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CT‑radiomics and clinical risk scores 
for response and overall survival 
prognostication in TACE HCC 
patients
Simon Bernatz 1,2,3*, Oleg Elenberger 1, Jörg Ackermann 4, Lukas Lenga 1, 
Simon S. Martin 1, Jan‑Erik Scholtz 1, Vitali Koch 1, Leon D. Grünewald 1, Yannis Herrmann 1, 
Maximilian N. Kinzler 5, Angelika Stehle 5, Ina Koch 4, Stefan Zeuzem 5, Katrin Bankov 2, 
Claudia Doering 2, Henning Reis 2, Nadine Flinner 2, Falko Schulze 2, Peter J. Wild 2,3,6, 
Renate Hammerstingl 1, Katrin Eichler 1, Tatjana Gruber‑Rouh 1, Thomas J. Vogl 1, 
Daniel Pinto dos Santos 1,7 & Scherwin Mahmoudi 1

We aimed to identify hepatocellular carcinoma (HCC) patients who will respond to repetitive 
transarterial chemoembolization (TACE) to improve the treatment algorithm. Retrospectively, 61 
patients (mean age, 65.3 years ± 10.0 [SD]; 49 men) with 94 HCC mRECIST target‑lesions who had 
three consecutive TACE between 01/2012 and 01/2020 were included. Robust and non‑redundant 
radiomics features were extracted from the 24 h post‑embolization CT. Five different clinical TACE‑
scores were assessed. Seven different feature selection methods and machine learning models were 
used. Radiomics, clinical and combined models were built to predict response to TACE on a lesion‑
wise and patient‑wise level as well as its impact on overall‑survival prognostication. 29 target‑lesions 
of 19 patients were evaluated in the test set. Response rates were 37.9% (11/29) on the lesion‑level 
and 42.1% (8/19) on the patient‑level. Radiomics top lesion‑wise response prognostications was 
AUC 0.55–0.67. Clinical scores revealed top AUCs of 0.65–0.69. The best working model combined 
the radiomic feature LargeDependenceHighGrayLevelEmphasis and the clinical score mHAP_
II_score_group with AUC = 0.70, accuracy = 0.72. We transferred this model on a patient‑level to 
achieve AUC = 0.62, CI = 0.41–0.83. The two radiomics‑clinical features revealed overall‑survival 
prognostication of C‑index = 0.67. In conclusion, a random forest model using the radiomic feature 
LargeDependenceHighGrayLevelEmphasis and the clinical mHAP‑II‑score‑group seems promising for 
TACE response prognostication.

Abbreviations
CR  Complete response
DART   Dropouts meet multiple additive regression trees
DICOM  Digital Imaging and Communications in Medicine
GBDT  Gradient boosting decision tree
GLCM  Gray level co-occurrence matrix
GLRLM  Gray level run length matrix
GLSZM  Gray level size zone matrix
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GLDM  Gray level dependence matrix
GOSS  Gradient-based one-side sampling
HCC  Hepatocellular carcinoma
ICC  Intra-class correlation coefficient
LASSO  Least absolute shrinkage and selection operator
mRECIST  Modified Response Evaluation Criteria in Solid Tumors
NGTDM  Neighboring gray tone difference matrix
NTL  Non-target lesion
PD  Progressive disease
PR  Partial response
OS  Overall survival
RF  Random forest
RFA  Recursive feature addition
RFE  Recursive feature elimination
SD  Stable disease
SGD  Stochastic gradient descent
STARD  Standards for Reporting Diagnostic Accuracy Studies
SVC  Support vector classifier
TACE  Transarterial chemoembolization
TL  Target lesion
T-SNE  T-distributed stochastic neighbor embedding
VOI  Volume of interest

