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Abstract

We propose a BlackBox Counterfactual Explainer, designed to explain image classification 

models for medical applications. Classical approaches (e.g., , saliency maps) that assess feature 

importance do not explain how imaging features in important anatomical regions are relevant to 

the classification decision. Such reasoning is crucial for transparent decision-making in healthcare 

applications. Our framework explains the decision for a target class by gradually exaggerating 
the semantic effect of the class in a query image. We adopted a Generative Adversarial Network 

(GAN) to generate a progressive set of perturbations to a query image, such that the classification 

decision changes from its original class to its negation. Our proposed loss function preserves 

essential details (e.g., support devices) in the generated images.

We used counterfactual explanations from our framework to audit a classifier trained on a chest 

x-ray dataset with multiple labels. Clinical evaluation of model explanations is a challenging task. 

We proposed clinically-relevant quantitative metrics such as cardiothoracic ratio and the score 

of a healthy costophrenic recess to evaluate our explanations. We used these metrics to quantify 

the counterfactual changes between the populations with negative and positive decisions for a 

diagnosis by the given classifier.

We conducted a human-grounded experiment with diagnostic radiology residents to compare 

different styles of explanations (no explanation, saliency map, cycleGAN explanation, and our 

counterfactual explanation) by evaluating different aspects of explanations: (1) understandability, 

(2) classifier’s decision justification, (3) visual quality, (d) identity preservation, and (5) overall 

helpfulness of an explanation to the users. Our results show that our counterfactual explanation 
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was the only explanation method that significantly improved the users’ understanding of 

the classifier’s decision compared to the no-explanation baseline. Our metrics established a 

benchmark for evaluating model explanation methods in medical images. Our explanations 

revealed that the classifier relied on clinically relevant radiographic features for its diagnostic 

decisions, thus making its decision-making process more transparent to the end-user.
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1. Introduction

Machine learning, specifically Deep Learning (DL), is being increasingly used for sensitive 

applications such as Computer-Aided Diagnosis (Hosny et al., 2018) and other tasks in the 

medical imaging domain (Rajpurkar et al., 2018; Rodriguez-Ruiz et al., 2019). However, 

for real-world deployment (Wang et al., 2020), the decision-making process of these models 

should be explainable to humans to obtain their trust in the model (Gastounioti and Kontos, 

2020; Jiang et al., 2018). Explainability is essential for auditing the model (Winkler et al., 

2019), identifying various failure modes (Oakden-Rayner et al., 2020; Eaton-Rosen et al., 

2018) or hidden biases in the data or the model (Larrazabal et al., 2020), and for obtaining 

new insights from large-scale studies (Rubin et al., 2018).

With the advancement of DL methods for medical imaging analysis, deep neural networks 

(DNNs) have achieved near-radiologist performance in multiple image classification tasks 

(Seah et al., 2021; Rajpurkar et al., 2017). However, DNNs are criticized for their “black-

box” nature, i.e., they fail to provide a simple explanation as to why a given input image 

produces a corresponding output (Tonekaboni et al., 2019).To address this concern, multiple 

model explanation techniques have been proposed that aim to explain the decision-making 

process of DNNs (Selvaraju et al., 2017; Cohen et al., 2021). The most common form of 

explanation in medical imaging is a class-specific heatmap overlaid on the input image. 

It highlights the most relevant regions (where) for the classification decision (Rajpurkar 

et al., 2017; Young et al., 2019). However, the location information alone is insufficient 

for applications in medical imaging. Different diagnoses may affect the same anatomical 

regions, resulting in similar explanations for multiple diagnosis, resulting in inconclusive 

explanations. A thorough explanation should explain what imaging features are present 

in those important locations, and how changing such features modifies the classification 

decision.

To address this problem, we propose a novel explanation method to provide a counterfactual 

explanation. A counterfactual explanation is a perturbation of the input image such that 

the classification decision is flipped. By comparing, the input image and its corresponding 

counterfactual image, the end-users can visualize the difference in important image features 

that leads to a change in classification decision. Fig. 1 shows an example. The input image 

is predicted as positive for pleural effusion (PE), while the generated counterfactual image 

is negative for PE. The changes are mostly concentrated in the lower lobe region, which 

is known to be clinically important for PE (Lababede, 2017). Counterfactual explanation 

is used to derive a pseudo-heat-map, highlighting the regions that change the most in the 

transformation (difference map in Fig. 1).

We demonstrate the performance of the counterfactual explainer on a chest x-ray (CXR) 

dataset. Rather than generating just one counterfactual image at the end of the prediction 

spectrum, our explanation function generates a series of perturbed images that gradually 

traverse the decision boundary from one extreme (negative decision) to another (positive 

decision) for a given target class. We adopted a conditional Generative Adversarial Network 

(cGAN) as our explanation function (Singla et al., 2019). We extend the cGAN to preserve 

small or uncommon details during image generation (Bau et al., 2019). Preserving such 
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details is particularly important in our application, as the missing information may include 

support devices that may influence human users’ perceptions. To this end, we incorporated 

semantic segmentation and object detection into our loss function to preserve the shape of 

the anatomy and foreign objects during image reconstruction. We evaluated the quality of 

our explanations using different quantitative metrics, including clinical measures. Further, 

we performed a clinical study with 12 radiology residents to compare the explanations for 

the proposed method and the baseline models.

1.1 Related work

Posthoc explanation is a popular approach that aims to improve human understanding of a 

pre-trained classifier. Our work broadly relates to the following posthoc methods:

Feature Attribution methods provide explanation by producing a saliency map that shows 

the importance of each input component (e.g., pixel) to the classification decision. Gradient-
based approaches (Simonyan et al., 2013; Springenberg et al., 2015; Bach et al., 2015; 

Shrikumar et al., 2017; Sundararajan et al., 2017; Lundberg et al., 2017; Selvaraju et al., 

2017) produce a saliency map by computing the gradient of the classifier’s output with 

respect to the input components. Such methods are often applied to the medical imaging 

studies, e.g., CXR (Rajpurkar et al., 2017), skin imaging (Young et al., 2019), brain MRI 

(Eitel and Ritter, 2019) and retinopathy (Sayres et al., 2019).

Perturbation-based methods identify salient regions by directly manipulating the input image 

and analyzing the resulting changes in the classifier’s output. Such methods modify specific 

pixels or regions in an input image, either by masking with constant values (Dabkowski and 

Gal, 2017) or with random noise, occluding (Zhou et al., 2015), localized blurring (Fong 

and Vedaldi, 2017), or in-filling (Chang et al., 2019). Especially for medical images, such 

perturbations may introduce anatomically implausible features or textures. Our proposed 

method also generates a perturbation of the query image such that classification decision is 

flipped. But in contrast to the above methods, we enforce consistency between the perturbed 

data and the real data distribution to ensure that the perturbations are plausible and visually 

similar to the input.

Counterfactual Explanations are a type of contrastive (Dhurandhar et al., 2018) explanation 

that provides a useful way to audit the classifier and determine causal attributes that lead to 

the classification decision (Parafita Martinez and Vitria Marca, 2019; Singla et al., 2021). 

Similar to our method, generative models like GANs and variational autoencoders (VAE) 

are used to compute interventions that generate realistic counterfactual explanations (Cohen 

et al., 2021; Joshi et al., 2019). Much of this work is limited to simpler image datasets 

like MNIST, celebA (Liu et al., 2019; Van Looveren and Klaise, 2019) or simulated data 

(Parafita Martinez and Vitria Marca, 2019). For more complex natural images, previous 

studies (Chang et al., 2019; Agarwal and Nguyen, 2020) focused on finding and infilling 

salient regions to generate counterfactual images. In contrast, our explanation function 

doesn’t require any re-training for generating explanations for a new image at inference 

time. In another line of work (Wang and Vasconcelos, 2020; Goyal et al., 2019) provide 

counterfactual explanations that explain both the predicted and the counter class. Further, 

researcher (Narayanaswamy et al., 2020; DeGrave et al., 2020) has used a cycle-GAN (Zhu 

Singla et al. Page 4

Med Image Anal. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2017) model to perform image-to-image translation between normal and abnormal 

images. Such methods are independent of the classifier. In contrast, our framework uses a 

classifier consistency loss to enable image perturbation that is consistent with the classifier.

1.2. Contributions

In this paper, we propose a progressive counterfactual explainer, that explains the decision of 

a pre-trained image classifier. Our contributions are summarized as follows:

1. We developed a cGAN-based framework to generate progressively changing 

perturbations of the query image, such that classification decision changes 

from being negative to being positive for a given target class. We performed 

a thorough qualitative and quantitative evaluation of our explanation function to 

audit a classifier trained on a CXR dataset.

2. Our method preserved the anatomical shape and foreign objects such as support 

devices across generated images by adding a specialized reconstruction loss. 

The loss incorporates context from semantic segmentation and foreign object 

detection networks.

3. We proposed quantitative metrics based on clinical definition of two diseases 

(cardiomegaly and PE). We are one of the first methods to use such metrics 

for quantifying DNN model explanation. Specifically, we used these metrics to 

quantify statistical differences between the real images and their corresponding 

counterfactual images.

