
HIGHLIGHTS
• Motor impairment in stroke patients diminishes activities of daily living.
• Rehabilitation therapy that promotes the recovery of motor function is crucial.
• With technological advances, rehabilitation methods continue to be developed.
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ABSTRACT

Motor impairment due to stroke limits patients’ mobility, activities of daily living, and 
negatively affects their return to the workplace. It also reduces patients’ quality of life 
and increases the socioeconomic burden of stroke. Therefore, optimizing the recovery of 
motor impairment after stroke is a very important goal for both individuals and society as 
a whole. The emergence and improvement of various technologies in the Fourth Industrial 
Revolution have exerted a major influence on the development of new rehabilitation methods 
and efficiency enhancements for existing methods. This review categorizes rehabilitation 
methods that promote the recovery of motor function into upper limb function and lower 
limb function and summarizes recent advances in stroke rehabilitation. Although debate 
continues regarding the effects of some rehabilitation therapies, it is hoped that the evidence 
will be improved through ongoing research so that clinicians can treat patients with a higher 
level of evidence.
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INTRODUCTION

Stroke is one of the most common causes of death and disability worldwide. Although the 
mortality rate due to stroke has decreased, the incidence of stroke has increased, resulting 
in an increased socioeconomic burden [1]. In order to reduce this burden, intensive 
rehabilitation should be performed to maximize stroke patients’ ability to perform activities 
of daily living during the recovery period, along with secondary prevention measures to 
reduce the risk of stroke recurrence. The need for rehabilitation services for stroke patients 
will continue to grow.

Motor impairment is a major cause of diminished performance of activities of daily living in 
stroke patients. It was previously believed that the central nervous system, had no ability to 
regenerate or change; thus, clinicians focused on teaching patients compensatory strategies. 
However, with the increasing awareness that brain plasticity, neural regeneration, and 
rehabilitation therapy can promote recovery, the focus has shifted toward treatments that 
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maximize neurological recovery in the early stages [2]. Therefore, rehabilitation therapy 
using a restorative approach is implemented for the first 3 to 6 months post-stroke, when 
recovery is most active.

Many efforts have been made to maximize the neurological recovery of motor impairment 
during recovery after stroke, and numerous studies have investigated rehabilitation methods. 
The core technologies of the Fourth Industrial Revolution, including mobile technologies, 
robots, artificial intelligence, and virtual and augmented reality, are bringing about many 
changes in medical technology [3]. Stroke rehabilitation methods using these technologies 
are also being developed.

The purpose of this review was to summarize recent advances in stroke rehabilitation therapy 
for motor impairment. Rehabilitation for motor impairment in stroke patients can be broadly 
categorized into upper and lower extremities. Herein, I discuss the following rehabilitation 
therapies: treadmill training, functional electric stimulation (FES) for gait, biofeedback, 
repetitive transcranial magnetic stimulation (rTMS), robot-assisted therapy, and virtual 
reality training for the lower extremities; constraint-induced movement therapy (CIMT), 
mirror therapy, motor imagery training (MIT), and FES for upper extremity function; FES for 
shoulder subluxation; and rTMS, robot-assisted therapy, and virtual reality training for the 
upper extremities.

MOTOR REHABILITATION FOR LOWER LIMB FUNCTION

Treadmill training
According to the Clinical Practice Guideline for Stroke Rehabilitation in Korea released in 2016, 
treadmill training is strongly recommended to improve gait speed, endurance, and distance for 
stroke patients who can or cannot walk independently [4]. A 2017 Cochrane review stated that 
treadmill training for stroke patients could help improve their gait speed and endurance in a 
short period of time and that it was beneficial for patients who could walk to some extent at the 
time of treatment initiation; however, there was insufficient evidence regarding the long-term 
effects of treadmill training on the improvement of gait speed and endurance [5].