In 2020 primary liver cancer ranked as the third leading cause of cancer death world-wide1. Hepatocellular carci-
noma (HCC) comprises around 75–85% of primary liver cancers and over the last 20 years its incidence has been 
 rising1,2. The diagnostic work-up of HCC-suspicious observations includes among others clinical examinations, 
laboratory analysis, imaging studies and often tumor  biopsy2. The treatment of HCC is complex and depends on 
the tumor stage. Potential curative treatments include liver resection, transplantation or local ablative methods 
like microwave  ablation2. HCC is predominantly arterially vascularized enabling the intra-arterial application 
of chemotherapy and  embolization2. These methods, like transarterial chemoembolization (TACE) are mainly 
palliative but may enable the complete destruction of the tumour or size-reduction to enable subsequent resec-
tion or transplantation (bridging therapy) in selected  cases2,3. TACE can prolong patient’s overall survival (OS) 
but it may also harm patients with reduction of OS depending on patient  selection2. A multitude of scores was 
developed to identify patients who will most likely benefit from  TACE2,4–8. Nevertheless, the scores’ validity is 
scarce and the use for treatment decision making is not recommended outside clinical  trials2. Consequently, 
patients are generally individually discussed in interdisciplinary tumor board meetings to define the appropriate 
therapy based on expert consensus. Recent emerges in the field of quantitative computational image analysis, 
termed radiomics, provide promising opportunities. Images are transformed in mineable data with subsequent 
bioinformatic analysis allowing lesion characterization beyond visual  perception9. Radiomics’ prognostic and 
predictive potential was demonstrated in numerous cancer  entities9,10. Only scarce evidence is available for TACE 
in HCC patients and most studies examined the pre-TACE contrast-enhanced MRI or CT though variant contrast 
agents or injection protocols might alter the  results11–14. Lipiodol accumulation patterns after TACE might be 
used for response  prognostication15,16 but to the best of our knowledge a high dimensional pattern quantification 
by means of radiomics was not performed yet.

We hypothesized that lipiodol retention patterns from the post-embolization CT after the first TACE can be 
quantified by means of radiomics to serve as imaging biomarkers for TACE response prediction. The aim of this 
study was to develop a predictive model for HCC patients on a (I) lesion-wise level, (II) patient-wise level and 
(III) for overall survival. Further, we aimed to stratify the best working model by comparing CT-derived features 
with clinical scores and a holistic combined model.

Methods
Written informed consent was obtained from all patients and the study was approved by the institutional Review 
Boards of the University Cancer Center and the Ethical Committee at the University Hospital Frankfurt (project-
number: SGI-10-2020). The patient population was not reported previously.

Study design. In this retrospective study we consecutively enrolled 61 HCC-patients (female, 12; mean age, 
65.3 ± 10.0 years) who were treated with conventional TACE between 01/2012 and 01/2020. Inclusion criteria 
were: (1) Histologically confirmed HCC, (2) three consecutive TACE exclusively with the therapeutics Mitomy-
cin C (Medac®, Hamburg, Germany) and Lipiodol (Guerbet GmbH, France) ± degradable starch microspheres 
(EmboCept®S, PharmaCept GmbH, Berlin, Germany) and injected in the same liver region, (3) all mRECIST 
target lesions (TL) were treated with each TACE, (4) post-TACE unenhanced CT 24 h after TACE, (5) contrast-
enhanced arterial and portal-venous/ delayed phase MRI or CT prior to the first and after the third TACE. 
Exclusion criteria: (1) Consecutive TACE applied in different liver regions, (2) time interval between first and 
last TACE > 6 months, (3) prior local therapy of TLs, (4) no TLs, (5) insufficient image quality, (6) other chemo-
therapeutic agents. 61 patients met the criteria and were evaluated. In Fig. 1 we depict the flow-chart of patient 
inclusion following STARD. A scheme of the study’s workflow is shown in Supplementary Data S1.
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Conventional TACE. Patients were treated with TACE in clinical routine as described in prior  studies17 and 
in Supplementary Data S2. Imaging acquisition and examination parameters of the post-TACE CT are summa-
rized in Supplementary Data S2.

Assessment of tumor response. Response to TACE was assessed by  mRECIST18. Lesion-wise response 
was defined as complete (CR) or partial response (PR) of TLs. Patient-wise response (CR or PR) was equivalent 
to the mRECIST overall response  assessment18.

Image segmentation and preprocessing. The image stack was visualized and processed using the 
3D Slicer software platform (http:// slicer. org, version 4.9.0)19,20. We resampled the images to a spacing of 
1 mm × 1 mm × 1 mm prior to features extraction. One blinded investigator (OE, board-certified radiologist, 
10 years of experience) tagged and segmented a maximum of two TLs per patient using the 24 h post-emboli-
zation CT after the first TACE. The tagged TLs were independently segmented by a second blinded investigator 
(SB, radiologist-in-training, 3.5 years of experience). Segmentation was performed as follows: a three-dimen-
sional volume of interest (VOI) was manually drawn in the HCC-lesion, sparing equivocal border zones. The 
semi-automatic grow from seeds algorithm was used to augment the VOI to match the whole tumor  habitat20–22. 
Clear foci of segmentation error were manually erased using the brush-erase tool. A representative segmentation 
is shown in Fig. 2.