4. We are one of the first methods to conduct a thorough human-grounded study 

to evaluate different counterfactual explanations for medical imaging task. 

Specifically, we collected and compared feedback from diagnostic radiology 

residents, on different aspects of explanations: (1) understandability, (2) 

classifier’s decision justification, (3) visual quality, (d) identity preservation, and 

(5) overall helpfulness of an explanation to the users.

2. Methodology

We consider a black-box image classifier f , with high prediction accuracy. We assume that f 
is a differentiable function and we have access to its value as well as its gradient with respect 

to the input ∇xf(x). We also assume access to either the training data for f , or an equivalent 

dataset with competitive prediction accuracy.

Notation:

The classification function is defined as f:ℝd ℝK, where d is the dimensionality of the 

image space and K is the number of classes. The classifier produces point estimates for 

posterior probability of class k as ℙ yk ∣ x = f(x)[k] ∈ [0, 1].

Explanation function:

We aim to explain the decision of function f for a target class k. We consider visual 

explanation of the black-box as a generative process that produces a plausible and realistic 
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perturbation of the query image x such that the classification decision for class k is changed 

to a desired value c. This idea allows us to view c as a “knob”. By gradually changing 

the desired output c in range [0, 1], we generate progressively changing perturbations of 

the query image x, such that classification decision changes from being negative to being 

positive for a class k.

To achieve this, we propose an explanation function xc ≜ Ifk(x, c): (X, ℝ) X. This 

function takes two arguments: a query image x and the desired posterior probability c 
for the target class k. The explanation function generates a perturbed image xc such that 

f Xc [k] ≈ c. For simplicity, we will drop k from subsequent notations. Fig. 2 summarizes 

our framework. We design the explanation function to satisfy the following properties:

(A) Data consistency: xc should resemble data instance from input space i.e., if input 

space comprises of CXRs, xc should look like a CXR with minimum artifacts or blurring.

(B) Classifier consistency: xc should produce the desired output from the classifier f, 
i.e., f If(x, c) ≈ c.

(C) Context-aware self-consistency: On using the original decision as the condition, 

i.e., c = f (x), the explanation function should reconstruct the query image. We 

forced this condition for self-consistency as If(x, f(x)) = x and for cyclic-consistency 

as If xc, f(x) = x. Further, we constrained the explanation function to achieve the 

aforementioned reconstructions while preserving anatomical shape and foreign objects (e.g., 
pacemaker) in the input image.

Overall objective:

Our explanation function If(x, c) is trained end to end to learn parameters for three 

networks, an image encoder E(∙), a conditional GAN generator G(∙) and a discriminator 

D(∙), to satisfy the above three properties while minimizing the following objective function:

min
E, G

  max
D

  λcGANLcGAN(D, G) + λfLf(D, G) + λrec Lrec (E, G) (1)

where LcGAN is a conditional GAN-based loss function that enforces data-consistency, Lf
enforces classifier consistency through a KullbackLeibler (KL) divergence loss and Lrec
is a reconstruction loss that enforces self-consistency. Hyperparamerters, λcGAN , λf and 

λrec controls the balance between the terms. In the following sections, we will discuss each 

property and the associated loss term in detail.

2.1. Data consistency

We formulated the explanation function, If(x, c), as an image encoder E(∙) followed by 

a conditional GAN (cGAN) (Miyato and Koyama, 2018), with c as the condition. The 

encoder enables the transformation of a given image, while the GAN framework generates 

realistic-looking transformations as an explanation image. The cGAN is a variant of GAN 
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that allows the conditional generation of the data by incorporating extra information as 

the context. Like GANs, cGAN is composed of two deep networks, generator G(∙) and 

discriminator D(∙). The G, D are trained adversarially by optimizing the following objective 

function,

LcGAN(D, G) = Ex, c P(x, c)[log(D(x, c))] +
EZ PZ, c Pc[log(1 − D(G(z, c), c))] (2)

where c denotes a condition and z is noise sampled from a uniform distribution Pz. In our 

formulation, z is the latent representation of the input image x, learned by the encoder E(·). 

Finally, the explanation function is defined as,

If(x, c) = G(E(x), c) . (3)

For the discriminator in cGAN, we adapted the loss function from the Projection GAN 

(Miyato and Koyama, 2018). The Projection GAN imposes the following structure on the 

discriminator loss function:

LcGAN(D, G)(x, c): = r(x) + r(c ∣ x), (4)

Here, r(x) is the discriminator logit that evaluates the visual quality of the generated image. 

It is the discriminator’s attempt to separate real images from the fakes images created by the 

generator. The second term evaluates the correspondence between the generated image xc 

and the condition c.

To represent the condition, the discriminator learns an embedding matrix V with N rows, 

where N is the number of conditions. The condition is encoded as an N-dimensional one-hot 

vector which is multiplied by the embedding-matrix to extract the condition-embedding. 

When c = n, the conditional embedding is given as the n-th row of the embedding-matrix 

(vn). The projection is computed as the dot product of the condition-embedding and the 

features extracted from the fake image,

LcGAN(D, G)(x, c): = r(x) + vnTϕ(x), (5)

where, n is the current class for the conditional generation and ϕ is the feature extractor.

In our use-case, the condition c is the desired posterior probability from the classification 

function f . c is a continuous variable with values in range [0, 1]. Projection-cGAN requires 

the condition to be a discrete variable, to be mapped to the embedding matrix V. Hence, we 

discretize the range [0, 1] into N bins, where each bin is one condition. One can view change 

from f (x) to c as changing the bin index from the current value C( f (x)) to C(c) where C(·) 

returns the bin index.
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2.2. Classifier consistency

Ideally, cGAN should generate a series of smoothly transformed images as we change 

condition c in range [0, 1]. These images, when processed by the classifier f should also 

smoothly change the classification prediction between [0, 1]. To enforce this, rather than 

considering bin-index C(c) as a scalar, we consider it as an ordinal-categorical variable, i.e., 
C(c1) < C(c2) when c1 < c2. Specifically, rather than checking one condition that desired 

bin-index is equal to some value n, C(c) = n, we check n − 1 conditions that desired binindex 

is greater than all bin-index which are less than n i.e., C(c) > i∀i ∈ [1, n) (Frank and Hall, 

2001).

We adapted Eq. 5 to account for a categorical variable as the condition, by modifying 

the second term to support ordinal multi-class regression. The modified loss function is as 

follows:

r(c = n ∣ x): = ∑
i < n

viTϕ(x), (6)

Along with conditional loss for the discriminator, we need additional regularization for 

the generator to ensure that the actual classifier’s outcome, i.e., f (xc), is very similar to 

the condition c. To ensure this compatibility with f , we further constrain the generator to 

minimize the KullbackLeibler (KL) divergence that encourages the classifier’s score for xc 

to be similar to c. Our final condition-aware loss is as follows,

Lf(D, G): = r(c ∣ x) + DKL f xc c , (7)

Here, the first term evaluates a conditional probability associated with the generated image 

given the condition c and is a function of both G and D. The second term minimize the KL 

divergence between the posterior probability for new image f (xc) and the desired prediction 

distribution c. It influences only the G. Please note, the term r(x) is not appearing in Eq. 7 as 

it is independent of c.

2.3. Context-aware self consistency

A valid explanation image is a small modification of the input image, and should preserve 

the inputs’ identity i.e., patient-specific information such as the shape of the anatomy or any 

foreign objects (FO) if present. While images generated by GAN are shown to be realistic 

looking (Karras et al., 2019), GAN with an encoder may ignore small or uncommon details 

in the input image (Bau et al., 2019). To preserve such details, we propose a context-aware 

reconstruction loss (CARL) that exploits extra information from the input domain to refine 

the reconstruction results. This additional information comes as semantic segmentation and 

detection of any FO present in the input image. The CARL is defined as,

Lrec x, x′ = ∑
j

Sj(x) ⊙ x − x′ 1
∑Sj(x) + DKL O(x) O x′ . (8)
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Here, S (·) is a pre-trained semantic segmentation network that produces a label map for 

different regions in the input domain. Rather than minimizing a distance such as ℓ1 over the 

entire image, we minimize the reconstruction loss for each segmentation label ( j). Such a 

loss heavily penalizes differences in small regions to enforce local consistency.

O(x) is a pre-trained object detector that, given an input image x, outputs a number 

of bounding boxes called region of interests (ROIs). For each bounding box, it outputs 

2-d coordinates in the image where the box is located and an associated probability of 

presence of an object. Using the input image x, we obtain the ROIs and associated O(x), 

which is a probability vector, stating probability of finding an object in each ROI. For 

reconstructed image x′, we reuse the ROIs obtained from image x and computed the 

associated probabilities for the reconstructed image as O(x′). Next, we used KL divergence 

to quantify the difference between probability vectors as DKL O(x) O x′ , in eq 8.

Finally, we used the CAR loss to enforce two essential properties of the explanation 

function:

1. If c = f (x), the self-reconstructed image should resemble the input image.

2. For c ≠ f (x), applying a reverse perturbation on the explanation image x should 

recover the initial image i.e., x ≈ If If(x, c), f(x) .

