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Abstract

Hydrogen-deuterium exchange (HDX) is a comprehensive yet detailed probe of protein structure 

and dynamics and, coupled to mass spectrometry, has become a powerful tool for investigating 

an increasingly large array of systems. Computer simulations are often used to help rationalize 

experimental observations of exchange, but interpretations have frequently been limited to simple, 

subjective correlations between microscopic dynamical fluctuations and the observed macroscopic 

exchange behavior. With this in mind, we previously developed the HDX ensemble reweighting 

approach and associated software, HDXer, to aid the objective interpretation of HDX data using 

molecular simulations. HDXer has two main functions; first, to compute H-D exchange rates 

that describe each structure in a candidate ensemble of protein structures, for example from 

molecular simulations, and second, to objectively reweight the conformational populations present 

in a candidate ensemble to conform to experimental exchange data. In this article, we first 

describe the HDXer approach, theory, and implementation. We then guide users through a suite 

of tutorials that demonstrate the practical aspects of preparing experimental data, computing HDX 

levels from molecular simulations, and performing ensemble reweighting analyses. Finally we 

provide a practical discussion of the capabilities and limitations of the HDXer methods including 
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recommendations for a user’s own analyses. Overall, this article is intended to provide an up-

to-date, pedagogical counterpart to the software, which is freely available at https://github.com/

Lucy-Forrest-Lab/HDXer.

1 Introduction

A pioneering descriptive framework developed in the 1950s by Linderstrøm-Lang and 

co-workers first linked the hydrogen exchange rates of backbone amide functional groups 

directly to protein structure [1, 2]. This concept provided the foundation for the subsequent 

development of hydrogen-deuterium exchange (HDX) measurements as a sensitive, label-

free probe of protein conformation and dynamics in solution and due to these advances 

HDX is now a valuable addition to the modern structural biology toolbox. In recent 

years, successful applications of HDX measurements have proliferated, in part due to 

advancements in technologies used to perform, analyze, and process HDX experiments. 

In particular, experiments that couple HDX to mass spectrometry measurements of the 

deuterium uptake (HDX-MS) are now widely used for analyzing the dynamics of proteins in 

solution. HDX-MS offers particular advantages over methods such as NMR-based exchange 

measurements for large proteins, complexes, and for small sample amounts [3–5].

Within the protein environment, the canonical mechanisms for backbone amide deuterium 

exchange require the amide hydrogen to be exposed and accessible, at least transiently, to 

either a nearby catalytic solvent molecule, OD−, or D3O+ ion [6, 7]. For a folded protein, 

therefore, the rate of exchange reports on the extent to which local protein flexibility, 

conformational changes, or global unfolding expose the amide to nearby catalysts and 

result in deuterium exchange [2, 3, 6, 7]. The connection between deuterium exchange and 

structural flexibility offers the possibility to interpret HDX in a structural context. To do so, 

the measured local exchange rates – whether at individual residue resolution or averaged 

over oligopeptide fragments as in the case of HDX-MS data – are typically correlated 

with specific structural features. These features include secondary structure, H bonding, 

or accessibility to solvent and can be extracted from either experimentally-determined or 

modeled structures of the protein of interest.

A clear limitation of using single structures to interpret HDX data, however, is that this 

approach underutilizes the information inherently encoded in the experimental measurement. 

Specifically, HDX measurements, in theory, contain information describing the complete 

structural ensemble as well as the equilibrium conformational dynamics of the protein 

under investigation. An important requirement for the next generation of HDX studies 

will therefore be the ability to rigorously decode the dynamical information present in 

the observed data and enable high-resolution, quantitative, robust, and objective structural 

ensembles to be derived directly from the experimental measurements. With this in mind, we 

developed the HDX ensemble reweighting (HDXer) approach [8], and associated software, 

to facilitate quantitative and objective structural interpretation of HDX-MS data.

The HDXer software has two main functions:
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1. To compute the average structural protection afforded to each backbone amide, 

i, in each structure of a protein structural ensemble (the Protection Factor, Pi) 

for a given empirical predictive model. These values can then be translated into 

an overall H-D exchange rate and fractional deuteration, for any combination of 

residues in a peptide segment, at any given timepoint, thereby allowing direct 

comparison to experimental HDX-MS data;

2. To optimally fit an initial protein structural ensemble to a target set of HDX-MS 

data, taking into account all potential sources of uncertainty, using a maximum 

entropy reweighting procedure [9–11]. This approach adjusts the populations 

of each conformation in the ensemble such that the overall average structural 

protection of each backbone amide conforms ideally to the experimental data.

We recognize that these techniques may be unfamiliar even to colleagues with experience 

in HDX and/or computer simulations. Therefore, to increase the accessibility of HDXer to 

the wider community, we present here a suite of tutorials in the form of interactive Jupyter 

notebooks that describe how users can prepare, perform, and interpret HDXer analyses. 

We also provide a practical discussion of key aspects of the theoretical underpinnings 

of the HDXer approach as well as suggestions for how users can validate the reliability 

and robustness of their applications of HDXer. After completing the tutorials, which are 

available alongside the HDXer software itself in the GitHub repository (https://github.com/

Lucy-Forrest-Lab/HDXer), and reading the accompanying discussion provided here, users 

should be able to:

• prepare and format raw experimental HDX-MS data, such as that created by 

commonly-used MS analysis packages, ready for analysis with HDXer;

• compute per-residue Protection Factor values and corresponding deuterated 

fractions for peptide segments for each structure in an ensemble of candidate 

conformations (obtained, e.g., from molecular dynamics (MD) simulations);

• reweight a candidate structural ensemble so that its computed HDX levels fit 

those in a target set of experimental HDX-MS data;

• analyze a reweighted ensemble to assess both the level of agreement with the 

target data and the bias that was applied to adjust the populations of individual 

conformations in the ensemble;

• structurally characterize a reweighted ensemble;

• understand the potential sources of uncertainty in HDXer analyses, how that 

uncertainty can impact the accuracy of structural interpretations, and, relatedly, 

how to apply approaches to investigate and address inaccuracies in the user’s 

specific applications.

The tutorials are self-contained and therefore require no additional data or resources beyond 

those detailed in the ‘Prerequisites’ sections below. In terms of background knowledge, 

we provide a general introduction to the theoretical concepts of both HDX and ensemble 

reweighting in Section 1.2, which also points to sources of more detailed information for the 

interested user.
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1.1 Tutorial prerequisites

1.1.1 Background knowledge—Our explanations of the HDXer method and tutorials 

assume that users are familiar with common ideas and terminology of physical chemistry, 

thermodynamics, and statistical ensembles of molecules. Beyond these concepts our article 

aims to provide users with a self-contained and solid foundation in the theory underpinning 

ensemble reweighting and computational HDX calculations, primarily within Section 1.2. 

Nevertheless, users are expected to have a good understanding of the two input data sources 

for HDXer analyses, namely structural ensembles generated via molecular modeling and 

simulation, and the experimental measurement of protein HDX-MS data.

In practical terms, users should be familiar with the process of preparing and performing 

simulations, or generating models, with their chosen software. This process includes 

carefully selecting the initial seed or template structure (e.g. determined by X-ray 

crystallography), modelling unresolved residues to match the sequence of the experimental 

protein construct, choosing protonation states of ionizable residues, incorporating any 

required ligands and describing them with reliable parameters, and appropriately 

representing the protein environment (e.g. oligomerization, complexation, or membrane 

embedding of the protein). Obtaining a relevant and fully representative candidate structural 

ensemble is crucial for accurate HDXer analyses. The decision as to whether the ensemble 

should be broadened or narrowed can be informed by post-reweighting checks, as described 

in Section 6.

In terms of computational background, to benefit from the tutorials users will need a basic 

level of familiarity with Unix environments and the command line interface (e.g., making 

and moving files and directories). A basic knowledge of Python is also desirable for users 

wishing to move beyond the Juptyer notebooks and apply HDXer to their own systems.

Finally, users should be familiar with their target experimental HDX data, including the 

conditions under which it was obtained, the level of deuterium back-exchange (for HDX-MS 

data), and the proposed kinetic mechanism of exchange for each amide or peptide. HDXer 

analyses assume that the target exchange data has been normalized for back exchange and 

for the total deuterium ratio in the solution (e.g., by normalizing uptake to a fully-deuterated 

control sample), and that the data represent residues and peptides undergoing an EX2-type 

exchange mechanism, as explained further in Section 1.2.2.

