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Abstract
Disease outbreaks due to improper culture management, poor water quality, and climate change are major concerns in aqua-
culture. Most of the aquatic pathogens are opportunistic and any imbalance in the host–pathogen-environment triad will result 
in a disease outbreak. The indiscriminate use of chemotherapeutics such as antibiotics to prevent diseases in aquaculture 
will lead to antimicrobial resistance in aquaculture. Hence, the demand for natural microbial strains which can be used as 
beneficial probiotics and bioaugmentors in fish farming systems has increased to ensure one health in aquaculture. Studies 
have proved the probiotic and bioremediation potential of several Actinobacterial species that can be applied in aquaculture. 
Actinobacteria, especially Streptomyces, can be applied in aquaculture for disease prevention, treatment, and bioremediation 
of organic and inorganic waste in the culture systems. The growth, immunity, and resistance towards aquatic pathogens in 
cultured organisms also get enhanced through their capability to release potent antimicrobial compounds, bioactive mol-
ecules, and novel enzymes. Their broad-spectrum antimicrobial and quorum quenching activity can be well exploited against 
quorum sensing biofilm forming aquatic pathogens. Even though they impart specific adverse effects like the production of 
off-flavour compounds, this could be controlled through proper management strategies. This review discusses the applica-
tions, challenges, and prospects of Actinobacteria in aquaculture. Research gaps are also highlighted, which may shed light 
on the existing complexities and should pave the way for their better understanding and utilisation in aquaculture.
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Introduction

Aquaculture is considered one of the fastest developing ani-
mal farming sectors to cater to the protein demands of the 
worldwide population (Tal et al. 2009). Disease outbreaks 
in aquaculture are increasing due to high stocking density, 

followed by the accumulation of organic and inorganic 
wastes and diverse microbial infections. Various chemical 
and biological agents are routinely applied in aquaculture 
to solve this crisis (Serrano 2005). However, frequent usage 
of antibiotics and chemotherapeutics leads to their deposi-
tion in the aquatic environment and thereby raising multi-
ple antibiotic resistance (Romero et al. 2012; Preena et al. 
2020a). Besides, these practices could also suppress the 
host’s immune system (Capkin et al. 2017); hence, alterna-
tive methods such as the utilisation of probiotics, and host-
associated microbes can be recommended to improve the 
health of aquatic organisms. Several reports pointed out the 
importance of microorganisms such as Bacillus spp, Lac-
tobacillus spp, Bifidobacterium spp, Saccharomyces spp, 
Streptococcus spp, Streptomyces etc. can be used as probi-
otics and bioaugmentor in aquaculture (Hasan and Banerjee 
2020; James et al. 2021; Mugwanya et al. 2022). Among 
the diverse microbes used in aquaculture, Actinobacteria are 
reported with multiple applications, such as improvement 
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of water quality, immunity, and growth in several aquatic 
organisms and culture systems (Das et al. 2008a, b; Balagu-
runathan et al. 2020).

The phylum Actinobacteria consists mainly of 6 major 
classes, viz. Actinobacteria, Acidimicrobiia, Coriobacte-
riia, Nitriliruptoria, Rubrobacteria, and Thermoleophilia. 
Among the six classes, Actinobacteria are the major group 
which consists of 15 orders such as Actinomycetales, 
Actinopolysporales, Bifidobacteriales, Catenulisporales, 
Corynebacteriales, Glycomycetales, Jiangellales, Kineospo-
riales, Micrococcales, Micromonosporales, Propionibacte-
riales, Pseudonocardiales, Streptomycetales, Streptosporan-
giales, and Frankiales (Ludwig et al. 2012; Law et al. 2019; 
Salam et al. 2020). The class Actinobacteria possess unique 
morphology having Gram-positive bacteria with coccus, rod, 
and complex fragmenting hyphal morphological features 
(Miyadoh 1997; Chandra and Chater 2014). Their assorted, 
extraordinary appearance and close resemblance to fungi 
were questionable in several situations (Ser et al. 2017).