We enforce these two properties by the following loss,

Lrec(E, G) = Lrec x, If(x, f(x)) + Lrec x, If If(x, c), f(x) . (9)

where Lrec ( ⋅ ) is defined in Eq. 8. We minimize this loss only while reconstructing the input 

image (either by performing self or cyclic reconstruction). Please note, the classifier f and 

support networks S (·) and O(·) remained fixed during training.

3. Implementation and Evaluation

3.1. Dataset

We performed our experiments on MIMIC-CXR Johnson et al. (2019) dataset consisting 

of 377K CXR images from 65K patients. The dataset provides image-level labels for 

the presence of 14 observations, namely, enlarged cardiomediastinum, cardiomegaly, lung-

lesion, lung-opacity, edema, consolidation, pneumonia, atelectasis, pneumothorax, pleural 

effusion, pleural other, fracture, support devices and no-finding.

3.2. Implementation details

Classification model: We consider classification model that take as input a single-view 

chest radiograph and output the probability of each of the 14 observations. Following 

the prior work on diagnosis classification (Irvin et al., 2019), we used DenseNet-121 

(Huang et al., 2016) architecture for the classifier. We use the Adam optimizer with default 

β-parameters of β1 = 0.9, β2 = 0.999 and learning rate 1× 10−4 which is fixed for the 

duration of the training. We used a batch size of 16 images and train for 3 epochs, saving 

checkpoints every 4800 iterations.
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The classifier is trained on 198K (~80%) frontal view CXR from 51K patients and is test 

on a held-out set of 50K images from 12K non-overlapping patients. The images are resized 

to 256 × 256 and are pre-processed using a standard pipeline involving cropping, re-scaling, 

and intensity normalization. Our classification model achieved an AUC-ROC of 0.87 for 

Cardiomegaly, 0.95 for pleural effusion, and 0.91 for edema. These results are comparable to 

performance of the published model (Irvin et al., 2019).

Segmentation network: Semantic segmentation network S (·) is a 2D U-Net 

(Ronneberger et al., 2015) that marks the lung and the heart contour in a CXR. In the 

absence of ground truth lung and heart segmentation on the MIMIC-CXR dataset, we 

pre-trained the segmentation network trained on 385 CXRs from Japanese Society of 

Radiological Technology (JSRT) (van Ginneken et al., 2006) and Montgomery (Jaeger et al., 

2014) datasets. The pre-trained segmentation network is used in our explanation function to 

enforce CARL loss and to compute Cardio Thoracic Ratio (CTR). Please refer SM-Sec.6.6 

for details on segmentation network.

Object detector: We trained a Fast Region-based CNN (Ren et al., 2015) network as 

object detector O(·). We trained three independent detectors for three use-cases: detecting 

foreign objects (FO) such as pacemakers and hardware, detecting healthy costrophenic (CP) 

recess and detecting blunt CP recess.

For constructing a training dataset for this object detection, we first collect candidate CXRs 

for each object by parsing the radiology reports associated with the CXR to find positive 

mention for “blunting of the costophrenic angle” for blunt CP recess, and “lungs are clear” 
for healthy CP recess. For each object, we manually collect bounding box annotations for 

300 candidate CXRs.

Explanation Function: Our explanation function is implemented using TensorFlow 

version 2.0 and is trained on NVIDID P100 GPU. Before training the explanation function, 

we assume access to the pre-trained classification function, that we aim to explain. We also 

assume access to pre-trained segmentation and object detection networks, that are used to 

enforce CARL loss.

In cGAN, we adapted a ResNet (He et al., 2016) architecture for the encoder, generator, and 

discriminator networks. For optimization, we used Adam optimizer (Kingma and Ba, 2015), 

with hyper-parameters set to α = 0.0002, β1 = 0, β2 = 0.9 and updated the discriminator five 

times per one update of the generator, and the encoder.

In our experiments, we train three independent explanation functions, for explaining 

classifier’s decision for three class labels; cardiomegaly, pleural effusion (PE), and edema. 

For training, we divide f(x) ∈ [0, 1] into N = 10 equally-sized bins and trained the cGAN 

with 10 conditions. To construct the training-set for the explanation function, we randomly 

sample images from the test-set of the classifier such that each condition (binindex) have 

2500 – 3000 images. Similarly, we created a non-overlapping (unique subjects) evaluation 

dataset, of 20K images for the explanation function. We created one such dataset for each 

class label.
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3.3. Evaluation

For evaluating the explanations, we randomly sample two groups of real images from the 

test set of the explanation function (1) a real-negative group defined as Xn = x; f(x) < 0.2 . 

It consists of real CXR that are predicted as negative by the classifier f for a target 

class k. (2) A real-positive group defined as Xp = x; f(x) > 0.8 . For Xn, we generated 

a counterfactual group by setting condition c = 1.0 as, Xc
n p = If(x, c =  1) ∀x ∈ Xn . 

Similarly for Xp, we derived a counterfactual group as Xc
p n = If(x, c = 0)∀x ∈ Xp . 

We create one such dataset for each target class k. Combining the two groups, our set 

of real images is X = Xn ∪ Xp and corresponding set of counterfactual explanations is 

Xc = Xc
n p ∪ Xc

p n. All the results are computed on this evaluation dataset.

We employ several metrics to quantify different aspects of a valid counterfactual 

explanation.

Frechet Inception Distance (FID) score: FID score quantifies the visual similarity 

between the real images and the synthetic counterfactuals. It computes the distance between 

the activation distributions as follow,

FID X, Xc = μx − μxc 2
2 + Tr Σx + Σxc − 2 ΣxΣxc

1
2 , (10)

where µ’s and Σ’s are mean and covariance of the activation vectors derived from the 

penultimate layer of a Inception v3 network Heusel et al. (2017) pre-trained on MIMIC-

CXR dataset.

Counterfactual Validity (CV) score: CV score (Mothilal et al., 2020) is defined as the 

fraction of counterfactual explanations that successfully flipped the classification decision 

i.e., if the input image is negative, then the explanation is predicted as positive for the target 

class. CV score is computed as,

CV X, Xc = 1 f(x) − f xc > τ
X (11)

where, τ is the margin between the two prediction distributions. We used τ = 0.8 in our 

experiments.

Foreign Object Preservation (FOP) score: FOP score is the fraction of the 

real images, with successful detection of FO, in which FO was also detected in the 

corresponding explanation image xc.

FOP X, Xc = 1 O xc > 0.5
X (12)

where, O(x) is the probability of finding a FO in image x as predicted by a pre-trained object 

detector. O(x) > 0.5∀x ∈ X i.e., we consider images with positive detection of FO in set X.
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Next, we define two clinical metrics to quantify the counterfactual changes that leads to 

the flipping of the classifier’s decision. Precisely, we translated the clinical definition of 

cardiomegaly and pleural effusion into metrics that can be computed using a CXR.

Cardio Thoracic Ratio (CTR): We used CTR as the clinical metric to quantify 

cardiomegaly. CTR is the ratio of the cardiac diameter to the maximum internal diameter 

of the thoracic cavity. A CTR ratio greater than 0.5 indicates cardiomegaly (Mensah et 

al., 2015; Centurión et al., 2017; Dimopoulos et al., 2013). We followed the approach in 

(Chamveha et al., 2020) to calculate CTR from a CXR. We use the pre-trained segmentation 

network S (·) to mark the heart and lung region. We calculated heart diameter as the 

distance between the leftmost and rightmost points from the lung centerline on the heart 

segmentation. The thoracic diameter is the horizontal distance between the widest points on 

the lung mask.

Score for detecting a healthy Costophrenic recess (SCP): We first identify CP 

recess in a CXR and then classify it as healthy or blunt to quantify pleural effusion. The 

fluid accumulation in CP recess may lead to the diaphragm’s flattening and the associated 

blunting of the angle between the chest wall and the diaphragm arc, called costophrenic 

angle (CPA). The blunt CPA is an indication of pleural effusion (Maduskar et al., 2016; 

Lababede, 2017). Marking the CPA angle on a CXR requires expert supervision, while 

annotating the CP region with a bounding box is a much simpler task (see SM-Fig. 15). We 

learned an object detector to identify healthy or blunt CP recess in the CXRs and used SCP 

as our evaluation metric.

4. Experiments and Results

We performed four sets of experiments on CXR dataset:

1. In Section 4.1, we evaluated the validity of our counterfactual explanations 

and compared them against xGEM (Joshi et al., 2018) and CycleGAN 

(Narayanaswamy et al., 2020; DeGrave et al., 2020).

2. In Section 4.2, we compared against the saliency-based methods to provide 

post-hoc model explanation.

3. In Section 4.3, we associate the counterfactual changes in our explanation with 

the clinical definitions of two diagnosis, cardiomegaly and pleural effusion.

4. In Section 4.4, we present a clinical study that collects subjective feedback from 

radiology residents on three different explanation approaches, saliency maps, 

cycleGAN and ours.