In 2020, Munari et al. [6] reported a pilot study on the effect of backward treadmill training 
on stroke patients. Eighteen chronic stroke patients underwent the training, which was 
conducted in three 40-minute sessions per week for 4 weeks, and the patients were divided 
into forward and backward treadmill training groups. The backward treadmill training group 
showed greater improvements in the 10-minute walking test and balance evaluation [6]. The 
researchers suggested that the central pattern generator mechanism could explain the effect 
of backward treadmill training. It is known that facilitating hip extension and knee flexion 
with the foot positioned behind the trunk is helpful for restoring motor function in patients 
with a synergistic pattern in the lower extremities.

In another randomized controlled trial, virtual reality training was implemented along with 
treadmill training to improve patient participation and their walking ability. Compared with 
the control group, the experimental group did not show significant differences in patient 
participation and gait parameters, but the potential of this modality as a treatment tool was 
confirmed [7]. Recent trends in research have shifted from classical treadmill training toward 
the use of rehabilitation robots based on treadmill training, as described below.
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FES for gait
The Clinical Practice Guideline for Stroke Rehabilitation in Korea suggests that FES is effective 
in improving the strength of hip and ankle weakened by stroke and strongly recommends this 
modality for improving gait function in stroke patients with foot drop [4]. A recent meta-
analysis reported that FES significantly improved the gait speed of stroke patients compared 
to the control group [8]. In a systematic literature review, combining FES with conventional 
therapy was helpful in improving the balance function of stroke patients [9].

A recent randomized controlled trial confirmed the effect of multi-functional electrical 
stimulation gait training for the peroneal nerve, knee flexor, and extensor muscles on 
improving gait among patients with subacute stroke within 30 days of onset. In another 
study, FES combined with transcranial direct current stimulation (tDCS) had a positive effect 
on gait regularity in patients with subacute stroke [10,11]. Likewise, recent gait-related FES 
studies have attempted to achieve better results by applying multi-channel approaches or 
incorporating therapeutic devices using neuromodulation.

Biofeedback for function of the lower limb
The most recent Cochrane review on biofeedback for function of the lower limb was 
published in 2007. Although it was reported that combining biofeedback with physical 
therapy led to significant improvements in muscle strength, functional recovery, and gait 
quality, the sample size of each clinical trial was small and the study designs were unclear, 
limiting the level of evidence [12]. A systematic review of 18 clinical trials concluded that 
compared to conventional treatment, biofeedback was more effective in improving the motor 
function of the lower extremities; however, the long-term effects of biofeedback were not 
confirmed [13].

A randomized controlled trial published in 2019 reported the effects of multimodal training 
using force sensor biofeedback. In total, 68 subacute stroke patients were allocated to a 
group performing 40-minute sessions of visual biofeedback training with cycling augmented 
by FES using a force sensor for 6 weeks or another group undergoing conventional balance 
training. A correlation was noted between the interventional treatment performed in the 
experimental group and improvements in gait speed and endurance [14]. As exemplified by 
that study, with the recent development of sensors, attempts have been made to use force 
sensors and force plates for treatment instead of electromyography biofeedback using surface 
electrodes.

rTMS
The effects of rTMS on improving lower extremity function are difficult to determine due to 
high heterogeneity among randomized controlled trials. According to a 2019 meta-analysis, 
rTMS could have positive effects on mobility and balance, but the level of evidence was low 
due to heterogeneity between studies and small sample sizes [15]. A network meta-analysis 
of 943 subjects in 26 randomized controlled trials showed that low-frequency rTMS was the 
most commonly adopted stimulation method, followed by high-frequency rTMS. Regarding 
the effect of stimulation, low-frequency rTMS had a significant effect on improving Fugl-
Meyer evaluation scores, and high-frequency rTMS had a significant effect on increasing the 
magnitude of motor-evoked potentials [16].