Actinobacteria usually inhabit soil and marine ecosys-
tems and are found to have noteworthy functions; they play 
a profound role in biogeochemical cycles, actively involved 
in bioremediation, production of bacteriocins, and potent 
bioactive compounds such as novel enzymes and antibiot-
ics (Kurtbӧke 2017). All these unique and diverse features 
make Actinobacteria to be explored as an efficient candidate 
in the aquaculture industry. Their ability to exhibit multiple 
applications fetched them a new term, "Modern Actinobac-
teria" (MOD-ACTINO), based on their ability to produce 
different secondary metabolites (Law et al. 2020). The genus 
Streptomyces, under the order Streptomycetales and fam-
ily Streptomycetaceae, is the most well-known and studied 
Actinobacteria due to their bioactive potentials (Lee et al. 
2018). As of the 1970s, around 60% of novel antibiotics 
were predominantly isolated from Streptomycetes (Berdy 
2012). Eventually, the researchers unearth the presence of 
Actinobacteria in diverse environments such as marine, 
mangroves, deserts, etc., with the expanding endeavours to 
find new metabolites from different microbial sources. This 
paved the way for isolating novel Actinobacteria, especially 
non Streptomycetes genera, termed “rare Actinobacteria” 
with different bioactive potentials (Li et al. 2019; Dhanee-
sha et al. 2021).

Different probiotic properties of Actinobacteria viz, 
Streptomyces, Micromonospora, and Salinispora for aqua-
culture application were already proven in previous studies 
(Das et al. 2008a). The potential of Actinobacteria to exhibit 
antimicrobial action, immune response in fish, growth 
enhancement, withstanding gut conditions, water quality 
improvement etc., make it an efficient probiotic (Balagu-
runathan et al. 2020). Nevertheless, despite the significant 
features of Actinobacteria, they were least explored as pro-
biotics in aquaculture. Moreover, it is well known that more 

than 50% of the microbial antibiotics seem to be derived 
from Actinomycetes, of which Streptomyces and Micromon-
ospora account for the major compounds (Berdy 2005). Out 
of the 10,000 antibiotics that emerged from Actinobacteria, 
they contribute to 45% of all bioactive microbial compounds 
discovered (Romano et al. 2018). Most of the antibiotics 
belonging to aminoglycosides, tetracyclines, and mac-
rolides classes, commonly used in aquaculture, are found 
to be derived from Actinobacteria (Anandan et al. 2016). It 
is also noteworthy that various members of Actinobacteria 
were successfully employed in bioremediation (Polti et al. 
2014; Rathore et al. 2021). Their unique growth character-
istics and diverse metabolic features make them well suited 
as bioaugmentors in aquaculture.

The efficacy of Actinobacteria in implementing multiple 
applications prompted us to review their role in the field of 
aquaculture. Even though different reviews are available in 
each aspect, the combined potency of Actinobacteria which 
warrants them to be used as a successful candidate in aqua-
culture is not discussed so far. The probiotic characteristics 
of Actinomycetes for aquaculture applications were reviewed 
in detail previously (Das et al. 2008a; Tan et al. 2016; Bal-
agurunathan et al. 2020). Likewise, the potential features of 
Actinobacteria in the production of bioactive compounds 
(Namitha et al. 2021) and other biotechnological products 
(Jagannathan et al. 2021; Sarkar and Suthindhiran 2022) in 
performing bioremediation (Rathore et al. 2021) were also 
documented in earlier reviews (Polti et al. 2014). Due to the 
scarcity of information available on the multiple features of 
Actinobacteria in a single review, the current study compiles 
the comprehensive characteristics of Actinobacteria which 
can be exploited for aquaculture applications.

Applications of Actinobacteria 
in aquaculture

As already discussed, Actinobacteria are renowned as a 
good source of industrially important compounds such 
as enzymes, antibiotics, anticancer, and antioxidant com-
pounds. Most of these Actinobacterial bioactive compounds 
can play a vital role in aquaculture. They could be utilised as 
bioaugmentors, probiotics and feed supplements in aquacul-
ture either individually or as a consortium. Figure 1 depicts 
the scope of Actinobacteria in aquaculture.