4.1. Validity of counterfactual explanations

A valid counterfactual explanation resembles the query image while having perceivable 

differences that achieves an opposite classification decision as compared to the query image 

from the classifier. In Fig. 4, we present qualitative examples of counterfactual explanations 

from our method and compared them against those obtained from xGEM and CycleGAN.
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4.1.1. Classifier consistency—In Fig. 4, we observe that the explanation images 

gradually flip their decision f (xc) (bottom label) as we go from left to right. Table. 1 

summarizes our results on CV score metric. A high CV score for our model confirms 

that the condition used in cGAN is successfully met and the generated explanations are 

successfully flipping the classification decision and hence, are consistent with the classifier.

On the other hand, cycleGAN achieves a CV score of about 50%, thus creating valid 

counterfactual images only half of the times. In a deployment scenario, a counterfactual 

explanation that fails to flip the classification decision would be rejected as an invalid, and 

hence half of the explanations provided by cycleGAN would be rejected.

Our formulation constraints the condition c to vary linearly with the actual prediction 

f (xc) i.e., if we increase c in range [0, 1] then the cGAN should create an image xc 

such that condition c is met and the actual prediction f (xc) should also increase. Further, 

consider a scenario when c = 1.0. The expected behaviour is f xc = 1.0 ≈ 1.0 and also, 

f xc = 1.0 > f xc = 0.9 > f xc = 0.8 > ⋯ > 0, where different xc are generated using same x 

but different conditions.

To verify this behaviour, we group images in the test-set of the explanation function, into 

five non-overlapping groups based on their original prediction f (x). Next, for each image, 

we created 10 explanation images by discretising the range [0, 1] into 10 bins. In Fig 5, we 

represented each input group as a line and plotted the average response of the classifier i.e., 
f (xc) for explanations generated with a same condition c. The positive slope of the line-plot, 

parallel to y = x line confirms that starting from images with low f (x), our model creates 

fake images such that f (xc) is high and vice-versa.

4.1.2. Visual quality—Qualitatively, the counterfactual explanations generated by our 

method look visually similar to the query image (see Fig. 4). Table. 1 reports the FID score 

for our method and compares them against xGEM and cycleGAN. Our approach achieved 

a lower FID score as compared to xGEM. xGEM has very high FID score, thus creating 

counterfactual images that are very different from the query image and hence are unsuitable 

for deployment. CycleGAN achieved the least FID score, thus generating the most realistic 

images as explanations.

4.1.3. Identity preservation—Ideally, a counterfactual explanation should differ in 

semantic features associated with the target task while retaining unique properties of the 

input, such as foreign objects (FOs). FO provide critical information to identify the patient 

in an x-ray. The disappearance of FO in explanation images may create confusion that 

explanation images show a different patient.

In this experiment, we quantify the strength of our revised CARL loss in preserving FO 

in explanation images compared to an image-level ℓ1 reconstruction loss. In Table 2, we 

report the results on the FOP score metric. Our model with CARL obtained a higher FOP 

score. The FO detector network has an accuracy of 80%. Fig. 6 presents examples of 

counterfactual explanations generated by our model with and without the CARL. Our results 
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confirm that CARL is an improvement over ℓ1 reconstruction loss. We further provide a 

detailed ablation study over different components of our loss in SM-Sec.6.13.

4.2. Comparison with saliency maps

Popular existing approaches for post-hoc model explanation includes explaining using a 

saliency-map (Pasa et al., 2019; Irvin et al., 2019). To compare against such methods, we 

approximated a saliency map as a pixel-wise difference map between the explanations at 

the two extreme ends i.e., with condition c = 0 (negative decision) and with condition c 
= 1 (positive decision). For proper comparison, we normalized the absolute values of the 

saliency maps in the range [0, 1].

In clinical setting, multiple diagnosis may affect the same anatomical region. In this case, 

the saliency map may highlight same regions as important for multiple target tasks. Fig. 

8 is showing one such example. Our method not only provides a saliency map, but also 

counterfactual images to demonstrate how image features in those relevant regions should be 

modify to change the classification decision.

Quantitatively evaluation: In this experiment, we quantitatively compare different 

methods for generating saliency maps, to show that important regions identified by these 

methods are actually relevant for classification decision. Specifically, we used the deletion 

evaluation metric (Petsiuk et al., 2018; Samek et al., 2017). For each image in set Xp, we 

derived saliency maps using different methods. We used the saliency information to sort the 

pixels based on their importance. Next, we gradually removed top x% of important pixels 

by selectively impainting the removed region based on its surroundings. We processed the 

resulting image through the classifier and measure the output probability. We repeated this 

process while gradually increasing the fraction of removed pixels.

For each image, we plotted the updated classification probability as a function of the fraction 

of removed pixels, to obtain the deletion curve and measure its area under the deletion 

curve (AUDC). A sharp decline in classification probability shows that the removed pixels 

were actually important for classification decision. A sharp decline results in smaller AUDC, 

and demonstrates the high sensitivity of the classifier in the salient regions. In Fig. 7, we 

reported the mean and standard deviation of the AUDC metric over the set Xp. Our method 

achieved the lowest AUDC, confirming the high sensitivity of the classifier in the salient 

regions identified by our method.

4.3. Disease-specific evaluation

In this experiment, we demonstrated the clinical relevance of our explanations. We 

defined two clinical metrics, cardiothoracic ratio (CTR) for cardiomegaly and score of the 

normal costophrenic recess (SCP) for pleural effusion. We used these metrics to quantify 

the counterfactual changes between normal (negative diagnosis) and abnormal (positive 

diagnosis) populations, as identified by the given classifier. If the change in classification 

decision is associated with the corresponding change in clinical-metric, we can conclude that 

the classifier considers clinically relevant information in its diagnosis prediction.
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We conducted a paired t-test to determine the effect of counterfactual perturbation on the 

clinical metric for the respective diagnosis. To perform the test, we considered the two 

groups of real images Xn and Xp and their corresponding counterfactual groups Xc
n p

and Xc
p n respectively. In Fig. 9, we showed the distribution of differences in CTR for 

cardiomegaly and SCP for PE in a pair-wise comparison between real images and their 

respective counterfactuals. Patients with cardiomegaly have higher CTR as compared to 

normal subjects. Consistent with clinical knowledge, in Fig. 9, we observe a negative 

mean difference for CTR Xn − CTR Xcf
n p  (a p-value of < 0.0001) and a positive mean 

difference for CTR Xa − CTR Xcf
n  (with a p-value of ≪ 0.0001). The low p-value in the 

dependent t-test statistics supports the alternate hypothesis that the difference in the two 

groups is statistically significant, and this difference is unlikely to be caused by sampling 

error or by chance.

By design, the object detector assigns a high SCP to a healthy CP recess with no evidence 

of blunting CPW. Consistent with our expectation, we observe a positive mean difference 

for SCP Xn − SCP Xc
n p  (with a p-value of ≪ 0.0001) and a negative mean difference 

for SCP Xp − SCP Xc
p n  (with a p-value of ≪ 0.0001). A low p-value confirmed 

the statistically significant difference in SCP for real images and their corresponding 

counterfactuals.

4.4. Human evaluation

We conducted a human-grounded experiment with diagnostic radiology residents to compare 

different styles of explanations (no explanation, saliency map, cycleGAN explanation, 

and our counterfactual explanation) by evaluating different aspects of explanations: (1) 

understandability, (2) classifier’s decision justification, (3) visual quality, (d) identity 

preservation, and (5) overall helpfulness of an explanation to the users.

Our results show that our counterfactual explanation was the only explanation method that 

significantly improved the users’ understanding of the classifier’s decision compared to 

the no-explanation baseline. In addition, our counterfactual explanation had a significantly 

higher classifier’s decision justification than the cycleGAN explanation, indicating that the 

participants found a good evidence for the classifier’s decision more frequently in our 

counterfactual explanation as compared to cycleGAN explanation.

Further, cycleGan explanation performed better in terms of visual quality and identity 

preservation. However, at times the cycleGAN explanations were identical to the query 

image, thus providing inconclusive explanations. Overall the participants found our 

explanation method the most helpful method in understanding the assessment made by the 

AI system in comparison to other explanation methods. Below, we describe the design of the 

study, the data analysis methods, along with the results of the experiment in detail.

4.4.1. Experiment Design—We conducted an online survey experiment with 12 

diagnostic radiology residents. Participants first reviewed an instruction script, which 

described the AI system developed to provide an autonomous diagnosis for CXR findings 
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such as cardiomegaly. The study comprised of the radiologists evaluating six CXR images 

which were presented in random order to them. For selecting these siz CXR, we first, 

divided the test-set of the explanation function for cardiomegaly into three groups, positive 

( f (x) ∈ [0.8, 1.0]), mild ( f (x) ∈ [0.4, 0.6]) and negative ( f (x) ∈ [0.0, 0.2]). Next, 

we randomly selected two CXR images from each group. The six CXR images were 

anonymized as part of the MIMIC-CXR dataset protocol.

For each image, we had the same procedure consisted of a diagnosis tasks, followed by four 

explanation conditions, and ended by a final evaluation question between the explanation 

conditions. Further details of the study design are includes in SM-Section 6.1.

Diagnosis:  For each CXR image, we first asked a participant to provide their diagnosis 

for cardiomegaly. This question ensures that the participants carefully consider the imaging 

features that helped them diagnose. Subsequently, the participants were presented with the 

classifier’s decision and were asked to provide feedback on whether they agreed.