1.1.2 Software—The HDXer tutorials are written in Python 3.7 and are available as 

Jupyter notebooks downloadable from the HDXer GitHub repository at https://github.com/

Lucy-Forrest-Lab/HDXer. Users should use the git version control software to clone and 

update the HDXer package. Installation instructions are documented in the README file 

within the repository. We recommend creating a separate Python virtual environment for 

HDXer analyses, with the following dependencies: MDTraj (⩾1.9.3) [12], NumPy (⩾1.18.1) 

[13], Matplotlib (⩾3.2.0) [14], Pytest (⩾5.3.5) [15], and Jupyterlab (⩾3.0) [16]. To recreate 

the testing environment for HDXer, a Conda environment file named HDXER_ENV.yml is 

available in the HDXer GitHub repository. The tutorials have the same dependencies as the 

software itself and thus no additional software is required if the HDXer package has been 

successfully installed.
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1.1.3 Hardware—The HDXer tutorials have modest hardware requirements and are 

designed to work with any relatively modern consumer desktop or laptop. Individual HDXer 

analyses use only a single CPU thread, though time and memory requirements depend on 

the size of the candidate structural ensemble and on the number of datapoints being targeted 

during reweighting. If the underlying NumPy installation has been installed with support for 

multi-threading, there may be an improvement in performance for any analyses with matrix 

operations. However, such an improvement is not guaranteed and so we recommend users 

run their own tests if they wish to take advantage of multi-threading.

1.2 Interpreting experimental data with ensemble reweighting techniques

HDXer contributes to a growing toolbox of computational strategies that have been 

developed to integrate experimental data directly into the computational modeling and 

simulation process [17–19]. These methods are designed to augment low-resolution 

experimental structural data by selecting or refining high-resolution structural models that 

optimally describe the underlying experimental observable. This process, frequently referred 

to under the umbrella term of ‘ensemble refinement’, complements existing high-resolution 

structural biology techniques, such as X-ray crystallography or cryo-electron microscopy, 

and can provide information on solution-state structure and dynamics [11, 18, 20–25].

We classify HDXer itself as a post-hoc maximum entropy ensemble reweighting method 

[9, 10]. Put more simply, HDXer minimally biases the relative populations of frames in a 

previously-generated candidate structural ensemble, such that the calculated HDX-MS data 

of the ensemble conform to a target (experimental) set of HDX-MS data, within a chosen 

level of uncertainty. This process is illustrated in Figure 1.

Independent of the nature of the experimental data used as the target, any post-hoc 
maximum entropy ensemble reweighting procedure requires three key ingredients [19]:

1. An initial ensemble of structures;

2. A predictive model (also known as the ‘forward’ model) to compute the 

experimental observable of interest from the coordinates of the structures in that 

ensemble;

3. An algorithm to fit the ensemble to the experimental data while taking into 

account the uncertainties in all stages of the analysis.

We expand upon the details and requirements of each of these three elements in the 

following sections.

1.2.1 The initial structural ensemble—As an ensemble reweighting technique, the 

overall goal of an HDXer analysis is to modify the relative populations (or ‘weights’) of 

frames in an initial structural ensemble. In this context, new frames will not be added to 

the ensemble even if the agreement with target data is poor. Therefore, the initial structural 

ensemble should ideally, comprehensively cover all relevant protein conformational space 

(i.e., the ‘true’ conformations present in the experimental ensemble). On the other hand, it 

is important to note that the relative weights of each frame can be increased or decreased, 

but that individual frames cannot be removed from the ensemble. Therefore, the presence 
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of ’irrelevant’ structures (i.e. conformations not present in the experiment) should be kept to 

a minimum.

Atomic-resolution MD simulations initiated with a high-resolution, experimentally-

determined structure constitute a well-established approach to explore the conformational 

space of biomolecules in solution [26]. Such simulations by definition sample a Boltzmann 

distribution of states, making them a straightforward and rigorous tool for generating 

a candidate ensemble of structures for HDXer analyses. As such MD simulations have 

been used in the HDXer tutorials described here. Nevertheless, the exhaustiveness of 

conformational sampling obtained using MD simulations is limited by the overall protein 

size, the available computational resources, and the conformational diversity of the 

experimentally-determined structures used to initiate simulations. In some cases, therefore, 

classical (unbiased) simulations may not sufficiently sample the relevant conformational 

space or may become kinetically trapped in regions of conformational space that are not 

representative of the dynamics observed experimentally.

To mitigate this problem, candidate ensembles can be generated using strategies for 

enhancing conformational sampling [27]. For example, a straightforward approach would 

be to combine ensembles from multiple simulations, each initiated with a differing structure. 

Such a strategy would enable the inclusion of any relevant alternative (e.g. active vs. inactive 

or apo vs. holo) conformational states that may not be accessed during a simulation initiated 

with only one of those states. A candidate ensemble may be further extended by using so-

called biased simulation methodologies, such as Accelerated MD [28], Hamiltonian Replica 

Exchange [29], or Metadynamics [30], which the user can design to sample regions of the 

protein conformational free energy surface that are of interest, but not well explored by other 

approaches. In cases where experimental structures are unavailable, candidate ensembles 

may even be generated by using homology or de novo modeling.

Generally speaking, the HDXer software will reweight a candidate ensemble of any 

origin. However, the more dissimilar the initial set of candidate structures is to an 

equilibrium Boltzmann distribution of states, the greater the level of bias that is likely 

required to reweight the ensemble to conform to the experimental data, because many 

poorly-conforming structures will need to be downweighted. When high levels of bias are 

applied, small changes in the input information or target data can have an exaggerated 

impact on the final results, making it difficult for users to characterize the robustness 

of the reweighted ensemble and to identify overfitting (see Section 6). Thus, in general, 

the reliability of the reweighting will be lessened if the candidate ensemble contains too 

much ‘structural noise’, for example from irrelevant conformations not representative of 

local free energy minima. In summary, if users choose to generate candidate ensembles 

using enhanced sampling methodologies, they should endeavor to ensure that the candidate 

structures comprehensively represent the equilibrium dynamics of the system.

1.2.2 Predictive models for HDX—Within the Linderstrøm-Lang model for hydrogen 

exchange, each backbone amide exists in either an ‘open’, accessible and exchange-

competent state (O), or a ‘closed’, protected and exchange-non-competent state (C) [2, 6, 

31]. Interconversion between the O and C states is governed by individual rate constants; 
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kop for the opening conformational change, and kcl for closing. The exchange reaction itself, 

which is governed by an intrinsic chemical exchange rate constant kint, is only possible from 

the amide O state. An examination of the relationship between these rate constants (Equation 

1) reveals that the experimentally-observed overall rate of exchange, kHX can be considered 

to occupy one of two alternative kinetic regimes, known as EX1 and EX2 (Equation 2) [5, 

31, 32].

(N − H)C kcl

kop (N − H)O
kint (N − D)O kop

kcl (N − D)C (1)

EX1: kint ≫ kcl, kHX = kop

EX2: kint ≪ kcl, kHX = kop
kcl

kint
(2)

Amides can require vastly different structural transitions to reach an exchange-competent O 

state [6, 7, 33, 34]. The protein backbone of some structural features may only be accessible 

to exchange following a local or global unfolding motion, refolding from which is likely to 

be far slower than the intrinsic rate of exchange. Amides in these structures will therefore 

undergo exchange with EX1 kinetics, with an overall rate directly proportional to that of the 

unfolding conformational change, kop.

Amides that exhibit EX2 exchange access their exchange-competent states via smaller 

conformational fluctuations, in which the rate of refolding to the C state is far faster than the 

chemical exchange reaction. This is the most common mode of exchange in natively folded 

proteins. The observed HDX rate in this case is proportional to the equilibrium between the 

amide C and O states or, equivalently, to the conformational free energy change of ‘opening’ 

ΔGop (Equation 3). The O/C equilibrium is also frequently described in the framework of 

the amide protection factor, Pi, which represents the ratio 
kcl
kop

 (see Equation 3) and can be 

calculated from the experimentally-measurable ratio 
kint
kHX

.

ΔGop = − RT ln kop
kcl

= RT ln Pi (3)

Predictive models to estimate protection factors provide an opportunity to interpret EX2 

exchange in a structural context, and typically fall into two families. The first type of 

approach requires extensive sampling of the amide C and O states, from which the C/O 

equilibrium constant Pi is calculated directly by classifying each conformation as ‘open’ or 

‘closed’ and then counting the relative populations (i.e. probabilities) of the two states [35, 

36]. A common alternative technique is to use an empirical scoring function that correlates 

the amide ΔGop with protein structural and dynamical features observed in an ensemble 

of structures [37–43]. The latter approach has the advantage that it requires no knowledge 

or definition of the structure of the O state for each amide. Indeed, the parameterization 

of such empirical Pi models has often made use of structures from MD simulations 
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exploring dynamics on ns-μs timescales, which would predominantly sample the well-folded 

C state for each amide and neglect O-state transitions that may occur on longer timescales. 