Bioremediation

Water quality deterioration due to the deposition of wastes 
is one of the major threats in aquaculture for the success-
ful cultivation of finfishes and crustaceans. Organic matter 
such as feed and the faecal matter settled at the bottom of 
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culture ponds cause deterioration of water quality, thereby 
affecting the survival of shrimps and other cultured fishes 
(Avnimelech and Ritvo 2003). Bioremediation is effective 
in aquaculture for maintaining water quality by applying 
biostimulants and bioaugmentors. The microbes used for 
bioremediation involve those which can produce extracel-
lular enzymes that transform complex organic compounds 
into small ones (Allison and Vitousek 2005). It is already 
noticed that as compared to Gram-negative bacteria, Gram-
positive ones show more bioremediation capacity and 
convert organic matter into CO2; this helps to control the 
build-up of excess carbon in the culture systems (Verschuere 
et al. 2000). It is advisable to supplement the culture ponds 
with diverse microbes which can optimise the nitrification, 
denitrification and carbon mineralisation processes, which 
helps to reduce the sludge accumulation in culture ponds 
(Bratvold et al. 1997). Actinomycetes inhabiting both soil 
and aquatic environments are considered a good source of 
enzymes such as amylase (Kafilzadeh et al. 2015), cellulase 
(Maki et al. 2011), chitinase (Gasmi et al. 2019), protease 
(Gozari et al. 2016), and xylanase (Ninawe et al. 2006), 
which help in the biotransformation of natural and synthetic 
matter. The bioremediation potential of Actinobacteria was 
reported for the first time by Goodfellow and Haynes (1984). 
Marine Actinobacteria can be effective in the bioremediation 
of marine pollutants (Rathore et al. 2021). The consortia 
of Actinomycetes comprising Streptomyces coelicoflavus, 
S. diastaticus, S. parvus, S. champavatii and Nocardiopsis 
alba isolated from marine environments and sediments from 
shrimp culture pond were found to exhibit good bioaugmen-
tation capability, high hydrolytic enzyme activity and bio-
granulation property (Babu et al. 2018).

As inorganic compounds are more recalcitrant when 
compared to organic wastes, it is a major challenge in aqua-
culture. Actinobacteria gained more attention in degrading 

both organic and inorganic wastes (Alvarez et al. 2017). The 
abundance of Actinobacteria in nitrifying and denitrifying 
bacterial consortia as studied using culture-based and inde-
pendent methods revealed their efficacy in removing organic 
and inorganic nitrogenous wastes from aquaculture systems 
(Preena et al. 2021). The capability of Actinomycetes in 
performing nitrification (Hirsch et al. 1961) and denitrifica-
tion (Shoun et al. 1998) is reported in very earlier period 
onwards. This combined nitrifying and denitrifying capa-
bility of Actinobacteria makes it a suitable bioaugmentor 
in aquaculture. The complete removal of inorganic nitrogen 
to N2 was reported in S. antibioticus for the first time by 
Kumon et al. (2002). This complete denitrification elimi-
nates the risk of toxic nitrate accumulation in the system. 
Aerobic denitrification was also reported in Streptomyces 
strains from wastewater plants (Zhang et al. 2021) and in S. 
tendae and S. enissocaesilis from nitrifying bacterial con-
sortia for establishing nitrification–denitrification in shrimp 
larval rearing systems (Preena et al. 2017). This highlighted 
the simultaneous occurrence of nitrification and denitrifi-
cation even under oxygenated conditions, eliminating the 
requirement of any extra compartment or carbon sources 
for denitrification. In addition, culture-independent methods 
also corroborated the abundance of Actinomycetales (10%) 
within the nitrite oxidising consortia (Preena et al. 2018) 
and 18% in the ammonia oxidising consortium (Preena et al. 
2019). The coexistence of Actinobacteria with autotrophic 
nitrifiers and heterotrophic denitrifiers highlighted the con-
tribution of Actinobacteria in providing necessary signals 
to the functional communities to perform nitrification–den-
itrification. Besides, Actinobacteria such as Streptomyces 
roseoflavus and S. thermocarboxydus were identified as the 
dominant taxa among several biofilter communities in recir-
culating aquaculture systems (RAS) (Schreier et al. 2010; 
Bartelme et al. 2017). The taxonomic composition of the 

Fig. 1   Significance of Actino-
bacteria in aquaculture
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marine drum and trickling nitrification filter was found to be 
enriched with Streptomyces roseoflavus and S. thermocar-
boxydus (Schreier et al. 2010). Their increased existence in 
biofilters associated with RAS brings out their significance 
in waste removal. Marine Actinomycetes such as S. par-
vus, S. rochei, S. griseorubens, S. griseus and S. albidofla-
vus, were efficiently found to remove ortho phosphates and 
ammonia from domestic wastewater (Madkour et al. 2019).

The tremendous potential of Actinobacteria to degrade 
organic contaminants could be exploited for the cleaning 
up of contaminated aquaculture environments. Streptomy-
cetes and Micromonospora spp. have shown to be the better 
hydrocarbon degrading microbes (George et al. 2011). Their 
biosurfactant production property for hydrocarbon degrada-
tion is also noteworthy. Khopade et al. (2012) demonstrated 
the production of biosurfactants in large quantities by marine 
Streptomyces spp. Because of the efficacy under extreme 
conditions (salinity, pH, temperature), bioemulsifiers pro-
duced by Actinobacteria can be widely employed in fresh 
brackish and marine culture systems for waste degradation 
(Selim et al. 2021). Nevertheless, marine Actinomycetes are 
least studied for biosurfactant production. Actinobacterial 
groups having potential in bioremediation, biosurfactant 
production and hydrocarbon biodegradation can be applied 
individually or as a consortium in aquaculture systems for 
waste removal.