Explanation Conditions:  Next, the study provides the classifier’s decision with the 

following explanation conditions:

1. No explanation (Baseline): This condition simply provides the classifier 

decision without any explanation, and is used as the control condition.

2. Saliency map: A heat map overlaid on the query CXR, highlighting essential 

regions for the classifier’s decision.

3. CycleGAN explanation: A video loop over two CXR images, corresponding 

to the query CXR transformation with a negative and a positive decision for 

cardiomegaly.

4. Our counterfactual explanation: A video showing a series of CXR images 

gradually changing the classifier’s decision from negative to positive.

Please note that after showing the baseline condition, we provided the other explanation 

conditions in random order to avoid any learning or biasing effects.

Evaluation metrics:  Given the classifier’s decision and corresponding explanation, we 

consider the following metrics to compare different explanation conditions:

1. Understandability: For each explanation condition, the study included a 

question to measure whether the end-user understood the classifier’s decision, 

when explanation was provided. The participants were asked to rate agreement 

with “I understand how the AI system made the above assessment for 
Cardiomegaly”.

2. Classifier’s decision justification: Human user’s may perceive explanations as 

the reason for the classifier’s decision. For the cycleGAN and our counterfactual 

explanation conditions, we quantify whether the provided explanation were 

actually related to the classification task by measuring the participants’ 

agreement with “The changes in the video are related to Cardiomegaly”.
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3. Visual quality: The study quantifies the proximity between the explanation 

images and the query CXR by measuring the participants’ agreement 

with ”Images in the video look like a chest x-ray.”.

4. Identity preservation: The study also measures the extent to which participants 

think the explanation images correspond to the same subject as the query CXR 

by measuring the participants’ agreement with “Images in the video look like the 
chest x-ray from a given subject”.

5. Helpfulness: For each CXR image, we asked the participants to select the most 

helpful explanation condition in understanding the classifier’s decision, “Which 
explanation helped you the most in understanding the assessment made by the 
AI system?”. This evaluation metric directly compares the different explanation 

conditions. All metrics, but the helpfulness metric were evaluated for agreement 

on a 5-point Likert scale, where one means “strongly disagree” and five means 

“strongly agree”.

Free-form Response:  After each question, we also asked the participants a free-

form question: “Please explain your selection in a few words.” We used answers to 

these questions to triangulate our findings and complement our quantitative metrics by 

understanding our participants’ thought-processes and reasoning.

Participants.: Our participants include 12 diagnostic radiology residents who have 

completed medical school and have been in the residency program for one or more years. 

On average, the participants finished the survey in 40 minutes and were paid $100 for their 

participation in the study.

4.4.2. Data analysis—For each evaluation metric, the study asked the same question to 

the participants while showing them different explanations. For each question, we gather 72 

responses (6 - number of CXR images × 12 - number of participants).

For the understandability and helpfulness metrics, we conducted a one-way ANOVA test 

to determine if there is a statistically significant difference between the mean metric scores 

for the four explanation conditions. Specifically, we built a one-way ANOVA with the 

metric as our dependent variable and analyzed agreement rating as the independent variable. 

If we found a significant difference in the ANOVA method, we ran Tukey’s Honestly 

Significant Difference (HSD) posthoc test to perform a pair-wise comparison between 

different explanation conditions.

We measured the classifier’s decision justification, visual quality and identity preservation 

metrics only for the cycleGAN and our counterfactual explanations. We conducted paired 

t-tests to compare these evaluation metrics between these two explanation conditions. We 

also qualitatively analyzed the participants’ free-form responses to find themes and patterns 

in their responses.

4.4.3. Results—Fig. 10 shows the mean score for the evaluation metrics of 

understandability, classifier’s decision justification, visual quality, and identity preservation 
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among the different explanation conditions. Below, we report the statistical analysis for 

these results, followed by analysis of the participants’ free-form responses to understand the 

reasons behind these results.

Understandability:  The results show that our counterfactual explanation was the most 

understandable explanation to the participants. A one-way ANOVA revealed that there was 

a statistically significant difference in the understandability metric between at least two 

explanation conditions (F(3, 284) = [3.39], p=0.019). The Tukey post-hoc test showed 

that the understandability metric for our counterfactual explanation was significantly 

higher than the no-explanation baseline (p = 0.018). However, there was no statistically 

significant difference in mean scores between other pairs of explanations (refer to Table 

3, “Understandability” column). This finding indicates that providing our counterfactual 

explanations along with the classifier’s decision made the algorithm most understandable to 

our clinical participants, while other explanation conditions, saliency map and cycleGAN 

failed to achieve significant difference from no-explanation baseline on the understandability 

metric. Next, we use responses from free-text question to supplement our findings.

For the no-explanation baseline, the primary reason for poor understanding was the absence 

of explanation (n=30), (e.g., they stated that “there is no indication as to how the AI 
made this decision”). Interestingly, many responses (n=23) either associated their high 

understanding with the correct classification decision i.e., participants understood the 

decision as the decision is correct (“I agree, it is small and normal”) or they assumed the 

AI-system is using similar reasoning as them to arrive at its decision (“I assume the AI is 
just measuring the width of the heart compared to the thorax”, “Assume the AI measured the 
CT ratio and diagnosed accordingly.”).

Participants’ mostly found saliency maps to be correct but incomplete (n=23), (“Unclear 
how assessment can be made without including additional regions”). Specifically, for 

cardiomegaly, the saliency maps were highlighting parts of the heart and not its border 

(“Not sure how it gauges not looking at the border”) or thoracic diameter (“thoracic diameter 
cannot be assessed using highlighted regions of heat map”). We observe a similar result in 

Fig. 8, where the heatmap focuses on the heart but not its border. Further, some participants 

expressed a concern that they didn’t understand how relevant regions were used to derive the 

decision (“i understand where it examined but not how that means definite cardiomegaly”).

For cycleGAN explanation, the primary reason for poor understanding was the minimal 

perceptible changes between the negative and positive images (n=3), (“There is no change in 
the video.”). In contrast, many participant’s explicitly reported an improved understanding 

of the classifier’s decision in the presence of our counterfactual explanations (n=33), (“I 
think the AI looking at the borders makes sense.”, “i can better understand what the AI is 
picking up on with the progression video”).

Classifier’s decision justification:  Our counterfactual explanation (M=3.46; SD=1.12) 

achieved a positive mean difference of 0.63 on this metric as compared to cycleGAN 

(M=2.83; SD=1.33), with t(71)=3.55 and p < 0.001. This result indicates that the 
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participants found a good evidence for the predicted class (cardiomegaly), much frequently 

in our counterfactual explanations as compared to cycleGAN.

Most responses (n=25) explicitly mentioned visualizing changes related to cardiomegaly 

such as an enlarged heart in our explanation video as compared to cycleGAN (n=17). In 

cycleGAN, many reported that changes in the explanation video was not perceptible (n=23). 

Further, the participants reported changes in density, windowing level or other attributes 

which were not related to cardiomegaly (“Decreasing the density does not impact how I 
assess for cardiomegaly.”, “they could be or just secondary to windowing the radiograph”). 

Such responses were observed in both cycleGAN (n=17) and our explanation (n=17). 

This indicates that the classifier may have associated such secondary information (short-

cuts) with cardiomegaly diagnosis. A more in-depth analysis is required to quantify the 

classifiers’ behaviour.

Visual quality and identity preservation:  We observe a negative mean difference of 

0.31 and 0.37 between our and cycleGAN explanation methods in visual quality and 

identity preservation metrics, respectively. The mean score for visual quality was higher 

for cycleGAN (M=4.55; SD=0.71) as compared to our method (M=4.24; SD=0.80) with 

t(71)=3.49 and p < 0.001. Similarly, the mean score for identity preservation was also higher 

for cycleGAN (M=4.51; SD=0.56) as compared to our method (M=4.14; SD=0.78) with 

t(71)=3.96 and p < 0.001.

Most of the responses (n=69) agreed that the CycleGAN explanation were marked as highly 

similar to the query CXR image. These results are consistent with our earlier results, that 

cycleGAN has better visual quality with a lower FID score (see Table. 1). However, in some 

responses, the participants pointed out that the explanation images were almost identical to 

the query image (“There’s virtually no differences. This is within the spectrum of a repeat 
chest x-ray for instance.”). An explanation image identical to the query image provides no 

information about the classifier’s decision. Further, similar looking CXR will also result in 

similar classification decision, and hence will fail to flip the classification decision. As a 

result, we also observed a lower agreement in the classifier consistency metric and a lower 

counterfactual validity score in Table. 1 for cycleGAN.

Helpfulness:  In our concluding question, “Which explanation helped you the most in 
understanding the assessment made by the AI system?”, 57% of the responses selected our 

counterfactual explanation as the most helpful method. A one-way ANOVA revealed that 

there was a statistically significant difference in the helpfulness metric between at least 

two explanation conditions (F(3, 284) = [21.5], p < 0.0001). In pair-wise Tukey’s HSD 

posthoc test, we found that the mean usefulness metric for our counterfactual explanations 

was significantly different from all the rest explanation conditions(p < 0.0001). Table 3 

( “Helpfulness” column) summarizes these results.