A recent randomized controlled trial applied multimodal, multi-site stimulation combining 
rTMS with tDCS to patients with subacute stroke. The patients were randomly assigned 
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to 4 groups: sham, low-frequency rTMS only, cathodal tDCS and low-frequency rTMS 
(tDCS−/rTMS−), and anodal tDCS and low-frequency rTMS (tDCS+/rTMS−). For multimodal 
stimulation, tDCS was first applied to the motor cortex on the affected or unaffected side, 
followed by rTMS. The treatment was performed for a total of 40 minutes (20 minutes in each 
session), 5 times a week for 4 weeks. At 8 weeks after the treatment, the tDCS+/rTMS− group 
showed significant improvements in the National Institutes of Health Stroke Scale and the 
Barthel index compared to the sham group. The tDCS+/rTMS− group also showed the most 
significant improvements in the Fugl-Meyer assessment score for the lower extremities, and 
the motor-evoked potential of the affected side and resting motor threshold also significantly 
improved. Therefore, the authors concluded that anodal tDCS and low-frequency rTMS 
were most effective for restoring motor function and modulating cortical excitability [17]. 
Likewise, recent neuromodulation studies on the lower extremities tried to maximize the 
effects of neuromodulation by combining multimodal and multi-site stimulation.

Robot-assisted therapy
The Clinical Practice Guideline for Stroke Rehabilitation in Korea recommends that robot-
assisted therapy should be implemented in selected patients, in addition to conventional gait 
training, to improve the gait function of stroke patients [4]. In a Cochrane review, robot-
assisted gait training was beneficial for recovering independent gait, especially in patients 
who were unable to walk on their own in the first 3 months after stroke onset. Gait speed 
immediately after treatment was superior to that after conventional rehabilitation; however, 
there was no significant difference in the long-term effects. A significant improvement was 
observed in patients within 3 months after onset, but not in patients more than 3 months 
after onset. The authors suggested that further studies should be conducted to assess its 
effects on activities of daily living and quality of life, the relationship of its effects with the 
duration and intensity of treatment, and its long-term effects [18].

In a meta-analysis of Nedergård et al. [19], it was possible to indirectly identify which specific 
gait factors contributed to the positive effects demonstrated in the Cochrane review. This 
meta-analysis investigated 13 studies on the effect of robot-assisted gait training on the 
biomechanical outcomes of stroke patients. The step length of the affected side significantly 
improved. In addition, positive effects of robot-assisted gait therapy were found in stride 
length and temporal symmetry. However, limitations were the small sample size and high 
heterogeneity of the included studies [19].

Kim et al. [20] reported the neuroplastic effects of end-effector robotic gait training. They 
divided hemiparetic stroke patients who were able to walk under supervision into an end-
effector robot-assisted gait training group and a body weight support gait training group, and 
compared the results after a 4-week training period. The primary endpoint was regional cortical 
activity measured by functional near infrared spectroscopy (fNIRS), and the secondary endpoint 
was a gait-related variable. The activity of the primary sensorimotor cortex, supplementary 
motor area, and premotor cortex of the affected cerebral hemisphere significantly increased 
in the end-effector robot-assisted gait training group. The authors concluded that robot-
assisted gait training influenced cortical reorganization. In the Fugl-Meyer assessment, the 
robot-assisted gait training group showed significant improvements, which were attributed to 
repetitive motor relearning; however, body-weight support gait training was associated with a 
lack of proper sensory input [20]. Another randomized controlled trial introduced assist-as-
needed robotic gait training. The intervention involved a gait training robot with a high degree 
of freedom, which intervened as needed according to the patient’s walking ability. The robot 
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used in the study connected and operated a shadow thigh and shank with the patient using the 
pelvis, knee joint, and ankle joint bars and supported the body weight with a pelvic strap and a 
harness. The study compared the therapeutic effects of assist-as-needed and conventional gait 
training in 34 subacute stroke patients. Compared with the control group, the experimental 
group showed significant improvements in step length and peak knee flexion of the affected 
lower limb in the swing phase [21].

A consensus exists that gait training robots have an advantage over conventional treatment 
methods in promoting the acquisition of independent gait and are more effective in patients 
with subacute stroke who are unable to walk. fNIRS and functional magnetic resonance 
imaging (fMRI) studies have shown that these effects are induced by promoting cortical 
neural reorganization through changes in cerebral cortical activity.