Radiomic analysis. We used PyRadiomics within 3D Slicer for radiomics features  extraction20,23. With 
default settings, all original standard features were extracted (n = 107) as described in prior  studies24. The radi-
omics quality score was 14 (https:// radio mics. world/ rqs, Supplementary Data S3)25.

Inter‑observer robustness and feature redundancy. The intra-class correlation coefficient (ICC) was 
calculated for each feature using ICC3 of the Pingouin  package24,26. ICC values were interpreted with thresholds 
commonly used in ICC-analysis, i.e. ICC 0.75–1 =  excellent24. We discarded all features with ICC < 0.75 (n = 8) 
(Supplementary Data S4 and S5). We inter-correlated the robust features by Pearson method and excluded all 
highly correlated (Pearson > 0.95) features (n = 52) (Supplementary Data S6).

Clinical benchmark. We calculated five different clinical scores for the assessment of the liver function in 
HCC and for TACE response prediction as described in Supplementary Data S7. The degree of TL’s hypervascu-
larization was visually assessed by three independent raters (see Supplementary Data S7).

Imaging biomarker selection and model development. We describe the workflow of feature selec-
tion and model development in a scheme in Supplementary Data S1 and in detail in Supplementary Data S8. We 
performed all analysis in Python 3.7.6. We used  StandardScaler27 to scale the data to uniform variance. We used 
t-distributed stochastic neighbor embedding (t-SNE) plots to explore cluster distributions (scikit-learn27). We 

Figure 1.  STARD Flowchart of patient inclusion into the study. STARD, Standards for Reporting Diagnostic 
Accuracy Studies.

http://slicer.org
https://radiomics.world/rqs
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split our dataset into 70% training and 30% testing on a patient level using  GroupShuffleSplit27. Fist, we assessed 
the lesion-wise response using seven different feature selection strategies and seven different machine learning 
models with hyperparameter optimization using  Hyperopt28 (see supplementary Data S8). Feature selection and 
model development was individually done for radiomics features, clinical scores and their combination. This 
approach ensured that the radiomics model was benchmark against clinical and combined models. The best 
working model was locked and transferred to predict the response on the patient-level. The selected features 
were used to train a random survival forest for overall survival prediction using Scikit-survival 0.16.129. The per-
formance was assessed by the concordance-index. We used the lifelines package 30 to build and compare Kaplan 
Meier curves. The WORC.statistics  package31 was used for the DeLong’s test. For graphical illustrations Python 
3.7.6. and Affinity Designer (Serif (Europe) Ltd) was used.

Ethical approval. Patient data used in this study was provided by the University Cancer Center Frankfurt 
(UCT). Written informed consent was obtained from all patients and the study was approved by the institutional 
Review Boards of the UCT and the Ethical Committee at the University Hospital Frankfurt (project-number: 
SGI-10–2020). All analysis were performed in accordance with relevant guidelines and regulations.

Results
Study population. Our dataset comprised 61 patients (mean age, 65.3 years ± 10.0 [SD]; 12 women) with 
94 HCC mRECIST TLs. 38.3% (36/94) of the TLs and 41.0% (25/61) of the patients had response to TACE. We 
randomly drew 70% of the patients (n = 42, mean age, 66.1 years ± 10.3 [SD]) with 65 TLs as training and 30% of 
the patients (n = 19, mean age, 63.5 years ± 9.2 [SD]) with 29 TLs as independent testing set. Response to therapy 
was seen in 40.5% (17/42) training-patients (38.5% (25/65) training-TLs) and in 42.1% (8/19) testing-patients 
(37.9% (11/29) testing-TLs). We depict the overall survival for the complete cohort, training and testing sets 
in Supplementary Data S9. Patient demographic characteristics are shown in Table 1. Flow diagram of patient 
inclusion is shown in Fig. 1.

Interobserver robustness and feature redundancy. The mean intra-class correlation coefficient was 
0.90 for all feature classes combined, ranging from 0.76 (± 0.41, ngtdm) to 0.98 (± 0.03, firstorder) (Supplemen-
tary Data S4). A set of 8 features (marked in bold in Supplementary Data S5) revealed ICC values < 0.75 (range: 
0.04–0.74) and were excluded for further analysis. We intercorrelated the remaining robust features with Pear-
son metric to exclude 52 features due to redundancy. The final robust and non-redundant feature set consisted 
of 47 features (Supplementary Data S6).