These results indicates that the participant’s selected our counterfactual explanations as the 

most helpful form of explanation for understanding the classifier’s decision.
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5. Discussion And Conclusion

We provided a BlackBox Counterfactual Explainer, designed to explain image classification 

models for medical applications. Our framework explains the decision by gradually 

transforming the input image to its counterfactual, such that the classifier’s prediction is 

flipped. We have formulated and evaluated our framework on three properties of a valid 

counterfactual transformation: data consistency, classifier consistency, and self-consistency. 

Our results in Section 4.1 showed that our framework adheres to all three properties.

Comparison with xGEM and cycleGAN:

Our model creates visually appealing explanations that produce a desired outcome from the 

classification model while retaining maximum patient-specific information. In comparison, 

both xGEM and cycleGAN failed on at least one essential property. xGEM model fails to 

create realistic images with a high FID score. Furthermore, the cycleGAN model fails to flip 

the classifier’s decision with a low CV score (∼ 50%).

Further, we present a thorough comparison between cycleGAN and our explanation in a 

human evaluation study. The clinical experts’ expressed high agreement that explanation 

images from cycleGAN were of high quality and they resembles the query CXR. But at 

the same time, users found the explanation images to be too similar to query CXR, and the 

cycleGAN explanations failed to provide the counterfactual reasoning for the decision.

In comparison, our explanation were most helpful in understanding the classification 

decision. Though the users reported inconsistencies in the visual appearance, but the overall 

sentiment looks positive and they selected our method as their preferred explanation method 

for improved understandability.

Clinical relevance of the explanations:

From a clinical perspective, we demonstrated that the counterfactual changes associated with 

normal (negative) or abnormal (positive) classification decisions are also associated with 

corresponding changes in disease-specific metrics such as CTR and SCP. In our clinical 

study, multiple radiologist reported using CTR as the metric to diagnose cardiomegaly. As 

radiologist annotations are expensive, and it is not efficient to perform human evaluation 

on a large test set, our results with CTR calculations provides a quantitative way t evaluate 

difference in real and counterfactual populations.

We acknowledge that our GAN-generated counterfactual explanations may have missing 

details such as small wires. In our extended experiments, we found that the foreign objects 

such as pacemaker have minimal importance in the classification decision (see SM-Sec. 

6.10.1). We attempted to improve the preservation of such information through our revised 

context-aware reconstruction loss (CARL). However, even with CARL, the FO preservation 

score is not perfect. A possible reason for this gap is the limited capacity of the object 

detector used to calculate the FOP score. Training a highly accurate FO detector is outside 

the scope of this study.
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Further, a resolution of 256 × 256 for counterfactually generated images is smaller than a 

standard CXR. Small resolution limits the evaluation for fine details by both the algorithm 

and the interpreter. Our formulation of cGAN uses conditional-batch normalization (cBN) 

to encapsulate condition information while generating images. For efficient cBN, the mini-

batches should be class-balanced. To accommodate high-resolution images with smaller 

batch sizes, we must decrease the number of conditions to ensure class-balanced batches. 

Fewer conditions resulted in a coarse transformation with abrupt changes across explanation 

images. In our experiments, we selected the largest N, which created a class-balanced batch 

that fits in GPU memory and resulted in stable cGAN training. However, with the advent of 

larger-memory GPUs, we intend to apply our methods to higher resolution images in future 

work; and assess how that impacts interpretation by clinicians.

To conclude, this study uses counterfactual explanations as a way to audit a given black-

box classifier and evaluate whether the radio-graphic features used by that classifier 

have any clinical relevance. In particular, the proposed model did well in explaining the 

decision for cardiomegaly and pleural effusions and was corroborated by an experienced 

radiology resident physician. By providing visual explanations for deep learning decisions, 

radiologists better understand the causes of its decision-making. This is essential to lessen 

physicians’ concerns regarding the “BlackBox” nature by an algorithm and build needed 

trust for incorporation into everyday clinical workflow. As an increasing amount of artificial 

intelligence algorithms offer the promise of everyday utility, counterfactually generated 

images are a promising conduit to building trust among diagnostic radiologists.

By providing counterfactual explanations, our work opens up many ideas for future work. 

Our framework showed that valid counterfactuals can be learned using an adversarial 

generative process that is regularized by the classification model. However, counterfactual 

reasoning is incomplete without a causal structure and explicitly modeling of the 

interventions. An interesting next step should explore incorporating or discovering plausible 

causal structures and creating explanations grounded with them.
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Acknowledgments

This work was partially supported by NIH Award Number 1R01HL141813-01, NSF 1839332 Tripod+X, SAP SE, 
and Pennsylvania’s Department of Health. We are grateful for the computational resources provided by Pittsburgh 
SuperComputing grant number TG-ASC170024.

References

Agarwal C, Nguyen A, 2020. Explaining image classifiers by removing input features using generative 
models Asian Conference on Computer Vision (ACCV) .

Bach S, Binder A, Montavon G, Klauschen F, Müller KR, Samek W, 2015. On pixel-wise explanations 
for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE 10, 1–46. 
doi:10.1371/journal.pone.0130140.

Bau D, Zhu JY, Wulff J, Peebles W, Strobelt H, Zhou B, Torralba A, 2019. Seeing what a gan cannot 
generate IEEE International Conference on Computer Vision (ICCV) , 4502–4511.

Singla et al. Page 21

Med Image Anal. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Centurión OA, Scavenius K, Miño L, Sequeira OR, 2017. Evaluating Cardiomegaly by Radiological 
Cardiothoracic Ratio as Compared to Conventional Echocardiography. Journal of Cardiology & 
Current Research (JCCR) 9 doi:10.15406/jccr.2017.09.00319.

Chamveha I, Promwiset T, Tongdee T, Saiviroonporn P, Chaisang-mongkon W, 2020. Automated 
Cardiothoracic Ratio Calculation and Cardiomegaly Detection using Deep Learning Approach. 
arXiv e-prints , arXiv:2002.07468.

Chang CH, Creager E, Goldenberg A, Duvenaud D, 2019. Explaining Image Classifiers by 
Counterfactual Generation International Conference on Learning Representations (ICLR) .

Cohen JP, Brooks R, En S, Zucker E, Pareek A, Lungren MP, Chaudhari A, 2021. Gifsplanation via 
latent shift: A simple autoencoder approach to counterfactual generation for chest x-rays. Medical 
Imaging with Deep Learning (MIDL) 

Dabkowski P, Gal Y, 2017. Real time image saliency for black box classifiers 31st International 
Conference on Advances in Neural Information Processing Systems (NeurIPS) , 6970–6979.

DeGrave AJ, Janizek JD, Lee SI, 2020. AI for radiographic COVID-19 detection selects shortcuts over 
signal. medRxiv , 10.1101/2020.09.13.20193565.

Dhurandhar A, Chen PY, Luss R, Tu CC, Ting P, Shanmugam K, Das P, 2018. Explanations based on 
the missing: Towards contrastive explanations with pertinent negatives International Conference on 
Advances in Neural Information Processing Systems (NeurIPS) .

Dimopoulos K, Giannakoulas G, Bendayan I, Liodakis E, Petraco R, Diller GP, Piepoli MF, 
Swan L, Mullen M, Best N, Poole-Wilson PA, Francis DP, Rubens MB, Gatzoulis MA, 
2013. Cardiothoracic ratio from postero-anterior chest radiographs: A simple, reproducible and 
independent marker of disease severity and outcome in adults with congenital heart disease. 
International Journal of Cardiology 166.

Eaton-Rosen Z, Bragman F, Bisdas S, Ourselin S, Cardoso MJ, 2018. Towards safe deep 
learning: Accurately quantifying biomarker uncertainty in neural network predictions International 
Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) , 691–
699.

Eitel F, Ritter K, 2019. Testing the robustness of attribution methods for convolutional neural networks 
in mri-based alzheimer’s disease classification. International Workshop on Interpretability of 
Machine Intelligence in Medical Image Computing (IMIMIC) 11797 LNCS, 3–11.

Fong RC, Vedaldi A, 2017. Interpretable Explanations of Black Boxes by Meaningful Perturbation 
IEEE International Conference on Computer Vision (ICCV) doi:10.1109/ICCV.2017.371.

Frank E, Hall M, 2001. A simple approach to ordinal classification. European Conference on Machine 
Learning , 145–156.

Gastounioti A, Kontos D, 2020. Is It Time to Get Rid of Black Boxes and Cultivate Trust in AI? 
Radiology: Artificial Intelligence 2, e200088. [PubMed: 32510520] 

van Ginneken B, Stegmann MB, Loog M, 2006. Segmentation of anatomical structures in chest 
radiographs using supervised methods: a comparative study on a public database. Medical Image 
Analysis 10, 19–40. doi:10.1016/j.media.2005.02.002. [PubMed: 15919232] 

Goyal Y, Wu Z, Ernst J, Batra D, Parikh D, Lee S, 2019. Counterfactual Visual Explanations 36th 
International Conference on Machine Learning (ICML) 97, 2376–2384.