Virtual reality training
It is recommended to perform virtual reality training to improve walking function in addition 
to conventional treatment [4]. A Cochrane review published in 2015 did not confirm an 
advantage of virtual reality training over conventional treatment in improving gait speed [22]. 
However, a recently published meta-analysis reported that lower extremity function, balance, 
gait ability, and the activities of daily living were significantly improved after virtual reality 
training. For each functional evaluation scale, the lower-extremity Fugl-Meyer assessment, 
functional ambulatory category, Berg balance scale, timed up-and-go test, gait speed, and 
cadence significantly improved [23].

A recent randomized controlled trial investigated the treatment effect of virtual reality training 
combined with mirror therapy. Sixty-four chronic stroke patients were randomly assigned to a 
conventional treatment group or a combination treatment group (virtual reality training and 
mirror therapy), and 70 minutes of therapy per session was administered for 10 days. Compared 
to the control group, the experimental group had significant improvements in range of motion, 
manual muscle test, Fugl-Meyer assessment, and the functional reach test.

Virtual reality can provide repetitive, task-oriented training in an enriched environment. 
It can also simulate activities similar to those in the real world. Due to these features, 
virtual reality is being actively studied as an important adjuvant treatment tool for 
neurorehabilitation that induces patients’ interest and encourages their participation in long-
term treatment.

tDCS
Insufficient evidence exists regarding the association of tDCS with improvements in 
lower extremity function. A Cochrane review also reported that tDCS could be helpful in 
improving the activities of daily living, but the level of evidence was low [24]. A meta-analysis 
synthesized data from 10 randomized controlled trials to determine the effect of tDCS on 
balance and gait. The included studies generally applied tDCS to the lower-extremity motor 
area or supplementary motor area on the affected side at an intensity of 2 mA or more for 10 
to 20 minutes to improve lower-extremity function. It was concluded that tDCS could help 
patients achieve independent gait, as the experimental group showed improved results in the 
functional ambulatory category and timed up-and-go test [25]. A systematic literature review 
also stated that tDCS could have a positive effect on gait ability and balance, but there was 
insufficient evidence on its long-term effects [26].
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In many tDCS-related clinical studies, tDCS was conducted together with body-weight 
support gait training, and some studies investigated the effect of combining tDCS with FES 
on recovery. In particular, performing tDCS in conjunction with FES had a positive effect 
on walking regularity and helped to improve gait ability [11]. However, its effect on the 
improvement of gait speed, which was the primary endpoint, was insignificant, indicating 
the limited effect of tDCS on lower-extremity function.

Whole-body vibration (WBV)
In 2 recent meta-analyses, WBV had positive effects on bone metabolism, spasticity, and 
the results of the 6-minute gait test, but the level of evidence was not high with regard to 
improvements in muscle strength, balance, and gait [27,28]. A recent randomized controlled 
trial reported that WBV reduced ankle plantar flexor spasticity and increased intramuscular 
blood perfusion in chronic stroke patients [29]. Based on the latest findings, WBV has a 
positive effect on the improvement of lower extremity spasticity in stroke patients, and this 
improvement can have a positive effect on some gait parameters.

MOTOR REHABILITATION FOR UPPER LIMB FUNCTION

CIMT
In the Clinical Practice Guideline for Stroke Rehabilitation in Korea, CIMT is recommended 
with a high level of evidence (recommendation level A, level of evidence 1++) [4]. The EXCITE 
trial reported that CIMT significantly improved stroke patients’ motor function on the 
hemiplegic side and that the effect lasted for at least 1 year [30]. The most recent Cochrane 
review, published in 2015, stated that CIMT improved motor impairment, but there was 
limited evidence on its long-term effects [31]. Since the evidence is somewhat clear on the 
effectiveness of CIMT, recent randomized controlled trials explored the beneficial effects of 
CIMT combined with other treatments such as tDCS and botulinum toxin A injection, and all 
of these studies reported positive results [32,33].

Mirror therapy
Mirror therapy was reported to be effective in significantly improving the upper and lower 
extremity movements on the affected side and the activities of daily living in both subacute 
and chronic stroke patients in a 2018 Cochrane review. However, according to 3 meta-
analyses published in 2020 and 2021, mirror therapy alone had little effect on the recovery of 
upper extremity function, although meaningful results could be obtained when it was used in 
combination with other treatment methods. Therefore, debate continues regarding the effect 
of mirror therapy performed alone [34-36].