Bioactive compounds

Actinomycetes serve as an important source of commercially 
as well as medically important bioactive compounds (Taki-
zawa et al. 1993; Jagannathan et al. 2021). Marine Actino-
bacteria are considered one of the main sources of bioactive 
compounds. Streptomyces, Micromonospora, and Salinis-
pora are the significant Actinobacterial groups that produce 
several bioactive compounds (Selvameenal et al. 2009; Lee 
et al. 2014a; Amin et al. 2020). The main bioactive com-
pounds include various antibiotics, antifungal, antitumor, 
antiparasitic and immunosuppressive agents, and various 
enzymes (Lee et al. 2014b).

Actinomycetes have been screened from diverse niches of 
the marine environment, such as deep sea, seaweeds, man-
groves, and seagrasses (Barcina et al. 1987; Jensen et al. 
1991; Weyland and Helmke 1998; Urakawa et al. 1999). One 
of the important bioactive compounds produced by Actino-
bacteria is antibiotics. Around 80% of global antibiotics are 
reported from Actinobacteria, especially from the genera 
Streptomyces and Micromonospora (Anandan et al. 2016). 
Based on structure, the antibiotics produced by Actinobac-
teria are classified into different types such as aminogly-
cosides, ansamycins, anthracyclines, β-lactam, macrolides 
and tetracycline (Amin et al. 2020). Streptomyces isolated 

from seagrass was found to be a potent antibiotic producer 
that displayed antagonistic activity against fish, shrimp and 
human pathogens (Ravikumar et al. 2012). You et al. (2005) 
successfully isolated various strains of Actinobacteria from 
sediments of a shrimp farm, of which 87% represent Strep-
tomyces followed by Micromonospora. They also exhibited 
antagonistic activity against the major shrimp pathogen, 
Vibrio and also possessed siderophore production, which in 
turn helps to decompose organic compounds such as starch, 
protein and cellulose. Siderophore producing Actinobacteria 
could also eliminate the existence of major aquatic patho-
gens by competing for iron, an essential element for growth 
and biofilm formation, and hence this could be a promis-
ing candidate as a biocontrol agent and good bioremediator 
in aquaculture systems (You et al. 2005). Besides, most of 
the Streptomyces strains segregated from marine samples 
also exhibited antimicrobial activity against Aeromonas 
hydrophila, A. sobria and Edwardsiella tarda (Patil et al. 
2001). Also, Streptomyces associated with marine sponges 
exhibited antagonism against Aeromonas hydrophila, Ser-
ratia spp., and Vibrio spp. through the production of polyene 
substances (Selvakumar 2010). Almost all virulent species 
of Vibrio such as V. Parahemolyticus, V. alginolyticus and 
V harveyi were found to be sensitive towards most of the 
soil Actinobacteria isolates (Nabila et al. 2018). This high-
lights the significance of the application of Actinobacteria 
in shrimp culture systems. Recently, a novel species, S. vir-
giniae isolated from the soil, exhibited wide-spectrum bacte-
riostatic activity against several fish pathogens and increased 
the resistance of goldfish (C. auratus) against A. veronii (Hu 
et al. 2021). In addition to the antagonistic property, the Act-
inobacteria also improve the growth in cultured organisms 
(Dharmaraj and Dhevendaran 2010).