Hansell DM, Bankier AA, MacMahon H, et al. , 2008. Fleischner Society: Glossary of terms for 
thoracic imaging. Radiology 

He K, Zhang X, Ren S, Sun J, 2016. Deep residual learning for image recognition IEEE Conference on 
Computer Vision Pattern Recoginition (CVPR) .

Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S, 2017. Gans trained by a two time-
scale update rule converge to a local nash equilibrium International Conference on Advances in 
Neural Information Processing Systems (NeurIPS) .

Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJ, 2018. Artificial intelligence in radiology. 
Nature Reviews Cancer 18, 500–510. doi:10.1038/s41568-018-0016-5. [PubMed: 29777175] 

Huang G, Liu Z, van der Maaten L, Weinberger KQ, 2016. Densely connected convolutional networks 
30th IEEE Conference on Computer Vision Pattern Recoginition (CVPR) , 2261–2269.

Singla et al. Page 22

Med Image Anal. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Huang H, Li Z, He R, Sun Z, Tan T, 2018. IntroVAE: Introspective Variational Autoencoders 
for Photographic Image Synthesis International Conference on Advances in Neural Information 
Processing Systems (NeurIPS) , 10236–10245.

Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, Marklund H, Haghgoo B, et al., 2019. 
Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison 33rd 
AAAI Conference on Artificial Intelligence , 590–597.

Jaeger S, Candemir S, Antani S, Wáng YXJ, Lu PX, Thoma G, 2014. Two public chest x-ray 
datasets for computer-aided screening of pulmonary diseases. Quantitative imaging in medicine 
and surgery 4, 475–477. doi:10.3978/j.issn.2223-4292.2014.11.20. [PubMed: 25525580] 

Jiang H, Kim B, Guan M, Gupta M, 2018. To trust or not to trust a classifier International Conference 
on Advances in Neural Information Processing Systems (NeurIPS) 31.

Johnson AE, Pollard TJ, Berkowitz SJ, Greenbaum NR, Lungren MP, Deng CY, Mark RG, Horng S, 
2019. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text 
reports. Scientific data 6, 317. doi:10.1038/s41597-019-0322-0. [PubMed: 31831740] 

Joshi S, Koyejo O, Kim B, Ghosh J, 2018. xGEMs: Generating Examplars to Explain Black-Box 
Models. arXiv e-prints , arXiv:1806.08867

Joshi S, Koyejo O, Vijitbenjaronk W, Kim B, Ghosh J, 2019. Towards Realistic Individual 
Recourse and Actionable Explanations in Black-Box Decision Making Systems. arXiv e-prints , 
arXiv:1907.09615

Karras T, Laine S, Aila T, 2019. A style-based generator architecture for generative adversarial 
networks IEEE Conference on Computer Vision Pattern Recoginition (CVPR) , 4401–4410.

Kingma DP, Ba J, 2015. Adam: A Method for Stochastic Optimization International Conference on 
Learning Representation (ICLR) .

Lababede O, 2017. Pleural effusion imaging: Overview, radiography, computed tomography URL: 
https://emedicine.medscape.com/article/355524-overview.

Larrazabal A, Nieto N, Peterson V, Milone D, Ferrante E, 2020. Gender imbalance in medical imaging 
datasets produces biased classifiers for computer-aided diagnosis. Proceedings of the National 
Academy of Sciences 117, 201919012. doi:10.1073/pnas.1919012117.

Liu S, Kailkhura B, Loveland D, Han Y, 2019. Generative Counterfactual Introspection for 
Explainable Deep Learning IEEE Global Conference on Signal and Information Processing 
(GlobalSIP) , 1–5 doi:10.1109/GlobalSIP45357.2019.8969491.

Lundberg SM, Allen PG, Lee SI, 2017. A unified approach to interpreting model predictions 31st 
International Conference on Advances in Neural Information Processing Systems (NeurIPS) , 
4768–4777.

Maduskar P, Hogeweg L, Philipsen R, van Ginneken B, 2013. Automated localization of costophrenic 
recesses and costophrenic angle measurement on frontal chest radiographs. Medical Imaging: 
Computer-Aided Diagnosis

Maduskar P, Philipsen RH, Melendez J, Scholten E, Chanda D, Ayles H, Sánchez CI, van Ginneken B, 
2016. Automatic detection of pleural effusion in chest radiographs. Medical Image Analysis 

Mensah Y, Mensah K, Asiamah S, Gbadamosi H, Idun E, Brakohiapa W, Oddoye A, 2015. 
Establishing the Cardiothoracic Ratio Using Chest Radiographs in an Indigenous Ghanaian 
Population: A Simple Tool for Cardiomegaly Screening. Ghana medical journal 

Miyato T, Kataoka T, Koyama M, Yoshida Y, 2018. Spectral normalization for generative adversarial 
networks International Conference on Learning Representations (ICLR) .

Miyato T, Koyama M, 2018. cGANs with Projection Discriminator International Conference on 
Learning Representations (ICLR) .

Mothilal RK, Sharma A, Tan C, 2020. Explaining Machine Learning Classifiers through Diverse 
Counterfactual Explanations. Conference on Fairness, Accountability, and Transparency (FAT) , 
607–617.

Narayanaswamy A, Venugopalan S, Webster DR, Peng L, Corrado GS, Ruamviboonsuk P, Bavishi P, 
Brenner M, Nelson PC, Varadarajan AV, 2020. Scientific Discovery by Generating Counterfactuals 
using Image Translation International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI) , 273–283.

Singla et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://emedicine.medscape.com/article/355524-overview


Oakden-Rayner L, Dunnmon J, Carneiro G, Ré C, 2020. Hidden stratification causes clinically 
meaningful failures in machine learning for medical imaging ACM Conference on Health, 
Inference, and Learning 2020, 151–159. doi:10.1145/3368555.3384468.

Parafita Martinez A, Vitria Marca J, 2019. Explaining visual models by causal attribution IEEE 
International Conference on Computer Vision Workshop (ICCVW) , 4167–4175 doi:10.1109/
ICCVW.2019.00512.

Pasa F, Golkov V, Pfeiffer F, Cremers D, Pfeiffer D, 2019. Efficient Deep Network Architectures for 
Fast Chest X-Ray Tuberculosis Screening and Visualization. Scientific Reports 9, 1–9. [PubMed: 
30626917] 

Petsiuk V, Das A, Saenko K, 2018. Rise: Randomized input sampling for explanation of black-box 
models British Machine Vision Conference (BMVC) .

Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, et al. , 2018. Deep 
learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to 
practicing radiologists. PLOS Medicine 15, 1–17.

Rajpurkar P, Irvin JA, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya 
K, Lungren M, Ng A, 2017. Chexnet: Radiologist-level pneumonia detection on chest x-rays with 
deep learning. arXiv e-prints , arXiv:1711.05225

Ren S, He K, Girshick R, Sun J, 2015. Faster r-cnn: Towards real-time object detection with 
region proposal networks International Conference on Advances in Neural Information Processing 
Systems (NeurIPS) 28.

Rodriguez-Ruiz A, Lång K, Gubern-Mérida A, Broeders M, Gennaro G, Clauser P, Helbich T, 
Chevalier M, Tan T, Mertelmeier T, Wallis M, Andersson I, Zackrisson S, Mann R, Sechopoulos I, 
2019. Stand-alone artificial intelligence for breast cancer detection in mammography: Comparison 
with 101 radiologists. Journal of the National Cancer Institute 111. doi:10.1093/jnci/djy222.

Ronneberger O, Fischer P, Brox T, 2015. U-net convolutional networks for biomedical image 
segmentation International Conference on Medical Image Computing and Computer-Assisted 
Intervention (MICCAI) 9351, 234–241.

Rubin J, Sanghavi D, Zhao C, Lee K, Qadir A, Xu-Wilson M, 2018. Large Scale Automated Reading 
of Frontal and Lateral Chest X-Rays using Dual Convolutional Neural Networks. arXiv e-prints , 
arXiv:1804.07839arXiv:1804.07839

Samek W, Binder A, Montavon G, Lapuschkin S, Müller KR, 2017. Evaluating the visualization of 
what a deep neural network has learned. IEEE Transactions on Neural Networks and Learning 
Systems 28, 2660–2673. doi:10.1109/TNNLS.2016.2599820. [PubMed: 27576267] 

Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, Krause J, Narayanaswamy A, Rastegar Z, 
Wu D, Xu S, Barb S, Joseph A, Shumski M, Smith J, Sood AB, Corrado GS, Peng L, Webster DR, 
2019. Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading 
for Diabetic Retinopathy. Ophthalmology 126, 552–564. [PubMed: 30553900] 

Seah JC, Tang CH, Buchlak QD, Holt XG, Wardman JB, Aimoldin A, Esmaili N, Ahmad H, Pham 
H, Lambert JF, et al. , 2021. Effect of a comprehensive deep-learning model on the accuracy of 
chest x-ray interpretation by radiologists: a retrospective, multireader multicase study. The Lancet 
Digital Health 3, e496–e506. [PubMed: 34219054] 

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D, 2017. Grad-cam: Visual 
explanations from deep networks via gradient-based localization IEEE International Conference 
on Computer Vision (ICCV) , 618–626.