Interpreting experimental H-D exchange with empirical Pi models therefore characterizes 

the amide C state, alongside any rapid and transient O-state fluctuations on short (ps-ns) 

timescales that were well sampled during the parameterization process. In contrast, O state 

structures resulting from large or slow dynamic transitions are unlikely to be included in the 

structural ensembles arising from empirical Pi predictions. Consequently, the experimental 

data used to interpret via predictive models should be carefully classified according to EX1 

and EX2 behavior so that the slower exchanging amides may be excluded. Fortunately, 

a simple analysis of the peptide mass envelopes obtained in HDX-MS experiments often 

allows classification of individual peptides into EX1, EX2, or mixed EX1/EX2 exchangers 

for this purpose [5, 31, 32].

Currently, HDXer applies the commonly-used phenomenological model [37, 38], which 

estimates Pi for each backbone amide as an ensemble average function of the number of 

heavy atom contacts, NC,i and H bonds, NH,i formed by the amide NH group:

ln Pi = ⟨βCNC, i + βHNH, i⟩ . (4)

Consequently, in order to count the H bonds and contacts formed by each backbone amide, 

HDXer requires a fully atomistic representation of the protein, including hydrogen atoms. 

Structural protection from other sources, such as bound ligands, co-factors, or lipid bilayers, 

can also be included in Equation 4, if these elements are present in the candidate structural 

ensemble.

However, it should be noted that the phenomenological model includes two empirical 

scaling parameters to reflect the relative contributions of heavy atom contacts and H bonding 

to structural protection. The default values for these scaling factors (βC = 0.35, βH = 2.0) 

were originally parameterized with a training dataset of globular, monomeric proteins [38], 

and therefore may not be suitable for proteins that obtain substantial structural protection 

from non-protein sources, for example from embedding in a lipid bilayer. HDXer can 

accommodate such adjustments to the predictive model as it allows βC and βH to be treated 

either as user-definable constants or as optimizable parameters during reweighting.

Using the empirically-calculated protection factors, HDXer can then calculate the fractional 

deuteration of each amide at a nominal deuterium exposure time, Di,t, as:

Di, t = 1 − exp −kint, i
Pi

t (5)

where the intrinsic rates of exchange for each amide, kint,i, are automatically computed 

by HDXer based on the local sequence of each residue using experimentally-determined 

reference data [44, 45]. Since those intrinsic rates depend on conditions such as the pD and 

temperature of deuteration, HDXer also allows the user to adjust the latter parameters to be 

consistent with their particular experimental conditions.
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1.2.3 Ensemble reweighting using the maximum entropy principle—The theory 

of the maximum entropy principle and how it can be used to integrate experimental data 

into molecular simulations has been well described elsewhere [9–11, 46], and the derivation 

of the method for HDX data was provided in our original HDXer publication [8]. We 

recommend that users become comfortable with the theory of the approach by following 

these texts. Here, we provide a general overview of the concept of maximum entropy 

reweighting, which is required for users to understand the terminology used in the tutorials 

and how to interpret the results.

At its core, the HDXer process applies an energy bias to the underlying potential energy of 

each structure in the initial candidate ensemble, U(X), to create a new, corrected, potential, 

Ucorr(X):

Ucorr(X) = U(X) − kBT ∑
i

λi βCNC, i(X) + βHNH, i(X) . (6)

The values of the scaling parameters λi for each residue, along with the number of 

contacts and H bonds NC,i and NH,i formed by that residue, determine the bias applied 

to each structure in the ensemble and ultimately the new, corrected, contribution of each 

structure to the overall population. The objective of HDXer is to uniquely determine values 

of λi such that the calculated deuterated fractions of the reweighted ensemble fit the 

target (experimental) fractions provided by the user, taking into account a defined error 

distribution, and using the smallest possible applied bias. To do so, HDXer iteratively 

minimizes a distance function that balances the bias applied, quantified across the whole 

ensemble as an apparent work, Wapp, with an error distribution, ln ρerr:

L = W app
kBT − ln ρerr

where:

ρerr ∝ exp −∑
t

∑
j

γ
(Dj, t

sim − Dj, t
exp)2

2η2

(7)

where T is the temperature, kB is the Boltzmann constant, Dj, t
sim and Dj, t

exp are the simulated 

and experimental deuteration for peptide j at time t, and η is an estimate of the uncertainty. 

Here η is set to 1, such that γ describes the uncertainty for all target data points.

The error distribution is applied to the difference between the calculated and target 

deuteration levels, meaning that in order to minimize the distance function in Equation 

7, the reweighting process must decrease the difference between calculated and target HDX. 

However, precisely because HDXer incorporates an error distribution, the calculated and 

target data are not required to match perfectly. Instead, the error distribution controls how 

tightly the calculated and target data should conform, taking into account all forms of 

uncertainty in the analysis. The final difference between calculated and target deuteration 

levels is balanced with the bias applied to the candidate ensemble, Wapp, which must be 

simultaneously minimized in order to minimize the distance function in Equation 7. For 
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simplicity, we assume the error distribution for each target oligopeptide and HDX-MS 

timepoint is an individual Gaussian distribution of identical width, and these distributions 

are uncorrelated across all data points. The width of each distribution, and hence the 

uncertainty in the data, can be controlled with the single user-defined parameter γ in 

Equation 7.

Although brief, we expect that the above description will help users to understand the 

rationale for the key inputs and outputs of HDXer analyses, which are summarized below.

The inputs for a maximum entropy reweighting tool were first introduced conceptually in 

Section 1.2. More specifically, HDXer analyses require:

• an atomistic structural ensemble of a protein of interest, in the relevant 

environment and with relevant ligands/co-solutes if desired;

• a curated set of (experimental) target HDX or HDX-MS data, along with the list 

of residues or peptide segments to which it corresponds;

• a predictive model for estimating protection factors and deuterated fractions, 

wherein the experimental conditions can be reflected by way of user-defined 

parameters;

• an uncertainty distribution of user-defined width (γ), to determine how ‘tightly’ 

the reweighted ensemble will be fitted to the target data.

As outputs, users can expect to receive:

• the optimized relative populations of each frame in the reweighted ensemble;

• the level of agreement between the computed and the target HDX data, 

calculated as the RMS error between the two datasets;

• the apparent work, Wapp that was applied to the reweighted ensemble, as a 

measure of the total bias applied and the degree to which the distribution of 

frames in the candidate ensemble was shifted by the reweighting process.

Armed with the knowledge provided thus far, the tutorials are intended to provide a practical 

guide for users to set up, perform, and interpret their own HDXer analyses. We detail the 

workflow of a typical HDXer analysis in the following section, and the remaining practical 

requirements for the tutorials and HDXer analyses in Section 3.

2 Workflow of HDXer

Although we have already described the basic inputs and outputs of HDXer analyses above, 

to understand the objectives of each tutorial it is helpful to also be familiar with the general 

structure of the HDXer software and of a typical workflow. The relationship between input 

data, analyses, and output data in HDXer is illustrated in Figure 2, along with the names of 

key modules or scripts that will be used in the tutorials.
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2.1 Organization of the tutorials

The initial stage for any HDXer analysis is the collation and preparation of input data 

sources, such as the candidate structural ensemble and target (experimental) HDX-MS data, 

as specified in Section 1.2.3. We describe how to collate such input data in Section 3, while 

tutorial 1 (Section 5.2) provides a practical example of the process, with particular focus on 

dealing with experimental data from diverse sources.

Having prepared suitable input data, the next stage of an HDXer analysis involves the 

calculation of protection factors from the candidate structural ensemble, the subsequent 

calculation of corresponding deuteration levels for peptide segments, and comparison with 

experimental HDX-MS data if desired. Tutorial 2 (Section 5.3) demonstrates an application 

of the protection factor and HDX-MS data calculation functionalities.

The final possible HDXer analysis is to reweight the candidate ensemble to fit target 

(experimental) HDX-MS data. Tutorial 3 (Section 5.4) describes an example application 

based on the HDX-MS calculations completed in tutorial 2, and illustrates how to interpret 

the outputs of reweighting, namely the final structural ensemble, the reweighted HDX-MS 

data, and the metrics of Wapp and RMSE to the target data.

3 Collating inputs for HDXer analyses

All inputs to HDXer must be carefully prepared in order to avoid issues ranging from syntax 

errors to poor structural fidelity, while performing reweighting analyses. For this reason, our 

first tutorial demonstrates how experimental HDX data should be formatted for use as target 

data for reweighting. To complement that tutorial, we provide the following guidelines for 

the curation of input data, which users should follow when designing their own applications.