Figure 2.  Workflow of the image analysis. (a) Baseline arterial-phase MRI showing mildly enhancing 
hepatocellular carcinoma. The 24 h post-TACE CT (b) was used to semi-automatically segment the lipiodol 
retention-pattern in three dimensions (c–d).
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Lesion‑wise response characterization using dimensionality reduction. To assess the variance of 
radiomics and clinical features regarding the individual TL response to TACE, we used low dimensional embed-
ding via t-SNE plots for each feature subset (radiomics, clinical features and their combination). Neither feature 
subset showed clear clusters of response (Supplementary Data S10). Therefore, we pursued our analysis with 
models of higher complexity.

Lesion‑wise response prognostication: feature selection, model development and clinical 
benchmarking. The feature selection and model training were applied independently on three different 
feature subsets: (I) radiomics features, (II) clinical features or (III) their combination. We identified prognostic 
signatures for each subset (Table 2, Supplementary Data S8). For each subset, we validated the model on our 
hold-out test set to stratify the best working model using ROC AUC metrics. If models showed equal perfor-
mance, we ranked models higher the less features they needed for the prediction. The best working radiomics 
model revealed a test AUC of 0.60 (train AUC = 1.00). The best clinical model reflected bias with a better test 
than train performance (train/ test AUC = 0.61/ 0.69). The combined clinical and radiomics model showed the 
best performance with test AUCs of 0.70 (train AUC = 0.96) (Fig. 3a, Table 3). This best performing combined 
model was a Random Forest Classifier which included the CT-derived radiomics feature LargeDependence-
HighGrayLevelEmphasis and the clinical score mHAP_II_score_group. This final prognostic model was locked 
(Supplementary Data S8).

Patient‑wise response prognostication: model transferability and prognostication of overall 
survival. We transferred our locked lesion-wise model on a patient-wise level. Response to TACE was defined 

Table 1.  Clinical and epidemiological characteristics. The train and test set were statistically analyzed using 
the Pearson Chi-Square test or two-sided t-test for ordinal or continuous outcomes.

Demographic variables All Train Test p-value

Patients (n) 61 42 19

Sex, male (%) 49 (80.3) 35 (83.3) 14 (73.7) 0.380

Median age at diagnosis (years) 66 (37–86) 67 (37–86) 63 (50–86) 0.323

Median time diagnosis to TACE (days) 43 (3–978) 42 (3–874) 59 (17–978) 0.252

Median size of Target lesions (cm) 2.9 (1.0–10.1) 2.2 (1.0–9.8) 3.4 (1.0–10.1) 0.143

Cause of HCC (%) 0.968

 Hepatitis B 9 (14.8) 6 (14.3) 3 (15.8)

 Hepatitis C 14 (23.0) 10 (23.8) 4 (21.1)

 Alcohol 19 (31.1) 14 (33.3) 5 (26.3)

 NASH 5 (8.2) 3 (7.1) 2 (10.5)

 Alcohol + viral Hepatitis 6 (9.8) 4 (9.5) 2 (10.5)

 Alcohol + NASH 1 (1.6) 1 (2.4) 0 (0)

 Others (cryptogenic cirrhosis, AIH) 7 (11.5) 4 (9.5) 3 (15.8)

BCLC prior to TACE 0.092

 A 18 (29.5) 14 (33.3) 4 (21.1)

 B 33 (54.1) 24 (57.1) 9 (47.4)

 C 10 (16.4) 4 (9.5) 6 (31.6)

 D 0 (0.0) 0 (0.0) 0 (0.0)

Child Pugh Score prior to TACE 0.644

 A 36 (59.0) 25 (59.5) 11 (57.9)

 B 6 (9.8) 5 (11.9) 1 (5.3)

 C 0 (0.0) 0 (0.0) 0 (0.0)

 N/A 19 (31.1) 12 (28.6) 7 (36.8)

MELD-Score prior to TACE 0.141

 < 6 1 (1.6) 0 (0.0) 1 (5.3)

 < 10 23 (37.7) 13 (31.0) 10 (52.6)

 < 15 11 (18.0) 10 (23.8) 1 (5.3)