Shrikumar A, Greenside P, Kundaje A, 2017. Learning important features through propagating 
activation differences 34th International Conference on Machine Learning (ICML) 70, 3145–3153.

Simonyan K, Vedaldi A, Zisserman A, 2013. Deep inside convolutional networks: Visualising image 
classification models and saliency maps. Computing Research Repository abs/1312.6034

Simonyan K, Zisserman A, 2014. Very Deep Convolutional Networks for Large-Scale Image 
Recognition. arXiv e-prints , arXiv 1409.1556.

Singla S, Pollack B, Chen J, Batmanghelich K, 2019. Explanation by Progressive Exaggeration 
International Conference on Learning Representations (ICLR) .

Singla et al. Page 24

Med Image Anal. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Singla S, Wallace S, Triantafillou S, Batmanghelich K, 2021. Using causal analysis for conceptual 
deep learning explanation International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI) , 519–528.

Springenberg JT, Dosovitskiy A, Brox T, Riedmiller MA, 2015. Striving for Simplicity: The All 
Convolutional Net International Conference on Learning Representations (ICLR-workshop track) .

Sundararajan M, Taly A, Yan Q, 2017. Axiomatic Attribution for Deep Networks 34th International 
Conference on Machine Learning (ICML) 70, 3319–3328.

Tonekaboni S, Joshi S, McCradden MD, Goldenberg A, 2019. What Clinicians Want: Contextualizing 
Explainable Machine Learning for Clinical End Use URL: http://arxiv.org/abs/1905.05134.

Van Looveren A, Klaise J, 2019. Interpretable Counterfactual Explanations Guided by Prototypes. 
arXiv e-prints , arXiv:1907.02584

Wada K, 2016. labelme Image Polygonal Annotation with Python https://github.com/wkentaro/
labelme.

Wang F, Kaushal R, Khullar D, 2020. Should health care demand interpretable artificial intelligence or 
accept “black Box” Medicine? Annals of Internal Medicine 172, 59–61. doi:10.7326/M19-2548. 
[PubMed: 31842204] 

Wang P, Vasconcelos N, 2020. SCOUT: Self-Aware Discriminant Counterfactual Explanations IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR) .

Winkler J, Fink C, Toberer F, Enk A, Deinlein T, Hofmann-Wellenhof R, Thomas L, Lallas A, 
Blum A, Stolz W, Haenssle H, 2019. Association between surgical skin markings in dermoscopic 
images and diagnostic performance of a deep learning convolutional neural network for melanoma 
recognition. JAMA Dermatology 155. doi:10.1001/jamadermatol.2019.1735.

Young K, Booth G, Simpson B, Dutton R, Shrapnel S, 2019. Deep neural network or dermatologist? 
International Workshop on Interpretability of Machine Intelligence in Medical Image Computing 
(IMIMIC) 11797 LNCS, 48–55.

Zhou B, Khosla A, Lapedriza Ágata, Oliva A, Torralba A, 2015. Object detectors emerge in deep scene 
cnns International Conference on Learning Representations (ICLR) .

Zhu JY, Park T, Isola P, Efros AA, 2017. Unpaired Image-to-Image Translation using Cycle-Consistent 
Adversarial Networks IEEE International Conference on Computer Vision (ICCV) .

Singla et al. Page 25

Med Image Anal. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1905.05134
https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme


1. We proposed a BlackBox Counterfactual Explainer designed to explain image 

classification models for medical applications.

2. We fill the gap in existing deep-learning model explanation methods by 

explaining what image features are important for classification decisions and 

how those features should be modified to flip the decision.

3. We developed a cGAN-based framework to generate progressively changing 

perturbations of the query image, such that classification decision changes 

from being negative to being positive for a given target class.

4. Our method preserved the anatomical shape and foreign objects such 

as support devices across generated images by adding a specialized 

reconstruction loss. The loss incorporates context from semantic segmentation 

and foreign object detection networks.

5. We developed quantitative metrics based on the clinical definition of two 

diseases (cardiomegaly and pleural effusion). We used these metrics to 

quantify counterfactual differences in normal and abnormal populations, as 

identified by the classifier.

6. We are one of the first methods to conduct a thorough human-grounded study 

to evaluate different counterfactual explanations for medical imaging task. 

Specifically, we collected and compared feedback from diagnostic radiology 

residents, on different aspects of explanations: (1) understandability, (2) 

classifier’s decision justification, (3) visual quality, (d) identity preservation, 

and (5) overall helpfulness of an explanation to the users.

7. Our explanations revealed that the classifier relied on clinically relevant 

radiographic features for its diagnostic decisions.
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Fig. 1. 
Counterfactual explanation shows “where” + “what” minimum change must be made to the 

input to flip the classification decision. For Pleural Effusion, we can observe vanishing of 

the meniscus (red) in counterfactual image as compared to the query image.
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Fig. 2. 
Explanation function If(x, c) for classifier f. Given an input image x, we generates a 

perturbation of the input, xc as explanation, such that the posterior probability, f , changes 

from its original value, f (x), to a desired value c while satisfying the three consistency 

constraints.
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Fig. 3. 
(a) A domain-aware self-reconstruction loss with pre-trained semantic segmentation S (x) 

and object detection O(x) networks. (b) The self and cyclic reconstruction should retain 

maximum information from x.
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Fig. 4. 
Qualitative comparison of the counterfactual explanations generated for two classification 

tasks, cardiomegaly (first row) and pleural effusion (PE) (last row). The bottom labels are 

the classifier’s predictions for the specific task. For the input image in first column, our 

model generates a series of images xc as explanations by gradually changing c in range 

[0, 1]. The last column presented a pixel-wise difference map between the explanations at 

the two extreme ends i.e., with condition c = 0 (negative decision) and with condition c 

= 1 (positive decision). The heatmap highlights the regions that changed the most during 

the transformation. For cardiomegaly, we show the heart border in yellow. For PE, we 

showed the results of an object detector as a bounding-box (BB) over the healthy (blue) and 

blunt (red) CP recess regions. The number on the top-right of the blue-BB is the Score for 

detecting a healthy CP recess (SCP). The number on red-BB is 1-SCP.
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Fig. 5. 
The plot of condition, c (desired prediction), against actual response of the classifier on 

generated explanations, f (xc). Each line represents a set of input images with prediction f (x) 

in a given range. Plots for xGEM and cycleGAN are shown in SM-Fig. 18.
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Fig. 6. 
Fidelity of generated images with respect to preserving FO.
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Fig. 7. 
Quantitative comparison of our method against gradient-based methods. Mean area under 

the deletion curve (AUDC), plotted as a function of the fraction of removed pixels. A low 

AUDC shows a sharp drop in prediction accuracy as more pixels are deleted.
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Fig. 8. 
Comparison of our method against different gradient-based methods. A: Input image; B: 

Saliency maps from existing works; C: Our simulation of saliency map as difference map 

between the normal and abnormal explanation images. More examples are shown in SM-

Fig. 21.
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Fig. 9. 
Box plots to show distributions of pairwise differences in clinical metrics, CTR for 

cardiomegaly and the Score of normal CP recess (SCP) for pleural effusion, before (real) 

and after (counterfactual) our generative counterfactual creation process. The mean value 

corresponds to the average causal effect of the clinical-metric on the target task. The low 

p-values for the dependent t-test statistics confirm the statistically significant difference 

in the distributions of metrics for real and counterfactual images. The mean and standard 

deviation for the statistic tests are summarized in SM-Table 8.
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Fig. 10. 
Comparing the evaluation metrics of understandability, classifier’s decision justification, 

visual quality, and identity preservation across the different explanation conditions.
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Table 2.

The foreign object preservation (FOP) score for our model with and without the context-aware reconstruction 

loss (CARL). FOP score depends on the performance of FO detector.

Foreign Object (FO) FOP score

Ours with CARL Ours with ℓ1

Pacemaker 0.52 0.40

Hardware 0.63 0.32
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Table 3.

Results for one-way ANOVA for understandability metric, followed by Tukey’s HSD post-hoc test between 

different levels of agreement. Note that the mean value for E4 (our counterfactual explanation) is the highest, 

indicating that our explanations helped users the most in understanding the classifier’s decision.

Understandability
F(3, 284) = 3.39

p < 0.05

Helpfulness
F(3, 284) = 21.5

p < 0.001

Explanation method p Explanation method p

E1 (No explanation)
M=3.14
SD=1.39

E2
E3
E4 *

E1
M=0.05
SD=0.23

E2
E3
E4 ***

E2 (Saliency Map)
M=3.31
SD=1.13

E1
E3
E4

E2
M=0.18
SD=0.39

E1
E3
E4 ***

E3 (CycleGAN)
M=3.24
SD=1.19

E1
E2
E4

E3
M=0.16
SD=0.37

E1
E2
E4 ***

E4 (Our counterfactual explanation) M=3.72
SD=0.97

E1
E2
E3

* E4
M=0.24
SD=0.42

E1
E2
E3

***
***
***

*
p < 0.05

***
p < 0.0001
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