phosphatidylserine Phosphatidylethanolamine RapidFire Forbes et al (2007)

ERAP1 Peptide Peptide RapidFire Liddle et al (2020)

Acetyl-coenzyme A
carboxylase

Sphingosine in whole
blood

Sphingosine-1-phosphate RapidFire Maxine et al (2009)

Autotaxin Lysophosphatidyl choline Lysophosphatidic acid RapidFire Soulard et al (2008)

Histone lysine demethylase Trimethylated peptide Demethylated peptide RapidFire Hutchinson et al (2011)

Histone deacetylase Acetylated peptide Peptide AMI-MS Sinclair et al (2019)

Histone acetyltransferase Peptide and acetyl-CoA
cofactor

Acetylated peptide AMI-MS Belov et al (2020)

Diacylglycerol
acyltransferase 2

Diolein and oleoyl-CoA triolein ADE-OPI MS Wen et al (2021)

Cyclic GMP-AMP synthase GTP + ATP Cyclic GMP-AMP ADE-OPI MS Simon et al (2020)

Deubiquitylases Diubiquitin Ubiquitin MALDI-TOF Ritorto et al (2014)

E3-ligases Diubiquitin Ubiquitin MALDI-TOF De Cesare et al (2018) and De Cesare et al (2020)

Kinases Peptide Phosphopeptide MALDI-TOF Beeman et al (2017) and Heap et al (2017)

Methyltransferases Peptide Methylated peptide MALDI-TOF Guitot et al (2017), Guitot et al (2014) and Haslam
et al (2015)

Phosphatases Phosphopeptide Peptide MALDI-TOF Winter et al (2018)

Acetylcholinesterase Acetylcholine Choline MALDI-TOF Haslam et al (2015)

Cyclic GMP-AMP synthase GTP + ATP Cyclic GMP-AMP MALDI-TOF Simon et al (2020)

Anthrax lethal factor Peptide Peptide SAMDI Min et al (2004)

Sirtuin 3 Acetylated peptide Peptide SAMDI Patel et al (2015)

Methyltransferases Peptide Methylated peptide SAMDI Swalm Brooke et al (2013)

Glycosyltransferases Saccharides Oligosaccharides SAMDI Ban et al (2012)

Deacetylases Acetylated peptide Peptide SAMDI Gurard-Levin et al (2010)

Isocitrate dehydrogenase 1 Isocitrate a-ketoglutarate MALDI + ESI Radosevich et al (2022)

Catechol-O-
methyltransferase

Dopamine 3-methoxytyramine MALDI-TOF Winter et al (2022)
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pools of 100–2,000 compounds and analysis on high-resolution MS

instruments. This approach, although HT, does suffer a few analyti-

cal challenges. Typically, protein concentrations in the micromolar

range are needed and good protein solubility over 12–24 h is criti-

cal, which can be problematic for some targets like membrane pro-

teins. Furthermore, the use of large pools of compounds can

increase overall DMSO concentration, reduce assay sensitivity, and

could also denature the target protein structure. More recently, HTS

capable MALDI-TOF MS platforms that use faster instrument scan-

ning speeds have been used to screen smaller pools of compounds

by ASMS. This includes the SEC MALDI-TOF MS platform proposed

by Simon et al (2021b), as well as a SAMDI-TOF MS approach, both

of which use pools of tens of compounds rather than hundreds, yet

can still reach the same sample throughput.

Covalent fragment assays in drug discovery
Fragment-based drug discovery (FBDD) is an established, versatile

strategy in drug discovery that aims to develop novel drugs from

small, low molecular weight starting points. Sensitive technologies,

including surface plasmon resonance, nuclear magnetic resonance,

and MS, have been used to detect the binding or activity of these

fragments. An excellent example of this approach is the discovery of

vemurafenib, a selective inhibitor of the oncogenic target B-RAF

(Tsai et al, 2008). Advantages of FBDD often include reduced exper-

imental costs, as well as novel strategies to developing new drugs

that harness advances in HT chemistry.

