Skip to main content
. 2023 Jan 11;13:533. doi: 10.1038/s41598-023-27714-0

Table 3.

Classifier, feature selection strategy and performance of the best lesion-wise models.

Classifier Selection Train Test
Accuracy AUC Accuracy AUC
Radiomics
 GradientBoostingClassifier RFE 1.000 1.000 0.517 0.596
 ExtraTreesClassifier RFA 0.738 0.881 0.586 0.674
 AdaBoostClassifier LASSO 1.000 1.000 0.586 0.551
Clinical scores
 SVC RFE & RFA 0.615 0.606 0.621 0.689
 SGDClassifier LASSO 0.615 0.618 0.621 0.649
Combined features
 RandomForestClassifier Best combined 0.862 0.957 0.724 0.705

AUC, area under the curve; LASSO, least absolute shrinkage and selection operator; RFA, recursive feature addition; RFE, recursive feature elimination. See Supplementary Data S8 for more information.