3.1 Curating target HDX data

HDXer assumes that target data was generated with HDX-MS experiments, which is 

currently the most widely-used method for measuring deuterium exchange. Target data 

must therefore be provided for a set of peptide fragments at one or more deuterium 

exposure times. For each peptide, HDXer expects absolute fractional deuteration values, 

i.e., ranging from 0 (undeuterated) to 1 (fully deuterated). However, many commonly-used 

HDX-MS analysis software packages (e.g., DynamX [Waters Corporation], HDExaminer 

[Sierra Analytics], or Deuteros [47]) report experimental data as the raw difference in 

peptide mass, mt − m0 as standard. Thus, for use with HDXer, these mass differences for 

each peptide and time point must be converted to fractional deuteration values by taking into 

account the peptide length and sequence (i.e., ignoring proline residues), as well as the back-

exchange experienced by the peptide after quenching the deuteration reaction. The optimal 

approach for this conversion is to normalize the observed mass differences to those observed 

in a maximally-labeled control sample, prepared and analyzed at the same time as the 

experiment samples [48]. In the absence of normalization to a maximally-labeled control, 

calculated deuterated fractions are lower bounds of the true deuteration of each peptide. 

The magnitude of back-exchange is typically reported to be ca. 30% of total exchange, 

but can vary between 10 and 50% depending on peptide composition and experimental 
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conditions [49]. Thus, omitting a maximally-labeled control normalization could lead to 

poor agreement between the calculated and experimental deuteration levels and impinge 

upon the reweighting process.

We note that for users without access to in-house experimental HDX data, it can be 

challenging to obtain suitable target data from published literature, as the format and 

information content of reported data have varied greatly. For example, HDX data obtained 

from NMR experiments can variously be reported in terms of measured protection factors, 

exchange rate constants, or absolute exchange rates. Although all of these data can be 

converted to deuterated fractions, as required by HDXer, the metadata required to do so 

(particularly pD, temperature, and buffer composition) may not have been reported. HDX-

MS data from literature sources vary similarly in the amount and style of reported data and 

methodological details can also be tricky to uncover. Prior to including such data in HDXer 

analyses, users should therefore satisfy themselves of important considerations, including, 

but not limited to, the experimental deuteration conditions, the statistical significance of 

the measured data (see below), and that the chosen peptides exchange under the EX2 

kinetic regime only. Fortunately, for HDX-MS experiments, recent consensus within the 

community has recognized the importance of standardizing the reporting and deposition of 

HDX-MS data, which should improve the reliability, accessibility, and utility of such data 

for computational analyses moving forward [48].

A final consideration during target data curation relates to the choice of the most 

relevant data. In theory, the inclusion of all available target data should restrain the 

potential solutions of the reweighting analysis and improve the spatial resolution and 

accuracy of the structural interpretations that HDXer can provide. However, the information 

content of all experimental datapoints is unlikely to be equal. Peptides that either 

remain fully undeuterated throughout the experimental timecourse, or that reach maximal 

deuteration immediately at the shortest measurement time, can only provide a lower- 

or upper-bound to the (average) Pi of the amides within the segment. A reweighting 

analysis that targets undeuterated peptides would therefore be unable to distinguish 

between alternate highly-protected conformational states. Likewise, many highly-flexible, 

de-protected conformational states would be indistinguishable in reweighting analyses 

targeting fully-deuterated peptides. Overall then, datapoints that do not exhibit significant 

differences in mass during the experimental timecourse could effectively decrease the 

signal-to-noise over the entire ensemble and result in ambiguous structural interpretations. 

Therefore, in practice, minimizing the number of datapoints without significant changes in 

deuteration over the experimental time course is likely to improve the structural fidelity of 

reweighting analyses. See also e.g. [50, 51] for useful methods to determine significance in 

HDX-MS data.

For data used to compare ensembles obtained for different states, i.e., when reweighting 

ensembles from experiments carried out under different protein conditions, e.g. apo and 

holo states, similar considerations apply. Specifically, datapoints that show significant mass 

differences between the two conditions (i.e., significant Δdeuteration) are most informative 

for reweighting. If peptides do not exhibit significant ΔHDX between states, it is impossible 

for a reweighting process to distinguish whether the two states have identical dynamics, 
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whether they have different dynamics with coincidentally identical Pi, or whether they have 

different dynamics and Pi that have been obscured by the magnitude of the experimental 

uncertainty. Thus, it can be advantageous to minimize the number of peptides with non-

significant ΔHDX, in which case only the datapoints that contribute most to the differences 

between states drive the outcome of the reweighting.

Nevertheless, filtering of the target experimental data may be undesirable if it means key 

structural regions of interest are removed from the target dataset. The best approach to data 

curation may often be to design experimental measurements that are able to characterize 

the full range of protein dynamics, and that are as sensitive as possible to small differences 

between states. Careful optimization of experimental timepoints, temperature, pD, peptide 

coverage, and redundancy is therefore always recommended as part of the data curation 

process for HDXer analyses, and for HDX-MS experiments in general [48]. Further 

suggestions in this regard are provided in Section 6.4.

3.2 Curating a structural ensemble

As mentioned in Section 1.2.1, there are numerous methodologies that can be used to 

prepare a suitable candidate protein structural ensemble for reweighting. However, we 

expect that most HDXer applications will make use of protein structures generated by 

MD simulations. HDXer relies upon the MDTraj package to read and analyze biomolecular 

structures and trajectories, which confers the ability to read coordinate and topology file 

formats used by most major MD software packages. For further details users should consult 

the MDTraj documentation [12].

Although users should plan their MD simulation protocol carefully depending on the 

specific question at hand, we make the following general recommendations based on our 

own experience.

First, the sampling obtained using multiple, independent, repeat simulations (using, e.g., 

different initial seeds) is typically superior to that obtained from a single, long simulation, 

and allows the convergence of the simulations to be straightforwardly assessed [52–

54]. Moreover, sampling from multiple replicates can also be used to interrogate the 

reproducibility and variance in HDXer analyses. The reweighting algorithm itself is a 

deterministic gradient descent procedure. Thus, the outputs of HDXer analyses will only 

vary if the inputs (either the target HDX-MS data, the predictive model, or the candidate 

ensemble of structures) are also varied. Since, in many cases, users will wish to maintain 

an identical target dataset and predictive model across all their analyses, the only means 

by which to assess the uncertainty in the final reweighted ensemble is by varying the input 

structural ensemble. In other words, carrying out multiple reweighting experiments with 

independent candidate ensembles provides a straightforward way to assess the variance in 

the accuracy of the predictions. See Section 6 for more detail.

Second, in common with all MD studies, the length and level of sampling in the simulations 

should be chosen based on the timescales of the dynamical motions under investigation. In 

general, structural fluctuations over ps to ns timescales may be accessible to conventional, 

unbiased MD. Motions across μs to ms timescales, for example the refolding of local 
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structural features in a Heme binding protein [55], are likely to require enhanced sampling 

approaches [27] (although note that motions only seen on even longer timescales may be 

associated with global unfolding and EX1-type kinetics, which is as yet unsuitable for 

HDXer analysis). When using enhanced sampling techniques, users should endeavor to 

include structures that are representative of the equilibrium dynamics within the candidate 

ensemble, and no others. A relevant example is provided by the binding protein TeaA, used 

during the development of HDXer. Specifically, bias-exchange metadynamics simulations 

had been used to explore the complete free-energy landscape of the TeaA conformational 

changes [56], but only the unbiased replica of the simulations, which represents the 

equilibrium dynamics, was used as the prototypical candidate structural ensemble during 

reweighting [8]. An alternative method, for simulation techniques that do not include an 

unbiased ensemble, would be for users to ensure that the initial weights of their frames 

reproduce a Boltzmann distribution [57, 58]. Instructions for assigning initial weights can 

be found in the HDXer ‘docstring’ help text, accessible in an interactive Python interpreter 

session by running: help(HDXer.reweighting.MaxEnt.run).

Third and finally, in an effort to reduce the ‘structural noise’ present in the candidate 

ensemble, simulated frames should be statistically uncorrelated from one another. Of course, 

the correlation times for protein dynamics are likely to vary between systems. However, as a 

rule of thumb we recommend that structures be extracted at no less than 10 ps intervals.

4 Selecting parameters for HDXer analyses

HDXer is highly customizable and almost all the options used during an analysis can 

be user-specified. These parameters can be divided, broadly speaking, into four distinct 

contributions, namely: (a) intrinsic rates for each amino acid type in different sequence 

contexts; (b) experimental conditions, such as pD or T, that impact the conversion of 

deuteration levels to protection factors; (c) other free parameters required by the predictive 

model; and (d) parameters defining the process of reweighting. The values of (a) and (b) are 

expected to require only minor adjustments for each new application. The selection of values 

for (c) and (d) is discussed in the following sections.