One aspect of FBDD where MS technology has been instrumental

is the development of reactive or covalent fragment screening strate-

gies. This approach exploits the advances made in synthesis of small

molecule libraries that can then be coupled to covalent warheads to

accelerate screening efforts (Lu et al, 2021). Using small covalent

fragments to probe biological systems and poorly characterized tar-

gets significantly enhances our ability to translate traditional biologi-

cal research to the development of new medicines and

understanding their MoA (Schreiber Stuart et al, 2015; Zhang

et al, 2019). This has been particularly impactful where probes were

used to explore the therapeutic effects of PKM2 activation in cancer

(Anastasiou et al, 2012; Kung et al, 2012), and in the generation of a

covalent inhibitor of KRAS that was previously thought to be

undruggable (Naim et al, 2021). Novel chemotypes for anti-malarial

therapeutics have also been described, along with their MoA,

through use of covalent probes (Heidebrecht et al, 2012); this in

turn may infer on future paths of resistance (Lukens et al, 2015).

With this screening approach, an irreversible binding event of

the fragment to a protein is observed. MS plays a key role in the

screening of these compounds as the addition of the fragment

molecule induces a shift in the protein molecular weight that can

then be measured by MS. These MS techniques can then support

the characterization of a compounds MoA as well as identify speci-

fic protein target engagement. The binding event itself is highly

dependent on the synergistic relationship between structural biol-

ogy and synthetic chemistry to enable binding to a relevant site of

interest and often yields key mechanistic insights. In comparison

to the use of a traditional screening collection, it has been shown

that a fragment-based screening approach can offer better coverage

of chemical space, as well as identify novel chemical equity that

interacts with a protein binding pocket (Hall et al, 2014). Further-

more, this approach has been particularly successful for studying

targets where traditional compound collections have been unsuc-

cessful (Coyne et al, 2010).

Perhaps the simplest reactive FBDD approach is the screening of

fragment libraries against recombinant target proteins in vitro. Here,

low molecular weight (typically < 300 Da) fragment libraries that

typically contain electrophilic properties are synthesized and cou-

pled to covalent warheads (Long & Aye, 2017). These libraries are

then screened against a specific target protein and hits are distin-

guished by liquid chromatography (LC)-MS (Fig 3). These libraries

have historically been relatively small in the orders of 100–1000s of

compounds and thus do not require the use of uHTS mass spectrom-

eters. A LC–MS or RapidFire MS approach to covalent fragment

screening is often in the order of 0.5–5 min per sample. Many stud-

ies have used this technology to screen fragments against various

targets such as the E3 ligase HOIP (Johansson et al, 2019), BRD4

(Grant et al, 2019; Olp et al, 2020), GDP-KRASG12C (Shin

et al, 2019), and OTUB2 and NUDT7 (Resnick et al, 2019). Selected

publications of fragment-based MS assays can be found in Table 2.

As covalent fragment screening is still a relatively new approach,

a number of challenges do hinder its potential to come to the fore-

front of drug discovery. For example, although warhead design is

expanding to target a range of amino acids in active site pockets

(Fig 3A), their selectivity can be limited and sometimes the reactiv-

ity of the warhead rather than fragment affinity can drive binding.

Furthermore, some of the more reactive warheads currently used in

screening, such as chloroacetamides, are not always suitable for

translating into the clinic due to toxicity. Finally, current LC–MS

approaches used for covalent fragment screening (Fig 3B) lack the

throughput of other technologies discussed in this review such as

MALDI and ADE. Advances in future MS instrumentation, such as

ion mobility, may support the implementation of covalent FBDD in

routine drug discovery efforts.

With MS underpinning the majority of chemical biology

approaches to covalent drug discovery and chemoproteomics, many

of the advances made in this field have been made hand-in-hand

with the development of newer, faster, and higher resolution MS

instruments. It is expected that chemical biology will continue to be

a major driver of modern drug discovery approaches and under-

standing of the illusive, yet potentially therapeutic human proteome.

