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Background. Biliary atresia (BA) is a type of severe cholestatic childhood disease that may have a genetic component. miR-100
plays a key role in regulating cell apoptosis, proliferation, and inflammatory reactions. A single-nucleotide polymorphism in
miR-100 has been proven to modulate susceptibility to various diseases. Methods. We conducted a case-control retrospective
study to explore the correlation between miR-100 gene polymorphism (rs1834306 A>G) and biliary atresia susceptibility in 484
Chinese patients and 1445 matched control subjects. Results. Our results showed that rs1834306 A>G was correlated with a
significantly increased risk for BA (GG vs. AA: adjusted odds ratio ðORÞ = 1:44, 95%confidence interval ðCIÞ = 1:02 – 2:03, p =
0:041; and GG vs. AA/AG: adjustedOR = 1:39, 95%CI = 1:02 – 1:89, p = 0:036). Conclusions. Our results showed that the
rs1834306 A>G polymorphism is associated with an increased risk for BA and contributes to BA susceptibility.

1. Introduction

Biliary atresia (BA), a type of severe cholestatic disease, occurs
in neonatal infants and leads to progressive hepatic fibrosis
and hepatitis failure [1, 2]. The incidence of biliary atresia var-
ies among different populations, and it is noteworthy that
Asians have a high prevalence of this disease: 1.04/10000 in
Japanese and 3.7/10000 in Taiwanese [3]. If left untreated,
the prognosis in patients with BA will be extremely poor, with
100% mortality from end stage of liver disease within two
years [4]. The Kasai portoenterostomy is the main surgical
treatment for BA [5]; nevertheless, transplantation of liver is
required for treating end stage of liver disease after operation
[6]. Treatment in its earliest stages can effectively prevent pro-
gression of liver fibrosis [7], thus early screening and diagnosis
are of key importance for efficient treatment [8]. The etiology
and pathogeny of BA remain unclear [9].

The influence of antenatal exposure to environment fac-
tors such as cytomegalovirus (CMV), intraamniotic infection,
and medication therapy on BA pathogenic mechanisms is
uncertain [10]. Accumulating evidence demonstrated that

genetic element might be of key importance for the pathogen-
esis of BA [11]. Genome-wide association studies (GWASs)
have found that certain genes, such as ADD3 and XPNPEP1,
may increase a person’s susceptible to BA [12, 13]. Moreover,
large amounts of genes with single-nucleotide polymorphisms
(SNPs) are worthy to be studied for their association with BA.

miR-100, a crucial member of the microRNA- (miR-) 99
family, has been studied in many research. And previous
studies have shown its participation in regulating cellular
apoptosis and proliferation [14]. Besides that,miR-100 is also
implicated in the modulation of immunocyte response and
multiple biological functions, and thereby may play a crucial
part in relieving inflammation reaction and maintaining
tissular homeostasis [15]. To the best of our knowledge, up
to now, no correlation between the miR-100 gene and BA
has been reported. Considering the importance of the miR-
100 gene in cellular metabolic activities and tissue immuno-
logical microenvironment, we carried out a GWAS in a
group of ethnic homogeneity patients (484 case patients
and 1445 control subjects) from the largest Southern Chinese
Han nationality. This study was to investigate the association
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between miR-100 gene polymorphism and BA susceptibility
in Southern Chinese Han children. Our results provide theo-
retical genetic guidance for further mechanical investigations
and may aid in selecting a biomarker for use in the early
detection of populations at high risk for biliary atresia.

2. Materials and Methods

2.1. Study Population. Totals of 484 BA patients and 1445
control subjects were included in this research. These
patients were recruited from the Guangzhou Women and
Children’s Medical Center. All samples were histopatholo-
gically confirmed by a pathologist, and research programs
was validated by the Institutional Review Board of Guang-
zhouWomen and Children’s Medical Center. As per relevant
laws and regulations, written medical informed consent doc-
ument was acquired from each participant’s legal guardians.
This study was conducted strictly observe all instructions to
insure its reliability, precision, and repetitiveness.

2.2. SNP Selection and Genotyping. The SNPinfo (http://
snpinfo.niehs.nih.gov/snpfunc.htm) and dbSNP database
(http://www.ncbi.nlm.nih.gov/SNP) were applied for screen-
ing possible function-related polymorphic sites in the miR-
100 gene. TaqMan real-time fluorescence PCR was applied
for genotyping the miR-100 rs1834306 A>G. To help ensure
the reliability of our results, all staff members were blinded
to sample information. Moreover, 10% of the specimens
were selected in random for repeatedly genotyped experi-
ments, and all results were found to be 100% reproducible.

2.3. Statistical Analysis. The distribution of sample charac-
teristics between the patient and matched control groups
was analyzed by a two-sided chi-squared testing. The consis-
tency between Hardy–Weinberg equilibrium (HWE) and
the genotype frequencies in matched control group was
identified by a chi-squared goodness-of-fit testing. Multivar-
iate logistic regressive analysis was used in calculating odds
ratios (ORs) and 95% confidence intervals (CIs), and also
in assessing the interrelation between miR-100 rs1834306
A>G and the risk for BA. All statistical analyses were con-
ducted using SAS 9.5 software (SAS Institute Cary, NC, the
USA). It is considered to be statistically significant when a
p value <0.05.