 < 20 1 (1.6) 1 (2.4) 0 (0.0)

 N/A 25 (41.0) 18 (42.9) 7 (36.8)

Median albumin (g/dl) 3.8 (1.8–7.2) 3.8 (1.8–7.2) 3.9 (3.0–4.5) 0.686

Median bilirubin (mg/dl) 0.8 (0.3–2.2) 1.1 (0.3–2.2) 0.9 (0.3–1.3) 0.540

Median INR 1.1 (0.9–3.3) 1.1 (0.9–3.3) 1.1 (1.0–1.8) 0.204

Median CRP (mg/dl) 0.4 (0.03–4.4) 0.5(0.03- 4.4) 0.3 (0.1–2.9) 0.632

Median AFP (ng/ml) 12.9 (2.1–60,500.0) 9.2 (2.1–60,500.0) 17.3 (2.2–9276.0) 0.615
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according to mRECIST including the effect of non-target or potentially new lesions. The model demonstrated 
a prognostic performance of AUC test = 0.62, CI = 0.41–0.83 (AUC train = 0.77, CI = 0.68–0.91) (Fig. 3b). We 
transferred the combined CT-derived and clinical two-feature set to test the prognostication of overall survival. 
The model yielded a C-index of 0.67 (C-index train = 0.71) for overall survival prognostication compared to a 
C-index of 0.58 (train: 0.70) or 0.60 (train: 0.60) using only the single clinical or single radiomic feature. Finally, 
we selected two test-patients who showed the shortest (102 days) or longest (last living contact at 2043 days) 
survival to estimate their individual survival using the Kaplan–Meier estimator based on our final model. We 
computed the risk score that represents the expected number of events for a particular terminal node in the 
forest for the respective test patients. The patient with short survival yielded a higher risk score (26.89) than 
the patient with long overall survival (23.55). We depict the predicted Kaplan–Meier plot of the two patients in 
Fig. 3c which revealed significant difference in the logrank-Test (p = 0.006).

Discussion
In this study, we assessed the utility of machine learning models in predicting response to repetitive TACE in 
HCC patients. We used Lipiodol-retention radiomics of the first post-TACE control CT as imaging biomarker. 
We applied multiple feature selection strategies to train a multitude of machine learning models with exhaus-
tive hyperparameter optimization to stratify tumor lesions’ response to TACE. We transferred our lesion-wise 
model to a patient-level and corroborated our findings by overall survival prognostication. We demonstrated 
the model’s ability to denote tumor risk scores associated with shorter or longer overall survival. CT-derived 
features were benchmarked against clinical risk scores and the best working model consisted of the combina-
tion of the single radiomics feature LargeDependenceHighGrayLevelEmphasis and the single clinical risk score 
mHAP_II_score_group.

HCC hallmark imaging characteristics (arterial hyperenhancement with portal venous/ delayed wash-out) 
and mRECIST assessment of viable tumour components are well established, especially in patients treated with 
 TACE2. Recent studies aimed to stratify imaging biomarkers extracted from pre-treatment contrast-enhanced 
imaging to build predictive models for HCC TACE  response11–14. The studies tended to build holistic nomograms 
including imaging and clinical features and yielded promising predictive performances of overall survival ranging 
from C-indices of 0.70 to 0.77 which are in a similar range to our  results11,13,14. Kuang et al. yielded lesion-wise 
mRECIST response predictions of AUC approx. 0.81 using pre-treatment MRI and clinical  data12. No patient-
wise or survival analysis was done and it remained unclear how many TACE were applied prior to the  analysis12. 
We followed a more stringent approach by building a model starting at a lesion-wise prediction, transferring 
the model to a patient-wise level and finally to overall survival. Further, arterial-phase imaging might suffer 
from reduced image quality due to artifacts or poor arterial phase capture. This might limit the development of 
robust AI models as they add noise to a system which already suffers from robustness deficiencies even in an 
experimental  setting24,32,33. In line with prior studies 15,16, our results promote the potential of lipiodol deposits 
to serve as imaging biomarker. Miszczuk et al. 16 prospectively enrolled 39 liver cancer patients (n = 22, HCC) 
treated with TACE and they could show, that high Lipiodol coverage on the 24-h post-TACE CT was associ-
ated with response to therapy. Lipiodol retention may serve as a surrogate for arterial hyperenhancement 16, the 
vascularization pattern of HCC lesions might have prognostic impact 34 and our results provide quantitative 
corroboration of these findings. In our model, the GLDM feature LargeDependenceHighGrayLevelEmphasis, 
which depends on higher gray-level values (https:// pyrad iomics. readt hedocs. io/), had the highest predictive 
impact. This is in line with Brancato et al.35 who predicted histological HCC grade by means of radiomics. The 
feature LargeDependenceHighGrayLevelEmphasis was contributing to the most powerful model to differentiate 
histological grade 1 versus grade 3  tumors35 emphasizing the feature’s potential to serve as imaging biomarker 
for HCC aggressiveness. The current ESMO clinical practice guidelines for hepatocellular  carcinoma2 do not 
recommend the use of prognostic scores for treatment algorithms outside clinical trials and they describe only 
the hepatoma arterial-embolisation prognostic (HAP) score as potential stratification tool for TACE in the 
 future2. This is in line with the results of our study as the best performing clinical scores revealed biased train-/