Moving toward cellular and phenotypic MS drug discovery assays
Phenotypic screening is common for target identification as a result

of genetic perturbation of a biological system such as CRISPR edits

and chemogenomic screening (Jones & Bunnage, 2017; Jost &

Weissman, 2018). In some cases, phenotypic screening can also be

used orthogonally to identify and validate molecules that alter a

specific in vitro cellular phenotype in a mechanistically agnostic

manner (Fig 2C). This approach can identify compounds that are

active against multiple targets and unknown pathways in physiolog-

ically relevant disease models. Until recently, microscopy-based

approaches have been the most common way to read out parame-

ters of the cellular phenotype and the potential shift toward a

desired phenotype. Recently, there has been interest to explore MS

approaches to unbiasedly screen the phenotype by monitoring speci-

fic metabolites, protein substrates and activation of biological path-

ways.

While MS-based in vitro HTS assays are achievable on current

instrumentation, there is a renewed interest in the pharmaceutical
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industry toward phenotypic cellular assays as these allow the identi-

fication of novel pathways that lead to the wanted outcome; most of

these assays are currently performed using fluorescence microscopy

or flow cytometry. Cellular assays for evaluating compound efficacy

at moderating or reversing a cellular phenotype presents an interest-

ing challenge for MS platforms as the system becomes inherently

more complex.

A well-established application for whole cell phenotyping is the

classification of micro-organisms by MALDI-TOF MS, also known as

biotyping (Claydon et al, 1996). Throughout the past decades, this

has led to sensitive, robust, and inexpensive phenotyping of

microorganisms (Mutters et al, 2014; Patel, 2015). Application of

whole cell MALDI-TOF MS methodologies to mammalian cells has

not yet reached the heights of typical microbial biotyping methods

but is rising as a promising technology for phenotypic screening and

development of drug discovery assays. Compared to microbial cells,

eukaryotic cells have a much higher complexity, with intricate cellu-

lar networks and cell cycle states influenced by their spatial

anatomy (Munteanu & Hopf, 2013), making them an excellent target

for MALDI-TOF MS.

For mammalian cells, both the low-molecular mass range (100–

1,000 Da), which is mostly populated by lipids and high-abundant

cellular metabolites, and the high molecular range (2,000–

20,000 Da), which contains peptides and small proteins, can be

used for fingerprinting. Fingerprinting of mammalian cell protein

biomarkers has been successfully applied to phenotype different

cancer cell lines (Serafim et al, 2017), classify immune cells (Oue-

draogo et al, 2012), iPSC embryonic stem cell differentiation (Heap

et al, 2019), as well as monitor early stress or apoptosis signals in

cell lines (Schwamb et al, 2013). The classification of cell lines from

primary tissues can be complicated by cell heterogeneity, but

MALDI-TOF MS has proven to be sensitive and robust at

distinguishing tissue-derived cell mixtures (Petukhova et al, 2019),

as well as classifying differentiated cells from primary blood mono-

cytes (Portevin et al, 2015). Typically, these strategies use multivari-

ate analysis and identification of unique features for classification

that, when combined with flow cytometry, microscopy or known

biomarker analysis, result in robust MALDI-TOF MS methodologies.

A proposed strategy to perform an intact cell HT assay using

MALDI-TOF MS is depicted in Fig 4. Cells grown with a “diseased”

state and a “healthy” control state are cultured with relevant control

compounds and a library of compounds to be tested. The metabolite

profiling of these cells using MALDI-TOF MS will provide a number

of biomolecules (i.e., biomarkers) representing the “diseased” and

“healthy” cellular states. Relevant biomarkers can be used as a

read-out for HTS using their ratio in the whole data set. Alterna-

tively, unsupervised approaches or machine learning strategies can

provide multidimensional insights if compounds return the “dis-

eased” state back to “healthy.” If additional, known inhibitors of rel-

evant pathways or inducers of cell toxicity are added, the assay can

be multiplexed to obtain additional information on the compounds

tested.