4.1 Parameters for computing HDX-MS data from structures

The predictive model (Equation 4) used by HDXer to compute protection factors from 

molecular structures includes two key scaling factors, βC and βH. These factors determine 

the relative contributions of H bonds and contacts to the structural protection attributed 

to the protein fold and ultimately define the estimated ΔG of the conformational motions 

resulting in exchange [37, 38]. The relative importance of these two structural factors to 

the energy may vary, both between and within proteins, and so the optimum values of the 

scaling factors in our empirical predictive model may also vary. As introduced in Section 

1.2.2, the default scaling factors used by HDXer (βC = 0.35, βH = 2.0) were originally 

parameterized using protection factor data for small, globular proteins [38]. However, for 

HDX calculations for larger proteins, or those in non-aqueous environments, the default 

values may not be suitable and we therefore recommend that users explore the effects of 

changing βC and βH before embarking upon intensive reweighting analyses.
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In practice, we propose that users perform such an exploration using a similar approach 

to that used in the original parameterization. That is, calculating protection factors using 

a range of β scaling parameters of similar magnitude to those explored by Best and 

Vendruscolo and assessing the agreement between the calculated and experimental HDX-

MS data. From the resultant parameter surface – exemplified in Figure 3 of tutorial 2 — 

users can not only assess the optimal β parameters for their system (those that result in the 

smallest error with respect to the experimental data), but also visualize the sensitivity of the 

predictive model to small parameter changes. This process can provide insight into the ideal 

selection of β parameters for a subsequent reweighting analysis and whether the parameters 

should be re-optimized as part of that process while the ensemble populations are being 

shifted. Moreover, such an assessment can highlight whether the predictive model is at all 

appropriate for the protein under study and thereby preempt problems and inaccuracies that 

might arise during a reweighting study. We therefore recommend this analysis as a starting 

point for all HDXer applications.

4.2 Parameters for ensemble reweighting

During reweighting itself, there are two additional parameters that merit careful 

consideration. The first parameter, known as the stepfactor, affects the efficiency and 

performance of the analysis. As detailed in Section 1.2.3, the process of reweighting 

iteratively solves a series of equations to determine the relative weights of individual 

structures in the candidate ensemble. These final relative weights arise from the λ values 

(see Equation 6), which are determined by a gradient descent procedure, whose initial step 

size is controlled by the stepfactor parameter.

The choice of stepfactor therefore determines the efficiency of the gradient descent 

procedure. From a conceptual standpoint, a large value of stepfactor will lead to large 

initial moves in λ and consequently more rapid λ optimization. However, as with any other 

gradient optimization procedure, if the chosen stepfactor is too large, users will encounter 

overshooting, oscillations, or non-convergence of λ values. By contrast, a small stepfactor 
will precisely converge the optimal λ values, but at the expense of an increased number of 

iteration cycles (i.e., compute time). We have provided a small default value of stepfactor 
for the HDXer analyses to err on the side of caution, and to avoid common gradient 

optimization problems at the expense of computational cost. However, we recommend that 

users begin each study with short trials, using a subset of their candidate ensemble, to 

determine the suitable range of stepfactor values for their own applications. Our tutorials 

should provide some insight into this process.

The choice of stepfactor may also be closely linked to the second key reweighting parameter, 

γ. As described in Section 1.2.3, modifying γ allows the user to control the width of 

the uncertainty distribution incorporated in the reweighting process (Equation 7). Small 

values of γ result in a broad uncertainty distribution, which, in principle, implies low 

confidence in either the target data, the accuracy of the predictive model, or the structural 

comprehensiveness of the candidate ensemble [19, 46]. Accordingly, small values of γ result 

in little bias being applied to the candidate ensemble and small shifts in population. Vice 
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versa, large γ values imply a high degree of confidence in the input data and thus that the 

candidate ensemble should be tightly fit to the target data.

In practical applications of HDXer, it is unlikely that users will be able to accurately 

quantify all the different sources of uncertainty in the input data and hence identify an 

‘optimal’ γ value for their analysis a priori. It is therefore important for users to run multiple 

HDXer analyses to assess how the apparent work, Wapp and RMSE to the target data vary 

across a range of γ values [19]. This data can be used for selecting a suitable γ value 

and a corresponding final reweighted ensemble, or conversely to identify overfitting, and is 

therefore an important part of any statistically robust HDXer analysis. We provide a practical 

demonstration of this crucial process in the tutorials described below.

5 Tutorials

The HDXer tutorials guide the user through each stage of an HDX ensemble reweighting 

analysis using a series of interactive Jupyter notebooks. Each Jupyter notebook contains a 

brief introduction, interactive scripts in Python or Bash, and discussion of the steps involved 

in reweighting.

The tutorial folders also include the two example data sets required to perform HDX 

ensemble reweighting: experimental HDX data and a candidate structural ensemble. 

Specifically, data for Bovine Pancreatic Trypsin Inhibitor (BPTI) is provided. BPTI is 

a small and compact globular protein and has been studied extensively, including using 

HDX methodologies. We complement these experimental HDX data with MD simulation 

trajectories.

In the tutorials, we walk the user through the following steps:

1. Installing the HDXer software

2. Preparing the experimental HDX data

3. Computing HDX levels for an ensemble of BPTI structures

4. Reweighting the ensemble of BPTI structures to fit the experimental data.

5.1 Installing the HDXer software

The HDXer software itself is a Python 3.7 package, which the tutorials assume has been 

installed and is accessible to the user’s Python environment. Installation of the HDXer 

package, as described in Section 1.1.2, provides the user with access not only to the scripts 

that perform HDX ensemble reweighting, but also to the data files and Jupyter notebooks 

necessary for the tutorials. Detailed installation instructions can be found on the main page 

of the HDXer GitHub repository (https://github.com/Lucy-Forrest-Lab/HDXer); software 

requirements for the installation are provided in Section 1.1.2.

During the installation, the user creates a Conda virtual Python environment specific for 

HDXer called HDXER_ENV, which helps to ensure that the necessary dependencies have been 

installed and that HDX ensemble reweighting produces the expected results. The user also 

creates an environment variable specifying the location of HDXer, $HDXER_PATH, allowing 
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easy access to the HDXer directory and simplifying the process of running the scripts. 

Although the tutorials are written for use with a Conda virtual environment and Bash shell, 

the notebooks should be transferable to other environment managers and shells, if necessary, 

with only minor syntactic modifications, provided that the above naming convention is 

followed. In all cases, we recommend that the user runs the functional tests provided with 

HDXer to check for a successful installation prior to running the tutorials; instructions can 

be found in the installation notes provided in the README.md file.

By now, the user should have the HDXer software installed and access to the materials 

needed for the tutorials. We encourage the user to follow along with the Jupyter notebooks 

in the next few sections for an interactive learning experience. The notebooks can be found 

in the $HDXER_PATH/tutorials/notebooks/ folder.

5.2 Tutorial 1: Preparing experimental HDX data for use with HDXer

5.2.1 Introduction—The first tutorial notebook focuses on ensuring that the data to be 

used in HDXer is formatted correctly. We anticipate that most HDXer users will obtain 

their data from HDX-MS measurements, so HDXer expects target experimental data to be 

provided in an HDX-MS style, i.e., fractional deuteration values (also known as relative 

fractional uptake RFU), for peptide segments at specific experimental deuterium labeling 

times. However, there are a number of other, inter-convertible, metrics that can be used 

to describe the deuterium uptake of a protein over time. For example, NMR data may be 

quoted in terms of residue-level Pi, or ΔGexch. Therefore, it is important to know how 

data types can be interconverted. In the first step of the tutorial, we will illustrate how 

to convert residue-level protection factors from NMR experiments into a HDX-MS style 

dataset suitable for use with HDXer. Example scripts can be found in the first Jupyter 

notebook: 01_data_prep.ipynb.

5.2.2 Prerequisites—For this tutorial, users should be familiar with the general 

concepts and terminology of mass spectrometry (MS) measurements. A familiarity with 

software used to process HDX-MS experiments will also be useful for users preparing 

their own data for HDXer analyses. In particular, knowledge of the contents of processed 

HDX-MS data files, which are usually in comma-separated value (csv) format, will be 

necessary to convert files into the space-delimited text format expected by HDXer.