It is well known that the persistence of Vibrio spp. in 
shrimp and fish farms leads to the development of antibi-
otic-resistant biofilms, which badly affects shrimp and fish 
growth and survival (Karunasagar et al. 1994; 1996). The 
application of bioactive extracts from marine Actinomycetes, 
especially the multifunctional strain Streptomyces albus, 
inhibited the biofilm formation of Vibrio harveyi, V. vulnifi-
cus, and V. anguillarum, and the extracts displayed efficient 
clearance of mature biofilm (You et al. 2007). The extracts 
exhibited quorum-sensing inhibition activity by attenuating 
the activity of signal molecules, N-acylated homoserine lac-
tone in Vibrio spp. Gut-associated Actinobacteria from two 
marine fishes such as Indian mackerel and Panna croaker 
proved their potential to develop novel therapeutic drugs 
by exhibiting antimicrobial and quorum quenching activity 
towards significant aquatic pathogens (Vignesh et al. 2019). 
Promising inhibitory activity of Actinomycetes against the 
biofilm structure of aquatic pathogens like A. hydrophila, 
Vibrio harveyi, and Streptococcus agalactiae again high-
lighted their quorum quenching activity (Raissa et al. 2020).
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Even though reports of antiviral compounds from Act-
inobacteria are less, bioactive extracts (guanine7-N-oxide) 
from Streptomyces were found to inhibit fish pathogens 
such as Infectious Pancreatic necrosis Virus, Infectious 
Hematopoietic Virus and fish Herpes Virus as evident in an 
earlier study (Hasobe and Saneyoshi 1985). The bioactive 
compounds derived from Actinobacteria possess significant 
antimicrobial activity against a major shrimp pathogen, 
the white spot syndrome virus (Kumar et al. 2006; Nami-
tha et al. 2021). The Litopenaeus vannamei infected with 
WSSV on treatment with ethyl acetate extract of bioactive 
compound 9(10H)-acridanone from S. fradiae strain at a 
concentration of 500 mg/animal exhibited a survival rate of 
83.3% (Manimaran et al. 2018). Ethyl extracts of benzoic 
acid metabolites isolated from marine Streptomyces cas-
taneoglobisporus have displayed antibacterial, antifungal 
and antiviral activity (Jenifer et al. 2018). These derivatives 
inhibit bacterial multiplication by inhibiting cell wall syn-
thesis, translation and transcription and viral transcription 
through their interaction with the outer and nucleocapsid 
proteins. Streptomyces griseus, S. fradiae, S. flavidofuscus, 
Nocardia nova and Brevibacterium linens also exhibited 
inhibition against WSSV in Penaeus monodon (Nair et al. 
2012). The growth of toxic algae (Phaeocystis globosa) in 
eutrophic ponds was also found to be removed using marine 
Streptomyces spp. (Zhang et al. 2015). This highlights the 
broad-spectrum action of bioactive molecules derived from 
Actinobacteria against bacteria, biofilms, virus and algae 
and thus overcome the challenges raised by chemically syn-
thesised narrow spectrum antibiotics.

Probiotics

The frequent usage of antibiotics to control pathogens could 
lead to the proliferation of antibiotic-resistant bacteria due to 
selection pressure, which may then exchange their resistance 
genes with animal and human pathogens through mobile 
genetic elements (Jagannathan et al. 2021). The emergence 
of antimicrobial resistance in the dominant fish pathogen 
such as Vibrio is of major concern (Beaz-Hidalgo et al. 
2010). Increased occurrence of antimicrobial resistant aero-
monads and enterobacteraceae groups with plasmid borne 
antibiotic resistant genes were reported from various aqua-
culture farms, highlighting the possibility of AMR spread 
through horizontal gene transfer (HGT) (Preena et al. 2020b, 
c). Hence alternative strategies like the application of pro-
biotics and immunostimulants are significant in regulating 
diseases in aquaculture (Qi et al. 2009). The mechanism by 
which probiotics suppress fish pathogens includes mainly 
bacteriocin production, quorum quenching activity and 
competitive exclusion (competition for attachment sites 
and nutrients) (James et al. 2021). A good probiont should 

be adherent to the intestinal tract, fast multiplying, secrete 
antimicrobial compounds and withstand acidic environments 
(Das et al. 2008b). Microbes such as Bacillus, Lactobacillus, 
Pseudomonas and Burkholderia are the common microbes 
that are frequently used as aquatic probiotics (Kesarcodi-
Watson et al. 2008; Luis-Villaseñor et al. 2013; Knipe et al. 
2021). Meanwhile, in search of a novel potent probiotic 
strain, diverse Actinobacteria groups were found to synthe-
sise several efficient chemical compounds to combat various 
pathogens. The characteristics of Actinomycetes as probi-
otics are attributed to their ability to synthesise amylase, 
protease, lipase and other enzymes, which aid in the absorp-
tion and digestion of nutrients in the host (Jagannathan et al. 
2021). In a recent study, Actinobacteria isolated from fish 
guts displayed enhanced immunity and pathogen resistance 
(Thejaswini et al. 2022). This underlines the improved per-
formance of host-associated microbes compared to other ter-
restrial niches (Van Doan et al. 2018). The overall growth 
performance and effective disease control were found to be 
upregulated in shrimps and fish by incorporating Actinobac-
teria in feed (Tan et al. 2016). Table 1 lists different types 
of Actinobacteria, which are used as probiotics and their 
application in aquaculture.