3. Results

3.1. Population Characteristics. As shown in Table 1, this
study enrolled 484 BA patients and 1445 control subjects.
BA was diagnosed by cholangiography, and the control sub-
jects were children with no hepatobiliary disease.

3.2. Associations between miR-100 Gene Polymorphism and
Biliary Atresia Susceptibility. We successfully genotyped
484 biliary atresia patients and 1445 control subjects. The
genotype frequencies of the miR-100 rs1834306 A>G poly-
morphism in BA patients and control subjects are summa-
rized in Table 1. The frequency distribution of the miR-100
rs1834306 A>G genotype adhere to the HWE genetic balance
in the control group (p = 0:126). Most importantly, miR-100

rs1834306 A>G was found to be significantly associated
with an increased risk for BA (GG vs. AA: adjustedOR =
1:44, 95%CI = 1:02 – 2:03, p = 0:041; and GG vs. AA/
AG: adjustedOR = 1:39, 95%CI = 1:02 – 1:89, p = 0:036) after
adjusting for gender and age.

4. Discussion

MiR-100 is one member of the microRNA- (miR-) 99 family
and related with the apoptosis, invasion, proliferation, and
tumor cell differentiation [15, 16]. This molecule is evolu-
tionarily conserved, indicating that it plays an indispensable
role in regulating various gene expression processes [17, 18].
Pre-miRNA is an important progenitor molecule of miRNA
and can cause the abnormal expression of various miRNAs,
which could further alters the regulation of a targeted
mRNA by miRNA, eventually resulting in a number of dis-
eases [19–21]. The miR-100 rs1834306 A>G polymorphism
is located in the pre-miR-100 molecule. Editing function of
miR-100 is associated with several biologically relative target
genes [22], including MTOR, SMAD2, FOXA1, and Myc
[23–26]. As a result, it can regulate the intracellular cycle,
tissular inflammation, and cellular proliferation [27–29].
According to previous reports, the miR-100 gene take part
in the notch pathway and activates HES1 [30], indicating
that it is an important regulatory factor in developmental
disabilities [31] and the cellular growth cycle [32, 33]. It is
worth mentioning that the notch pathway was shown to
regulate BA pathogenesis in our previous study [34]. In
addition, the miR-100 gene is also involved in the inflamma-
tory response. In other words, miR-100 gene may provide a
chronic inflammatory liver microenvironment for the path-
ogenesis of BA by influencing the differentiation and activity
of various immune cells [23, 35, 36].

A number of studies have shown that the miR-100 gene
takes part in the pathogenesis of many diseases. According
to past studies, Jones et al. [37] pointed out that miR-100 is
significantly upregulated in age-related fracture/osteoporosis
and shows promise as a biomarker for that disease. Shukla
et al. [38] mentioned that its important role in wound repair
and interaction with specific genes makesmiR-100 a promis-
ing marker. A study by Yang et al. [39] suggested that miR-
100might be of key in regulating the radiotherapy sensitivity
of radioresistant colorectal carcinoma, and could potentially
serve as a new clinical target for radiation therapy. miR-100
rs1834306 was recently reported to be associated with a
diminished risk for esophageal squamous epithelial cell can-
cer in northwestern Chinese Kazakh patients [40]. Further-
more, Zhu et al. [41] reported that miR-100 rs1834306
A>G may decrease the risk for congenital Hirschsprung
disease in a Chinese pediatric population.

According to the predication from SNPinfo, miR-100
rs1834306 is a binding sites of transcription factors. The
studies described above indicate that the miR-100 gene may
participate in BA pathogenesis via complex regulatory net-
works. Therefore, we believe that miR-100 might modulate
cell apoptosis, proliferation, and differentiation via the notch
signaling pathway [42]. On the other hand, miR-100 might
also activate mTOR to control cellular growth, metabolism,
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and immunity [43], and further promote the progression
of BA.

Although our study revealed a correlation between the
miR-100 rs1834306 A>G polymorphism and biliary atresia
risk, it does has some limitations that should be mentioned.
First, only one polymorphism in the miR-100 gene was
selected for this study, and the combined effects of miR-100
rs1834306 A>G in combination with other polymorphisms
in related genes on BA progression were not studied. Second,
as a hospital-based retrospective investigation, a certain
degree of admission bias, such as information gathering
and population selection, is unavoidable. Third, lifestyle
and environmental factors were not taken in account, and
those factors may hide the real association between miR-
100 and BA. Fourth, our conclusion cannot be speculated
outward into other ethnicities, because all our subjects were
recruited from the Han population. Fifth, more functional
experiments are required to confirm the outcome of this
investigation.

In summary, we found that the miR-100 rs1834306 A>G
polymorphism is in association with an increased risk for
biliary atresia. However, our results need to be further veri-
fied in future investigations with more sample sizes and
more diverse subject ethnic groups.
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