5.2.3 Tutorial steps and results

Gathering required data –: The experimental HDX data that we will use for BPTI 

were first reported as observed H-D exchange rate constants for discrete backbone amides, 

measured by NMR [59, 60]. However, rate constants for individual residues were measured 

in different experiments, at various different temperatures and pD values. As such, the 

residue-level exchange data cannot be combined into a single data set without first 

standardizing the exchange rates to a single set of experimental conditions. In practice, 

the observed exchange rate constants should be converted into protection factors for 

each residue, Pi using Equations 4 and 5 as described in Section 1.2.2. This is because, 

conceptually, Pi is a thermodynamic metric independent of the exact experimental conditions 

used to measure HDX, assuming that the experimental conditions do not modify the 
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structure and dynamics of the protein from the native ensemble. Conveniently, the original 

NMR exchange data for BPTI have already been converted to protection factors in a study 

by Persson & Halle [35]. In this tutorial we will further convert the experimental protection 

factors into fractional deuteration values for each residue, as if the data had been recorded by 

HDX-MS experiments, rather than NMR.

The original data listed in BPTI_expt_PFs.dat are provided in the BPTI_expt_data 

directory. This file contains protection factors for the majority of, but not all, individual 

backbone amides in BPTI. According to Equation 5, conversion of these values to deuterated 

fractions requires: (i) the deuterium labeling times at which to calculate the HDX levels 

(t), and (ii) intrinsic rates of exchange (kint). Generally speaking, for real HDX-MS target 

data the timepoints will correspond to the labeling times used during the experiment. In this 

tutorial, we will calculate the fractional deuteration at a range of labeling times typical of 

those covered by bottom-up HDX-MS, namely 0.167, 1.0, 10.0, and 120.0 minutes.

The second requirement, the intrinsic rate constant for each backbone amide in a protein, 

depends upon the chemistry of the neighboring residues as well as the temperature and pD 

of the reaction solution and can be readily computed from a table of intrinsic rates for each 

amino acid type. For the users’ convenience, we provide the intrinsic rate constants of each 

residue in BPTI, computed at pD 7.4 and 298 K, in the file BPTI_Intrinsic_rates.dat, 

which can also be found in the BPTI_expt_data directory. These intrinsic rate constants 

are based on reference measurements of amide exchange rates in solution, with sequence-

based corrections to the rate constants [44, 45]. These values can also be obtained at a 

specified pD and temperature using the calc_hdx.py Python script, as explained in Section 

5.3.3 below.

With these data in hand, the first steps of the tutorial guide the user through the process 

of reading in the experimental Pi and kint values. Although BPTI_Intrinsic_rates.dat 

contains intrinsic exchange rate constants for every non-proline backbone amide in BPTI, 

note that, as is common, the experimental HDX protection factor data for BPTI does not 

cover every residue in the protein. Therefore, to prepare for the calculation of residue 

deuterated fractions, the tutorial notebook next compares and filters the arrays of the 

experimental protection factors and the intrinsic rate constants, to remove residues that are 

not present in both data sets.

Converting fo deuferafed fracfions –: Having gathered files containing the protection 

factors, intrinsic rates, and timepoints, the user is now guided through the steps to compute 

residue-based HDX deuterated fractions, according to Equation 5. However, since HDXer 

expects deuterated fraction data to be provided for peptide segments rather than individual 

residues, a further formatting step is required. Specifically, the experimental data text 

file should space-delimited, with columns detailing (1) the starting residue of the current 

peptide segment, (2) the ending residue of the current peptide segment, and (3 -> n) 

the fractional deuteration at each experimental timepoint. The penultimate step of this 

notebook provides example Python commands to create such a peptide-level data file, called 

BPTI_expt_dfracs.dat.
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Note that, by default, the first residue in every peptide segment is ignored by HDXer 

and does not contribute to the average HDX deuterated fraction of each peptide at each 

experimental timepoint. This is because HDXer assumes that any deuterium labeling of the 

first residue in each HDX-MS peptide segment is completely back-exchanged to hydrogen 

after the quenching of labeling and digestion of the intact protein, as the hydrolyzed amide 

is converted to an extremely labile, N-terminal amine [44, 49]. Accordingly, for residue 

numbers in the first two columns of the experimental datafile of a and b respectively, 

corresponding to the first and final residue of a given peptide segment, the calculation 

will consider only the residues from a + 1 to b. Thus, in the case of BPTI, the fractional 

deuteration for HDX-MS peptide segments of length 2 (residue i – 1 to residue i) actually 

represents the fractional deuteration of individual residue i. This detail should be kept in 

mind when users prepare their own datasets for use with HDXer.

Finally, by way of visualization, the tutorial invites users to plot the original protection 

factor values and corresponding deuterium uptake values over time for each residue in the 

BPTI dataset. This plot can provide an important ‘sanity check’ of the correctness of the 

conversion between HDX experimental data formats and can also help users to understand 

the practical relationship between the magnitude of Pi and of Di,t for their protein and 

experimental conditions of interest (i.e., pD, T, etc.).

5.2.4 Conclusion—After completing the first notebook, users should have a clearer 

understanding of the type of data needed by HDXer, as well as the specifics of processing 

raw data files into the required formats. The next stage involves generating HDX data from a 

candidate structural ensemble that is to be reweighted.

5.3 Tutorial 2: Producing a structural ensemble and associated HDX data

5.3.1 Introduction—The goal of HDXer is to facilitate the structural interpretation of 

experimental HDX data in molecular detail. To do so, we generate an ensemble of structures, 

calculate the corresponding HDX levels according to a predictive model, and manipulate the 

ensemble to highlight the configurations of that ensemble that are most representative of 

the data. The second Jupyter notebook, 02_calc_hdx.ipynb provides an example ensemble 

of structures for BPTI, explains the predictive model used to estimate protection factors 

and corresponding HDX-MS data for each snapshot, and guides users through such an 

HDX-MS calculation for BPTI. The computed HDX values will then be compared with the 

experimental BPTI data that were prepared during Tutorial 1.

5.3.2 Prerequisites—The key requirement for this tutorial is an ensemble of atomistic 

structures for BPTI, which will be used both for computing HDX levels and for the 

later reweighting steps. For BPTI, we provide in-house MD simulation trajectories in a 

repository on Zenodo (https://dx.doi.org/10.5281/zenodo.4640760). This repository contains 

five replica trajectories, each 500 ns long, from five separate simulations of BPTI in 

solution. To follow along with all the steps in this tutorial notebook, users should download 

the entire directory containing all five runs (i.e., BPTI_simulations) from Zenodo into 

the existing $HDXER_PATH/tutorials/BPTI/ folder. However, for users short on time or 

storage space, we also provide a reference set of computed HDX-MS data, which can be 

Lee et al. Page 19

Living J Comput Mol Sci. Author manuscript; available in PMC 2023 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Lucy-Forrest-Lab/HDXer/blob/master/tutorials/notebooks/02_calc_hdx.ipynb
https://dx.doi.org/10.5281/zenodo.4640760


used to follow the visualization and analysis steps of the tutorial. These data are available in 

the $HDXER_PATH/tutorials/BPTI/BPTI_calc_hdx/ folder.

5.3.3 Tutorial steps and results

Computing HDX data for MD simulation snapshots –: In this tutorial we introduce the 

calc_hdx.py Python script (see Figure 2), a wrapper script that allows users to compute 

HDX-MS data for each frame in an ensemble of structures. This script is run using a Unix 

command line interface and allows the input filenames, method type, analysis options, and 

output filenames to be specified via command-line flags.

In the first step of the tutorial we set up and describe the calc_hdx.py command to 

calculate HDX-MS data from the BPTI MD trajectories. We encourage users to review 

the help text provided by calc_hdx.py (accessible by running calc_hdx.py –h on the 

command line), which explains how to use the command line flags.

Next, we run calc_hdx.py to compute HDX-MS data from the BPTI MD trajectories, 

using a default set of options. Specifically, we utilize the BestVendruscolo method flag, a 

predictive model named after its developers [38], to compute protection factors. As shown 

in Equation 4, this model uses the number of H bonds and heavy atom contacts formed by 

each amide NH group to calculate the protection factor for each backbone amide. By default, 

HDXer evaluates H bonds and contacts in an identical way to the originally-parameterized 

model: an H bond is counted if there is a protein oxygen atom found within 2.4 Å of 

the amide H atom, while heavy-atom contacts are computed as the total number of nearby 

protein non-hydrogen atoms within a radius of 6.5 Å of the amide N atom. Contacts from 

the sequence neighbors of the amide (residues i − 2 to i + 2) are excluded from the total. 

The first step of the tutorial explains how users can modify these options, e.g., to replace the 

distance-based H bond calculation with a combined distance and angle cutoff, or to include a 

bound ligand in the calculation of contacts and H bonds.