Table 2.  Feature subsets of different selection strategies. LASSO, least absolute shrinkage and selection 
operator; RFA, recursive feature addition; RFE, recursive feature elimination. See Supplementary Data S8 for 
more information.

Feature selection Selected features

Radiomics

RFE Flatness, Sphericity, 10Percentile, Maximum, Skewness, Imc1, LargeDependenceHighGrayLevelEmphasis, LargeAr-
eaEmphasis, LargeAreaLowGrayLevelEmphasis

RFA LargeDependenceHighGrayLevelEmphasis

LASSO Flatness, Minimum, Skewness, LargeAreaLowGrayLevelEmphasis

clinical scores

RFE & RFA mHAP_II_score_group

LASSO mHAP_II_score_group, 6_and_12_group

Combined features (clinical and radiomics)

Best combined LargeDependenceHighGrayLevelEmphasis, mHAP_II_score_group

https://pyradiomics.readthedocs.io/
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test results. Nevertheless, the holistic model combining LargeDependenceHighGrayLevelEmphasis with the 
modified HAP-II6 score improved the models’ performances and established the best working model. Our study 
has limitations that warrant discussion. The retrospective nature of our study might impose selection bias. With 

a

b

c

Figure 3.  Prediction of response and overall survival. (a, b) Receiver operating characteristics 
(ROC) curves trained and tested using the final combined feature set of the radiomics feature 
LargeDependenceHighGrayLevelEmphasis and the clinical score mHAP_II_score_group. (a) Lesion-wise 
prediction with class 1 describing the individual responding lesions according to mRECIST. (b) Patient-wise 
prediction with class 1 describing the overall response on the patient-level according to mRECIST, including 
the impact of non-target lesions and potential new-lesions. (c) Patient-wise overall survival prediction. Kaplan–
Meier plot of two test-patients who showed the shortest (102 days) or longest (censored at 2043 days) survival. 
Kaplan–Meier estimator was based on our final model. Logrank-Test was used.
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61 patients and 94 lesions our study population is rather small which might lower generalizability, but our cohort 
is very homogenous only including patients with histologically confirmed HCC, a total of three TACE prior to 
response assessment and usage of the same chemotherapeutic agent in each patient. In approx. 20% of patients 
additional degradable starch microspheres (EmboCept®S, PharmaCept GmbH, Berlin, Germany) were given 
which might have altered the retention in our standard-of-care real-world population. We leveraged a multitude 
of feature selection and classification strategies, nevertheless various degrees of overfitting were present in some 
models. Though we resampled the images to a spacing of 1 × 1 × 1 mm, we used standard-of-care imaging to 
develop our models with post-embolization CTs with originally 5 mm slice thickness and availability of true 
1 mm reconstructions would have been favorable.

In conclusion, radiographic features derived from standard-of-care 24 h post-embolization CT have the 
potential to serve as imaging biomarkers for prognostication of response to TACE in HCC patients. Imaging 
biomarkers and clinical risk scores seem to incorporate complementary prognostic information and a combined 
final model of a clinical risk score and a single radiomics feature revealed the best performance. This emerging 
approach might pave the way to aiding clinical decision making in a clinical domain currently dominated by 
subjective expert consensus. Such tools might enable the more accurate stratification of patients for personalized 
healthcare avoiding potential adverse events in patients who most likely won’t respond to TACE.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to privacy regula-
tions but are available from the corresponding author on reasonable request.
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