Gut probiotics

The growth of post larval P. monodon improved after feed 
supplementation with mangrove sediment isolate Strepto-
myces fradiae (Aftabuddin et al. 2013). The feeds supple-
mented with Streptomyces displayed improved growth and 
FCR in ornamental fish, Xiphophorus helleri (red swordtail 
fish) (Dharmaraj and Dhevendaran 2010). Actinobacteria 
isolated from faecal samples of chicken showed higher pH, 
pepsin, bile and pancreatin resistance and were found to be 
the ideal choice as gut probiotics in animals because of their 
higher colonising and adapting nature in the gastrointestinal 
tract (Latha et al. 2015). This is in close agreement with 
a previous study, where Streptomyces strains isolated from 
shrimp pond sediment displayed fast adaptation and active 
existence in the digestive system of shrimp even in the pres-
ence of bile acids and a low pH environment (Das et al. 
2010). The use of these Streptomyces probiotics provides 
effective protection against vibrio pathogens in both juvenile 
and adult artemia. Das et al. (2010) reported improved sur-
vival rate in artemia after being challenged with vibrio path-
ogens (V. harveyi and V. proteolyticus) and increased weight 
in cultured shrimps (Penaeus monodon) was observed when 
bioencapsulated probiotic feed of Streptomyces administered 
to them. This underlines the secretion of hydrolytic exoen-
zymes by Streptomyces spp., which augmented the amylo-
lytic and proteolytic activity in the shrimp digestive tract for 
better utilisation of feed. The bioactivity of marine Actino-
mycetes from the sediments of Caspian Sea was remarkable 
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for probiotic potential by possessing antagonism against 
multi drug resistant vibrios (Norouzi et al. 2018). The probi-
otic potential of Actinomycetes can be enhanced through the 
combined application with other bacteria (Jagannathan et al. 
2021). An increased haemocyte production, higher survival, 
growth rate and protection against vibrios were observed 
in shrimps when Streptomyces-Bacillus combined feed was 
given (Bernal et al. 2015). While in another study, compared 
to Bacillus cereus, Streptomyces antibioticus isolated from 
the gut of vermicomposting earthworm was noticed as an 
excellent protein source to juvenile catfish by providing sig-
nificant nutrient digestibility and utilisation, overall growth 
performance and survivability and protection against fish 
pathogens like Aeromonas veronii and Stenotrophomonas 
maltophilia (Das et al. 2021). Survival in an acidic and alka-
line environment, extracellular enzymatic action, hydropho-
bicity towards solvents and increased tolerance to gastric 
juice and bile salt are the notable probiotic features of those 
Actinomycetes. Recently, a new strain, S. amritsarensis was 
successfully applied as probiotic in freshwater fish aquacul-
ture for the first time (Li et al. 2020). It was noticed to have 
broad spectrum antibacterial action towards freshwater fish 
pathogens and enhances the growth and disease resistance 
of grass carps. The application of Streptomyces probiotics 
was also found to improve the gut microbiota of Litopenaus 
vannamei by increasing the bacterial diversity, stimulating 
the bacteriovorax population and antibiotic producing gen-
era and thereby protecting against vibrios (Mazón‐Suástegui 
et al. 2020).

Immunostimulants

Activation of the immune system in farmed fish and shrimp 
employing immunostimulants is common in aquaculture as 
a part of disease prevention. Actinomycetes also take part in 
providing effective immunoactive peptides to boost immu-
nity in fish and shrimps. Most of the bioactive compounds 
that emerged from Actinobacteria could be administered 
either orally or by injection in fish as immunostimulants to 
enhance their immunity and growth performance (Namitha 
et al. 2021). Streptomyces olivaceogriseus was reported to 
secrete lactoyltetrapeptide (FK-156) which could induce 
resistance against major pathogens like Aeromonas salmo-
nicida and Yersinia ruckeri in rainbow trout (Sakai 1999). 
A marine Actinomycete Nocardiopsis alba exhibited good 
immune modulatory activity in tiger shrimp P. monodon by 
improving immunity, growth and protection from vibrio-
sis (Sunish et al. 2020). Phenoloxidase, respiratory burst, 
total protein, acid and alkaline phosphatases were seen to 
be elevated and upregulation of various immune genes such 
as alpha 2 macroglobulin, penaeidin − 3, transglutaminase, 
proPO, crustin and peroxinectin were observed in those fed 
with Actinomycetes.

Single cell protein

The dwindling resources of fishmeal necessitate the search 
for alternative protein sources and the single cell protein 
(SCP) of Actinobacterial origin can replace about 25–50% 
of fishmeal in aquafeeds (Selim et al. 2021). Secondary 
metabolites such as aplasomycin, boromycin and regular 
amino acids like azaleucine and alanosine produced by 
Streptomyces enable them an ideal choice for SCP produc-
tion (Berdy et al. 2012). The use of Streptomyces as SCP 
has increased in recent years because of the advantageous 
effects such as improved feed conversion, enhanced growth 
of aquatic organisms and low cost of production and main-
tenance (Manju and Dhevendaran 1997; Selvakumar et al. 
2013). As evident in an earlier study, Actinomycete incorpo-
rated feed elevated the rate of development, protein content 
and feed conversion efficiency in shrimps and young prawns 
(Nakamura et al. 1977).