In the low-molecular range, mammalian cells exhibit dynamic

lipid profiles that are often indicative of cell phenotype or disease

state (Reddy & Sambasiva Rao, 2006; Fuchs & Schiller, 2008; Gold-

berg Ira et al, 2012). Imaging mass spectrometry (IMS) has already

demonstrated that MALDI-MS is well suited for lipid analysis of

cells, and therefore MS imaging methods for lipids have been

expanded into cellular classification (Hol�capek et al, 2015). These

assays are exceptionally sensitive, requiring small numbers of cells

or even allowed the profiling of single cells such as the classification

of astrocytes and neurons by Neumann et al (2019a, 2019b), who

were also able to show that this was robust across 30,000 individual

rodent cerebellar cells. In another study, a proof-of-concept assay

Table 2. Selected publications of fragment-based MS screening assays.

Reactive fragment Warhead Target protein MS platform Citation

Cys-reactive Acrylate Pappain LC-TOF Kathman et al (2014)

Cys-reactive a,b-unsaturated methyl ester HOIP LC-TOF Johansson et al (2019)

Cys-reactive Chloroacetamide Pin1 LC-TOF Dubiella et al (2021)

Cys-reactive Acrylate BRD domains LC-Ion Trap Olp et al (2020)

Cys-reactive Acrylamide KRas/KRas(G12C) LC-TOF Ostrem et al (2013)

Lys-reactive Acrylate/alpha-beta unsaturated esters HSP72 LC-qTOF and LC–MS/MS Pettinger et al (2017)

Lys-reactive Aryl boronic acid carbonyl Mcl-1 LC-TOF Akçay et al (2016)

PhABit Alkyl diazirine/alkyne tag BRD4/KRas RapidFire-TOF Grant et al (2020)

PhABit 5× photoreactive groups CDK(2/7/9) LC-TOF Grant et al (2019)

PhABit Diazirine CA(ii) RapidFire-TOF Thomas et al (2021)

Tyr-reactive Sulfonyl-fluoride GST’s LC–MS/MS Shishido et al (2017)

Ser-reactive Aryl fluorosulfate DcpS LC-TOF/LC–MS/MS Fadeyi et al (2017)

▸Figure 4. Cellular phenotypic assays by MALDI-TOF mass spectrometry.

Cells or extracts of cells are spotted by liquid handling robots onto a MALDI target. MALDI-TOF MS analysis of these samples defines “fingerprints” of “healthy” and

“diseased” controls. Characterization of these complex fingerprints, potentially through machine learning or dimensionality reduction analysis (such as principal com-

ponent analysis), allows the identification of biomarkers specific for the phenotypes. Changes of these biomarkers can be used as a read-out for a drug discovery screen

against many chemical moieties. Since the readout produces information-rich multi-dimensional data, the use of known inhibitors and cytotoxic compounds can be

used to multiplex and identify novel compounds in these pathways.
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demonstrated that inhibitors of fatty acid synthase (FASN), which

are key for cancer proliferation can be identified by MALDI-MS

(Weigt et al, 2019). Combined with automated liquid handling and

sample preparation, this study demonstrates that lipid analysis of

whole mammalian cells is suitable for development of drug discov-

ery assays to identify inhibitors of lipid metabolism (Weigt et al,

2018).

More recently, an automated, label-free MALDI-TOF MS cell assay

was developed to measure compound uptake and inhibition of that

uptake through the transporter OATP2B1 (Unger et al, 2020, 2021),

providing a proof of principle for the application of MALDI MS cellu-

lar assay for rapid direct assessment of drug transporter function.

Here, a 384-well plate was prepared in less 2 min and analyzed in

10 min. In another study, a label-free cellular phenotypic drug dis-

covery assay was developed to identify anti-inflammatory drugs in

human monocytes derived from acute myeloid leukaemia. The

screen identified that the inhibitor nilotinib blocked LPS-induced

inflammatory responses (preprint: Mar�ın-Rubio et al, 2021).

Even though IMS is mainly used to visualize the localization of

compounds in tissue sections, the instrumentation also lends itself

well to microarray formats, which can increase sample throughput.