In addition, users can modify the scaling factors, βC and βH, that quantify the relative 

contributions of heavy atom contacts and H bonds to the protection factors. As mentioned 

in Section 4.1, exploring a range of β parameters can provide information regarding the 

accuracy of the BestVendruscolo predictive model for a given protein system and associated 

set of HDX-MS data. Since an interactive exploration of βC and βH parameters is too time 

consuming for a tutorial, we instead provide the results of such an analysis for the BPTI data 

in Figure 3. This analysis demonstrates that, for our BPTI trajectories at least, the optimal 

values of βC and βH are close to their default, originally-parameterized, values of βC = 

0.35 and βH = 2.0. We will return to this analysis in Tutorial 3, when deciding whether to 

automatically optimize β parameters during the reweighting of the BPTI ensemble.

The final series of calc_hdx.py options that users are invited to select during the tutorial 

relates to the intrinsic exchange rates for each backbone amide. Intrinsic exchange rate 

constants, kint will be computed by HDXer automatically, based upon the amino acid 

sequence of the protein provided to calc_hdx.py and the temperature and pD conditions at 

which the experimental data was measured. By default, calc_hdx.py calculates such rates 

assuming the experiment was performed at 298 K and pD 7.4, but the latter values can be 
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straightforwardly altered via the command-line flags, as illustrated in the tutorial. Finally, 

to complete the calculation of exchange rates as per Equation 5, the user should provide a 

list of labeling times that reflect the protocol used to generate the experimental data, or else 

default values will be used.

Plotting computed HDX data –: The agreement between the HDX data inferred from the 

structural ensemble and the experimental data can be assessed using plots of the deuterated 

fraction for each peptide fragment. The tutorial therefore guides users through the creation 

of such plots, as well as the calculation of some simple descriptive statistics to characterize 

the agreement between computed and experimental data. The output for BPTI illustrates 

good agreement for most peptides in the dataset, with an overall R2 for the predictions of 

0.59 and a RMSE between the computed and experimental fractional deuteration values of 

0.30.

5.3.4 Conclusion—During Tutorial 2 we calculated HDX data from an ensemble of 

structures of BPTI and compared the results to experimental HDX data. In the case of BPTI, 

the computed and experimental HDX data correlate reasonably well (R2 = 0.59), which is 

not uncommon, but offers clear scope for improvement. In cases when the correlation is 

poor, even for only a few individual residues, it can be challenging to distinguish between 

the multiple possible sources of mismatch. These sources include errors in the experimental 

data or the HDX prediction model as well as limitations of sampling in MD simulations. 

Another possibility is that the structural ensemble contains the correct structures, but 

that they are not in the correct proportion. By allowing for reweighting of the structural 

ensemble, HDXer can rigorously account for all these sources of error. The next section of 

the tutorial will describe how to perform reweighting on the BPTI data set.

5.4 Tutorial 3: Ensemble reweighting

5.4.1 Introduction—Having completed the first two tutorials, the user should now have 

all the necessary files to perform reweighting of a candidate ensemble of BPTI structures 

so that they conform to a target set of BPTI experimental HDX data. As mentioned above, 

the process of reweighting applies a minimal bias to the candidate ensemble to identify 

a structural ensemble that conforms to the experimental HDX data within a given level 

of uncertainty (Equation 7). The level of uncertainty, and correspondingly the magnitude 

of bias applied, is controlled by the parameter γ, which must be chosen by the user 

and supplied to HDXer for each reweighting analysis. In practice, to avoid overfitting, 

reweighting should be carried out in multiple iterations in which γ values are varied. The 

accuracy of the reweighted data (e.g. the RMSE between the computed and target HDX) 

and the bias applied (in terms of Wapp) should then be evaluated for each iteration. Tutorial 

3 comprises three Juypter notebooks that show the user how to design and carry out an 

example reweighting experiment (03_reweighting.ipynb), how to determine a ‘suitable’ 

γ value in a post hoc fashion (04_decision_plot.ipynb), and how to analyze the results 

(05_heatmap.ipynb).

5.4.2 Prerequisites—Files containing the target experimental HDX-MS data, the 

intrinsic rates for each protein residue present in the candidate structures, and the residue-
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level contacts and H bonds used for the computed HDX values, are all required for 

HDX ensemble reweighting calculations. Furthermore, the deuterium labeling timepoints 

associated with the target experimental data are also necessary; these are provided as 

keyword arguments to HDXer in a Python script, rather than in a separate file. Thus, the 

user should have completed the previous sections of the HDXer tutorials to ensure that 

they are aware of the contents of the required files and how they will be used during HDX 

ensemble reweighting.

5.4.3 Tutorial steps and results

Reweighting with varying levels of allowed uncertainty –: Within the HDXer package, 

maximum entropy reweighting analyses are contained within the HDXer.reweighting 

module. As such, users can straightforwardly customize and carry out reweighting by 

writing only a few lines of Python code that make use of this module. Notebook 

03_reweighting.ipynb provides an example of commands to first set up a reweighting 

analysis as a HDXer.reweighting.MaxEnt object and subsequently to run reweighting 

interactively across a range of γ values from γ = 1 × 10−3 to γ = 9 × 10−3.

The value of γ ultimately determines the level of uncertainty allowed in the fit of the 

computed HDX data to the target experimental data. That is, higher values of γ will cause 

a larger bias to be applied to the candidate ensemble, resulting in the reweighted data being 

fitted more tightly to the target experimental HDX data. Consequently, the discrepancy, or 

error, between the final computed HDX data from the reweighted ensemble and the target 

experimental HDX data will be reduced.

After performing ensemble reweighting, HDXer produces output files containing the 

following data: the individual weights (i.e., relative probabilities) of each structure in the 

ensemble; the final computed deuterated fractions for that reweighted ensemble; the mean 

squared error between the computed and target experimental HDX data; and finally, the 

‘apparent work’ that was applied as a bias to the ensemble as a whole.

By inspecting the output files generated by notebook 03_reweighting.ipynb, users will 

find that very little bias was applied to the candidate ensemble for the range of γ values 

explored, and therefore the reweighting did not substantially improve the agreement of 

the computed and experimental data. This is deliberate: for the tutorial, these γ values 

were selected so that the iterative reweighting process will converge relatively quickly. 

Specifically, these steps of the notebook should take approximately 10-15 minutes to run on 

a modern desktop or laptop. Users can, of course, modify the notebook so that a much wider 

range of γ values are tested, including larger values that will apply higher levels of bias 

to the underlying BPTI ensemble. However, to save the user the additional computer time 

we also provide output files for reweighting analyses performed with γ values that range 

from 1 × 10−3 all the way to 9 × 100. These files will be used in the following notebook, 

04_decision_plot.ipynb.

Creating a decision plot –: Having performed reweighting with a wide range of γ values to 

generate a series of reweighted ensembles, the next step is to select an appropriate γ value 
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for which the user can inspect the structural effects of reweighting in detail. However, if the 

chosen γ value is too high, overfitting can readily occur.

In this context, overfitting means that the final reweighted ensemble has been fitted 

more closely to the target data than is justified by the uncertainty in the reweighting 

analysis. Uncertainty in the analysis can stem from either experimental, predictive model, or 

structural sampling inaccuracies. An overfitted ensemble is therefore unlikely to accurately 

represent the structures present in the experimental HDX-MS sample. In practical terms, 

overfitting during reweighting will result in a large increase in applied bias (apparent work), 

for little improvement in accuracy to the target data. To identify these situations, we suggest 

that users create a ‘decision plot’, also know as an ‘L-curve’, and apply a heuristic to select 

an optimal γ from the range of tested values.

In notebook 04_decision_plot.ipynb we therefore create a decision plot of Wapp 

against the mean squared error between the computed and experimental HDX data (Figure 

4). The most suitable γ for the subsequent analyses, i.e., that producing the closest 

agreement to experiment without inducing overfitting, can be identified by looking for a 

sharp elbow, or ’L’, shape in the decision plot. In some cases, the potential for multiple 

sources of uncertainty in reweighting analyses means that overfitting can be a gradual 

process, and no sharp increase in Wapp is visible in a decision plot. In this case, users can 

apply a cutoff metric to the Wapp value to keep the applied bias within a reasonable range 

(e.g., 2-3 kBT).

Here, we keep the work value below 4 kJ mol−1 (roughly 1 kcal mol−1) and choose a γ value 

of 2 × 100, based on Figure 4. To visualize the effects of the bias applied at this γ value, 

we plot an overlay of the computed deuteration values before and after reweighting, which 

demonstrates how the accuracy of the computed data (compared to the experimental HDX) 

improves as a result of reweighting. An example is shown for the 1-minute labeling time in 

Figure 5. Finally, we recognize that the choice of γ at which to evaluate reweighting is a 

nuanced decision and may not always be as straightforward a choice as for the reweighting 

of BPTI presented in the tutorial. Interested users can find more discussion of the concepts 

and practicalities of overfitting, including tests of the sensitivity of ensemble reweighting to 

the effects of randomly-added noise, in our original article on HDXer [8].