Pond probiotics

As already discussed, maintenance of water quality is one of 
the major constraints in aquaculture as increased ammonia 
and nitrite level badly affects the health of cultured aquatic 
organisms. The usage of pond probiotics could resolve the 
issue to a great extent. Pond probiotics not only improve 
the water quality of pond water but also help to improve 
the immunity and growth of cultured fishes. The enzymatic 
digestion, sonic vibration and resistant spore producing 
abilities of these microbes help them to survive and sustain 
in extreme environmental conditions, and it also improves 
their shelf life in aquatic ponds (McBride and Ensign 
1987). Actinobacteria especially Streptomyces spp. applied 
as pond probiotics was found to reduce the ammonia level 
and increase the heterotrophic microbes in the water bod-
ies as well (Aftabuddin et al. 2013). Streptomyces pana-
cagri and Streptomyces flocculus had shown antagonistic 
activity against Vibrio harveyi, Vibrio parahaemolyticus 
and Vibrio vulnificus and also possessed various extra-
cellular enzymatic activities and high degradation poten-
tial (Bernal et al. 2015). The application of these strains 
as such in brackish systems helped to improve the growth 
of aquatic organisms as well as the water quality through 
bioremediation. The use of commercial probiotic EM.1® 
comprising 80 species of microorganisms containing lactic 
acid bacteria, photosynthetic bacteria, yeasts and Actino-
mycetes showed significant improvement in fish productiv-
ity and water quality. The probiotic addition at 200 ppm in 
rearing water positively affects the chemical composition 
of whole-body fish by increasing food conversion ratio 
(1.49 ± 0.07) and protein content (13.85 ± 0.21), increases 
dissolved oxygen level (9.02 ± 0.48 mg/l), decreases ion-
ised ammonia (0.77 ± 0.03 mg/l) and unionised ammonia 
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(0.04 ± 0.01 mg/l) (Bahnasawy et al. 2019). Pond probiotics 
thus simultaneously act as bioaugmentors for waste removal 
and immunostimulants for fish health in the open and closed 
cultured systems. A marine Actinomycete, Streptomyces 
rubrolavendulae when applied as biogranules in P. mono-
don postlarval rearing system, an increased in-vivo exclusion 
of V. harveyi, V. alginolyticus, V. parahaemolyticus and V. 
fluvialis was recorded in shrimps (Augustine et al. 2016). 
Thus, the treatment of culture systems with Actinomycete 
biogranules is also a better option to provide in-vivo protec-
tion in shrimps against vibriosis.

Challenges and prospects of Actinobacteria 
in aquaculture

Compared to other Gram-positive probiotics, Actinobacte-
ria are difficult to culture because of the slow growth rate, 
complexities in isolation and identification and cross con-
tamination (Das et al. 2008a). The existence of various anti-
biotic resistance genes (ARG) viz. efflux pumps, modifying 
enzymes and ribosomal protection proteins within Actino-
mycetes for their protection is another challenge. Meanwhile, 
since horizontal gene transfer could happen in any of the 
environmental strains, probiotic strains need not be the res-
ervoir, which may contribute to the major AMR spread (Das 
et al. 2008b). This is strengthened by the fact that most of the 
antimicrobial resistance incidence is reported in aquaculture, 
where the vast application of antibiotics occurs rather than 
HGT (Preena et al. 2020a). Another advantage is that the 
plasmid in Actinomycetes is linear and incompatible with 
other phyla; the possibility of ARG spread through lateral 
gene transfer is rare (Jagannathan et al. 2021). Neverthe-
less, the possible risk in the mobility of antibiotic resistance 
genes in Actinobacterial strains should be assessed before 
application in aquaculture (Tan et al. 2016).