MIT
MIT refers to the process of thinking about and practicing the movement to be trained 
in a state where there is no body movement. The Clinical Practice Guideline for Stroke 
Rehabilitation in Korea recommends using MIT in addition to rehabilitation involving actual 
movements [4]. A Cochrane review published in 2011 stated that there was insufficient 
evidence regarding the recovery of upper extremity function when a combination of 
MIT and other treatments was performed for stroke patients. However, a later Cochrane 
review reached a different conclusion, reporting a moderate level of evidence for positive 
effects [37,38]. According to a recent meta-analysis, the degree of upper extremity motor 
impairment significantly improved after MIT, and MIT produced a significant effect in 
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patients with severe to moderate upper-extremity motor impairment (between 0 and 40 
points on the Action Research Arm Test) [39]. In a study of chronic stroke patients, the 
upper extremity Fugl-Meyer assessment significantly improved compared to that in the 
control group. Furthermore, extensive reorganization of functional connectivity between 
both cerebral hemispheres was confirmed by resting-state fMRI; this reorganization was 
particularly prominent in the MIT- and learning-related brain regions on the affected 
hemisphere [40].

Functional electrical stimulation for upper extremity function
FES is strongly recommended because it helps to restore movement of the forearm and wrist 
on the hemiplegic side of stroke patients [4]. According to a recent meta-analysis, FES had 
a statistically significant effect on improving upper-extremity function compared to control 
groups [41].

Among recently published papers on FES, one exploratory study demonstrated the effect 
of wearable forearm neuromuscular electrical stimulation using a multi-electrode array to 
electrically stimulate individual forearm muscles to enable precise movements [42].

In light of the very extensive research on FES for functional recovery of the upper extremity, 
no relevant publications Hemiplegia due to stroke often leads to the development of 
subluxation of the shoulder joint, which causes functional and musculoskeletal problems 
that lower quality of life. FES is used as an interventional measure, and it is strongly 
recommended in the Clinical Practice Guideline for Stroke Rehabilitation in Korea. A 
Cochrane review reported that it had a significant effect on reducing shoulder pain, but the 
evidence was limited due to the small sample size [43]. In a meta-analysis published later, 
evidence was added, and it was concluded that FES was beneficial for reducing shoulder 
subluxation in acute and subacute stroke patients. It was advised to apply the treatment 
according to patients’ compliance and conditions, as significant results were found in the 
acute phase rather than in the chronic phase, regardless of the treatment period [44].

rTMS
On the topic have been written since the last meta-analysis published in 2015. However, 
randomized controlled trials have combined FES with other treatment methods to improve 
the efficacy of treatment, and development efforts have been continued to enable precise 
movement control through selective muscle stimulation.

Functional electrical stimulation for shoulder subluxation
rTMS is a noninvasive brain stimulation method widely used to promote the recovery of 
upper extremity function after stroke. The level of evidence is rather limited, and the Clinical 
Practice Guideline for Stroke Rehabilitation in Korea specifies that it should be administered 
to selective patients by an experienced specialist who is familiar with contraindications 
and side effects. Several Cochrane reviews reported that there was low-quality evidence 
regarding its effect on the improvement of upper extremity function and activities of daily 
living [45,46]. In a meta-analysis published later, rTMS was reported to have both long- and 
short-term, effects on the improvement of upper extremity function in stroke patients. The 
effect size was larger and more significant in patients with acute and subacute stroke than 
in chronic patients. However, there were some problems related to heterogeneity in the 
treatment protocols used for rTMS among the included studies [47].
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Recently published randomized controlled trials reported positive effects on functional 
recovery from simultaneously implementing theta-burst stimulation and low-frequency rTMS 
or applying rTMS together with FES and MIT [48,49]. The overall trend in research has been 
to apply rTMS as a dual-modulation protocol in a multi-modal framework, rather than as a 
single treatment.

