Table 1.
Performance of the optimal models based on various classification algorithms and lists yielded by various feature ranking algorithms.
| Feature ranking algorithms | Classification algorithms | Number of features | F1-measure | MCC | ACC |
|---|---|---|---|---|---|
| mRMR | DT | 309 | 0.766 | 0.623 | 0.822 |
| KNN | 49 | 0.796 | 0.665 | 0.831 | |
| SVM | 314 | 0.852 | 0.761 | 0.886 | |
| RF | 215 | 0.840 | 0.742 | 0.878 | |
|
| |||||
| MCFS | DT | 64 | 0.765 | 0.620 | 0.820 |
| KNN | 62 | 0.805 | 0.679 | 0.838 | |
| SVM | 143 | 0.846 | 0.750 | 0.880 | |
| RF | 145 | 0.854 | 0.764 | 0.888 | |
|
| |||||
| LightGBM | DT | 32 | 0.800 | 0.676 | 0.846 |
| KNN | 18 | 0.833 | 0.728 | 0.867 | |
| SVM | 33 | 0.868 | 0.788 | 0.899 | |
| RF | 22 | 0.883 | 0.811 | 0.911 | |
|
| |||||
| LASSO | DT | 370 | 0.735 | 0.568 | 0.794 |
| KNN | 160 | 0.718 | 0.525 | 0.753 | |
| SVM | 369 | 0.826 | 0.718 | 0.866 | |
| RF | 370 | 0.811 | 0.695 | 0.856 | |