Production and accumulation of compounds such as 
geosmin and 2-methylisoborneol (MIB) in Actinobacteria 
can cause off-flavour in fishes (Smith et al. 2008). This cre-
ates unwanted earthy or musty flavour, which may badly 
affect the quality of aquatic organisms; hence their detec-
tion and elimination are essential. The production of these 
terpenoid compounds in freshwater aquaculture, and recir-
culating aquaculture creates awareness earlier (Das et al. 
2008b). The fish quality gets reduced by the entry of these 
compounds through the skin, gills and gastrointestinal tract, 
thereby diminishing the commodity value (Howgate 2004). 
Among the Actinobacteria, Streptomyces play a lead role in 
odour formation (Schrader and Summerfelt 2010). However, 
other than Actinomycetes, Cyanobacteria, other bacteria and 
fungi also play a significant role in the production of these 
off-odour compounds in the aquaculture systems (Wood 
et al. 2001). Hence the Actinobacteria groups alone are not 

responsible for this crisis, and their restricted use as probi-
otic does not solve this particular issue. The abundance of 
these compounds in the cultured system can be monitored 
through quantitative PCR and gas chromatography e mass 
spectrometry (GCeMS) (Auffret et al. 2011). Several efforts 
involving ozonation, biofiltration, depuration and use of 
powdered activated carbon could successfully remove these 
odorants from aquaculture systems (Tan et al. 2016).

Even though reports are rare regarding the Actinobacte-
rial infection in aquaculture, nocardiosis, caused by Nocar-
dia spp. has been reported in some of the cultured fishes 
(Matsumoto et al. 2016; Brosnahan et al. 2017). Nocardia 
seriolae is the most often detected species in diseased fish 
(Nayak and Nakanishi 2016). Hence, proper pathogenicity 
studies should be conducted before commercialising the Act-
inobacterial probiotic in aquaculture.

Research gaps

Actinobacteria act as a significant hotspot for novel bioac-
tive metabolites like wide spectrum antibacterial, antiviral, 
anti-biofilm, anti-quorum sensing, antifungal and antipara-
sitic activity. Even though their potential activity against 
human pathogens is elaborately studied, efficacy against 
fish pathogens needs further research. As discussed in the 
previous section, many Actinobacterial bioactive molecules 
reported antiviral activity against WSSV. However, the 
broad-spectrum antiviral property of marine Actinobac-
teria (Raveh et al. 2013) were least exploited against fish 
and shrimp viral pathogens. Parasitic infestations due to 
Diptera, Oligochaeta, Ostracoda, etc., are increasing in 
aquaculture (Paladini et al. 2017), especially in cage culture 
due to the poor water quality and global warming (Nowak 
2007). Fungal diseases like branchiomycosis, saprolegniasis 
and ichthyophoniasis are also not uncommon in aquacul-
ture (Choudhury et al. 2014). Though numerous antiparasitic 
(Dhanasekaran et al. 2012) and antifungal (Selim et al. 2021) 
secondary metabolites were reported to be derived from 
marine Actinobacteria, they were scarcely tested in aqua-
culture system. The quorum quenching potential of Actino-
bacteria can also be well utilised to mitigate the multidrug-
resistant vibrios in marine and brackish aquaculture systems. 
Besides, several members of Actinobacteria such as Strep-
tomyces, Micromonospora, Nocardia, Nocardiopsis etc. are 
also well known for antimicrobial peptide (AMPs) synthesis 
for exhibiting broad-spectrum antimicrobial activity (Joseph 
et al. 2021). However, the AMPs from Actinobacteria were 
hardly employed in aquaculture systems, which paved the 
way for further studies.

The vast diversity of marine actinobacteria is underex-
plored for their novel metabolite production (Anandan et al. 
2016). Future research should also focus on marine and 
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brackish water fish gut Actinobacteria since the recent stud-
ies retrieved novel bioactive molecules from the significantly 
diverse Actinobacteria from the fish gut (Jami et al. 2015; 
Thejaswini et al. 2022; Shijila et al. 2022). The existence of 
Actinobacteria in fish gut highlights the scope of using even 
prebiotics in the cultured systems to improve the probiotic 
potential of Actinobacteria already inhabiting the gut micro-
biome. In addition, since Actinobacteria serve as the niche 
for enzymes responsible for both probiotic and prebiotic 
production (Das et al. 2008b), the synbiotic approach (com-
bination of probiotics and prebiotics derived from Actino-
bacteria) can also be taken into consideration in aquaculture.

Necessary steps can also be initiated to establish con-
sortia comprising efficient Actinobacterial groups for the 
activation of various aquaculture-based systems. Such kind 
of consortia developed through enrichment techniques can 
be applied in either encapsulated forms or as biogranules. 
The effect of Actinobacteria on other beneficial microbes 
used in aquaculture systems needs further research. Though 
concerns exist in isolation, off flavour compounds, their 
excellence in offering remarkable bioactive compounds, 
probiotic potential and bioaugmentation capability warrants 
the application of Actinobacteria in aquaculture for disease 
management and improved production.
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