Robot-assisted therapy
Robot-assisted therapy refers to the use of an electronic computer control system device for 
rehabilitation therapy. These robots can be divided into therapeutic and assistive. Unlike the 
existing therapist-centered approach to treatment, robot-assisted therapy can be performed 
repeatedly at a higher intensity, thereby promoting the brain plasticity and the recovery 
of upper extremity function [50,51]. In 2 Cochrane reviews published by Mehrholz et al. 
[52,53] at an interval of 3 years between 2015 and 2018, the level of evidence for robot-
assisted therapy was changed from low or very low to high in terms of recovery in activities 
of daily living, upper extremity function, and upper extremity strength. Several randomized 
controlled trials have recently been published, and evidence is being established rapidly. 
A recent meta-analysis also reported that robot-assisted therapy is advantageous over 
conventional rehabilitation for improving upper extremity motor function [54].

Virtual reality training
Virtual reality is defined as the “use of interactive simulations created with computer 
hardware and software to present users with opportunities to engage in environments that 
appear and feel similar to real-world objects and events” [55]. Virtual reality is a relatively 
recent treatment tool that has the advantage of allowing repeated simulation practice of 
functional tasks, unlike conventional treatment. The Clinical Practice Guideline for Stroke 
Rehabilitation in Korea also recommends using virtual reality in addition to conventional 
rehabilitation, if the appropriate training equipment and skilled personnel are available [4]. 
Several review papers have also revealed that virtual reality training was helpful in improving 
stroke patients’ upper-extremity Fugl-Meyer assessment and activities of daily living. There 
has recently been a directional change in the development of virtual reality therapy toward 
using it together with a brain-computer interface so that a patient’s movement intention is 
detected and realized in virtual reality to give visual feedback [56,57].

Brain-computer interface
The brain-computer interface is a technology that allows a computer to recognize the 
intention of a patient through electroencephalogram signals; the interface produces output 
in various forms, and this method therefore has the potential to be applied to various fields. 
This innovative technology can restore or replace motor function and communication ability 
even in stroke patients.

A recent meta-analysis reported that brain-computer interfaces had significant effects on 
the recovery of upper extremity function in stroke patients. The treatment methods using 
brain-computer interfaces can be divided into motor imagery-based, movement attempt-
based, and action observation-based, and a significant effect was noted with the motion 
attempt-based method. When the effect was analyzed according to the combined use of 
other treatment devices, a statistically significant effect was observed when a brain-computer 
interface was used together with FES [58].
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tDCS
A Cochrane review published in 2020 stated that tDCS had very low-quality evidence for its 
effect on improvement in the activities of daily living [59]. A 2021 meta-analysis reported a 
positive effect on the improvement of upper-extremity function, but the level of evidence was 
limited due to the high heterogeneity among studies [60]. A subgroup analysis found that 
the effect was more significant in the chronic stage than in the acute stage, and in mild cases 
rather than in severe cases. In addition, the online effect was more significant than the offline 
effect, and a significant effect was noted at treatment intensities of 1.5–2 mA or higher. 
Meta-analyses have recently reported evidence on the combined application of tDCS with 
robot-assisted therapy for the upper extremities, and attempts are being made to implement 
therapy using virtual reality [61,62].

SUMMARY

Motor impairment in stroke patients reduces their activities of daily living, diminishes their 
quality of life, and imposes a substantial socioeconomic burden. In order to minimize these 
negative impacts, rehabilitation therapy that promotes the recovery of motor function is crucial.

Conventional treatments such as treadmill training, FES, and CIMT, which have been 
extensively studied, have been investigated as new types of treatment or in combination 
with other treatment modalities. These attempts have shown positive effects on increasing 
patients’ motivation or enhancing functional recovery when compared to conventional 
treatment methods.

Recently, in the field of stroke rehabilitation therapy, various treatment methods using 
new technologies have been developed. The application of new technologies, such as 
brain-computer interfaces, to treatment is expected to promote brain plasticity and neural 
reorganization, thereby bringing about recovery in more patients. As technology advances, 
more stroke patients will have better recovery and improved quality of life. Therefore, 
clinicians should continue to research new technologies, obtain evidence, and apply these 
innovations in patient care.
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