These microarray formats can be used for tissue or organ sections

as these grid-like applications generates defined coordinates for sys-

tematic sampling across a surface (Groseclose et al, 2008). In a

recent attempt to incorporate cell-based assays using MALDI-IMS,

Guevara et al (2021) integrated microarrays and MALDI-IMS to

demonstrate the potential for miniaturized (down to 40 nl and 10

cells per spot) HT cell screening with the biochemical analysis capa-

bilities of MS in a single platform.

Limitations, future outlook, and conclusions

Advancement in the instrumentation and methods have led to the

increasingly widespread acceptance and utilization of MS-based

HTS platforms in drug discovery R&D. This has been particularly

impactful in the HTS field where MS assays have typically lacked

the throughput to compete with conventional fluorescence or lumi-

nescence assays. An ideal MS-based HTS platform can now meet

the following criteria: speed of analysis, robustness, low sample vol-

ume, high sensitivity, ease of use, wide mass range coverage, accu-

rate and precise quantification without the need for compromises in

assay design, and direct detection of native biological analytes. In

the past decade, there has been a surge in the development of these

assays covering a wide variety of MS techniques and biological tar-

gets covered in this review. MS-based HTS approaches are continu-

ously improving in terms of throughput and sensitivity; this is offset

by certain limitations discussed herein. MS is often not compatible

with biochemical assay reactions that contain high concentration of

salts, detergents and common buffering agents as these can induce

ion suppression and poor assay robustness and reproducibility

(Chandler et al, 2016; Belov et al, 2020). This is particularly inher-

ent to MALDI where poor spot-to-spot reproducibility can occur,

and a highly variable response is observed as a consequence. This is

also common in AMI/ADE approaches that require careful consider-

ation of assay volumes, buffers, and solvents to ensure uniform

ejection and ionization. The most appropriate MS technique for

tackling non-suitable assay compositions is often RapidFire-MS.

However, this is one of the lowest throughput technologies available

for developing HTS MS assays. These problems can be mitigated

through a more judicious selection of assay matrix components, by

applying an appropriate internal standard, performing an on-target

washing step, or by conducting relative quantification by measuring

substrate-to-product ratio. Moreover, MS-based readouts are suscep-

tible to isobaric interference, which can be a source of false results

for analytes within the mass range of the test compounds. To allevi-

ate this issue, Winter et al (2022) suggest using counter assays

(tandem MS or orthogonal readout technologies) to rule out false

positives.

Further method validation and multi-site standardization of sam-

ple preparation, data acquisition and data processing strategies will

be needed to define best practices and reporting guidelines. There

have been considerable efforts in the last two decades to address the

crisis of reproducibility for drug discovery by incorporating the best

practise in assay methodologies. The recommendation put forth in

the National Center for Advancing Translational Sciences Assay

Guidance Manual, a guide originally developed by Eli Lilly, is a

great resource that offers step-by-step guidance for drug developers

for planning and creating projects for HTS, as well as other steps in

the drug discovery pipeline (Markossian et al, 2004, 2021). This

resource is updated quarterly with more than 100 authors’ contribu-

tions to date.

Alternative hit-identification strategies such as ASMS, covalent

FBDD and phenotypic assays have also benefited greatly from the

recent advancements in MS technologies. For ASMS and covalent

fragment screening in particular, MS underpins the screening con-

cept and is critical for identification and characterization of positive

binders. The throughput of LC–MS ASMS now rivals that of tradi-

tional HTS for hit-ID and in more recent years novel strategies and

platforms such as MALDI/SAMDI-TOF-MS have also demonstrated

promise. For covalent fragment drug discovery, MS plays an impor-

tant role in both initial screening, subsequent characterization of

binding, as well as chemoproteomics to understand MoA and target

engagement in a biological system. These approaches do not neces-

sarily fit HT criteria as of yet, with sample preparation and instru-

ment limitations often being a bottleneck. The further development

of novel, state-of-the-art MS platforms will likely factor as to

whether these alternative drug discovery approaches to classical hit

ID campaign can be incorporated into routine discovery screening

strategies.
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