Plotting a heatmap –: After performing reweighting, at the end of notebook 

04_decision_plot.ipynb, users create line plots comparing the computed values with 

the target experimental data at each labeling time (see Figure 5), providing a simple 

visualization of how reweighting has improved the agreement of the computed HDX-MS 

data with the target data. However, such visualizations do not readily allow comparison 

of data from multiple time-points and multiple conditions simultaneously [48]. Such plots 

also neglect the structural context of the HDX-MS calculations and thereby the impact of 

reweighting on the structural ensemble itself. Therefore, in notebook 05_heatmap.ipynb, 

we explore some alternative (albeit not exhaustive) ways to visualize the effects of 

reweighting.
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First, users create a heat map to represent the changes in deuterated fractions after 

reweighting for each residue and each timepoint simultaneously (Figure 6A). In this case, 

the columns correspond to residues in BPTI for which HDX-MS data was computed, 

while the rows represent the time points at which exchange was computed. Each pixel 

is then colored by the the difference between the calculated deuteration before and after 

reweighting, ΔDi,t = Di,t,final - Di,t,initial, such that regions colored red exhibit higher levels of 

deuteration as a result of reweighting, while regions colored blue are predicted to have lower 

levels of deuteration.

Next, users can interpret the effects of reweighting in a structural context by mapping the 

same data onto an example BPTI structure (Figure 6B). Here, we use a crystal structure of 

BPTI, but users could equally overlay the ΔD data onto conformations from the candidate 

BPTI ensemble itself.

At this point, users may wish to probe the structural effects of reweighting in more depth 

with additional, independent, analyses of the reweighted structures present in the final 

ensemble. For example, in this case, the impact of reweighting on the final calculated 

deuterated fractions (represented by ΔD) is relatively small across the different labeling 

times, but is not uniformly distributed across the entire protein. In particular, reweighting 

did not seem to affect the calculated deuteration for residues 19 to 35, some of which 

showed large discrepancies compared to the experimental target data initially (Figure 5). 

The residual error between the calculated and experimental data in these regions may arise 

from a variety of sources; we will discuss possible approaches to delineate the cause of 

these discrepancies below, in Section 6. Nevertheless, for other regions of BPTI, the final 

calculated HDX-MS values are in good agreement with the target data, illustrated by closely 

matching deuteration levels in Figure 5. This observation suggests that the reweighting 

approach has led to a reasonable description of the structure and dynamics of these regions 

in the final reweighted ensemble.

5.4.4 Conclusion—In Tutorial 3, we performed HDX ensemble reweighting for BPTI 

with simple Python scripts and tracked the accuracy of the calculated HDX-MS data and 

the total bias applied to the candidate ensemble across a range of γ values. We discussed 

how users can choose a suitable γ value at which to analyze the final reweighted results 

and provided examples of simple analyses that users can apply to interpret their data. 

Although the examples provided in Tutorial 3 are by no means exhaustive, at this point 

we expect users will be familiar with the basics of performing HDX ensemble reweighting 

and analyzing the outcomes and be ready to apply the approach to their own systems and 

target datasets. As such, in the final section below, we explain how users can evaluate 

the reliability and robustness of their own reweighting analyses, in order to confidently 

understand what information their results can, and cannot, provide.

6 Minimizing uncertainty and improving robustness

A crucial final step for HDXer analyses, to which we have alluded in many sections above, 

is to ensure that the outputs from reweighting analyses are robust and that conclusions can 

be drawn from the reweighted structural ensemble with confidence. Users will naturally 
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wish to understand how choices made during the HDXer analyses can affect their results, 

to quantify the uncertainty in their final structural ensemble, and ultimately to validate the 

accuracy of their conclusions.

An optimal approach to probe the accuracy of HDXer results would be to cross-validate 

the reweighted structural ensemble against other structural or functional data and to assess 

the consistency of the interpretations thereof. For example, the final reweighted structural 

ensemble could be used to make predictions of complementary solution-state structural 

data such as SAXS, SANS, or NMR, or to predict specific structural features such as 

distance distributions observed in DEER, FRET, or crosslinking-MS experiments. In making 

these predictions, users should remember that HDXer applied with the phenomenological 

predictive model here [38] characterizes predominantly the amide C state structures and 

dynamics (Section 1.2.2). The experimental solution state dynamics will inherently include 

fluctuations to amide O states, including large or slow transitions not well-captured by 

HDXer. For this reason, predictions of alternate experimental data from HDXer ensembles 

may not be equivalently accurate for all protein systems. Nevertheless, for a given protein, 

cross-validation of the reweighted ensemble may be particularly useful to generate testable 

hypotheses of the structural effects of mutations or changes in environmental conditions, 

where we would expect that the relative structural differences between different protein 

states would be consistently identified by many experimental techniques.

In the absence of external cross-validation there are a number of internal checks that can be 

performed to validate the self-consistency, and to quantify the uncertainty, of HDXer results. 

We discuss some suggested, albeit not exhaustive, checks below. These checks are designed 

to probe uncertainties in the final results arising from three potential sources of error: (a) the 

choice of target HDX-MS data, (b) the choice of the predictive model, and (c) the choice of 

the candidate ensemble of structures for reweighting.

6.1 Uncertainty arising from target data

An advantage of using HDX-MS data for computational ensemble reweighting, compared to 

data from other structural biology approaches, is the ability to straightforwardly subsample 

the experimental measurements. Bottom-up HDX-MS experiments are performed by 

sampling the level of deuterium exchange from continuous labeling in solution at multiple 

sequential timepoints and for multiple independent, often overlapping, peptides. Each of 

these datapoints, of course, is sampled from the same underlying experimental ensemble 

and should independently encode protein dynamical information that HDXer can use to 

fit the weights associated with each candidate structure. Nevertheless, the experimental 

uncertainty associated with each measured datapoint may differ, perhaps thanks to minor 

changes in labeling or analysis conditions during the experiment, or sample variability 

that affects the structure or dynamics of particular protein regions differently. Identifying 

any protein regions or experimental timepoints that result in inconsistent HDXer structural 

interpretations can therefore provide insight into the veracity of the target experimental data.

A standard approach used to test the robustness of model-fitting analyses is to split target 

data into independent training and test sets. For HDXer analyses this process is facilitated 

by the large number of individual (albeit correlated) timepoints and peptide segments that 
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comprise each HDX-MS dataset. To assess the level of uncertainty across the experimental 

data, we recommend that users reapply HDXer analyses with systematic variations to 

the target HDX-MS dataset and quantitatively assess the differences in the resulting 

reweighted structural ensemble. For example, a systematic ‘leave-one-out’ approach with 

target data timepoints can identify whether individual timepoints lead to specific structural 

interpretations, or vice versa result in uncertain predictions. A similar approach with 

datapoints of individual target peptides can narrow down the cause of uncertainty to 

individual regions of the protein and invite caution in structural interpretations, or highlight 

the necessity for additional experimental coverage in those regions. In summary, post-hoc 
uncertainty assessments of the HDXer target data will be aided if users perform HDX-MS 

experiments across as many timepoints as practicable and with as much peptide redundancy 

as attainable. We suggest that users take this into account during the experimental design, 

where possible.

6.2 Uncertainty arising from the predictive model

HDXer relies on an empirical predictive model (Equation 4) to estimate residue P,i from 

structural metrics. As discussed above, the optimal empirical scaling factors of this model 

may vary for different classes of proteins, particularly where structural protection is afforded 

by the surrounding environment, e.g., in lipid bilayers. Thus, as part of the preparation 

process for HDXer analyses, users are advised to explore a range of different scaling factors 

to identify parameters well-suited to their system (Section 4.1). Nevertheless, as precise 

exchange mechanisms may even vary within a protein, so too may the accuracy of the 

predictive model used to estimate P,i [34, 61, 62]. If users wish to investigate the local 

suitability of the predictive model parameters, we suggest applying a combination of two 

techniques: i) systematically excluding protein regions from the analysis and ii) optimizing 

the predictive model parameters across a series of HDXer analyses.

If the predictive model is not representative of a particular experimental exchange 

mechanism in the protein, errors in HDX-MS calculations will likely correlate with specific 

protein regions, rather than being uniformly distributed across the whole range of target 

data. To assess the presence of such errors, users can repeat HDXer analyses after excluding 

target data for all peptides in a particular protein region. This would involve all datapoints 

that correspond to a particular location according to the sequence or structure and may 

include multiple, overlapping, peptide segments. For each repeated reweighting analysis, 

users can subsequently optimize the predictive model βC and βH parameters for the 

remaining protein regions, either by gradient optimization, Monte Carlo optimization, or 

Monte Carlo sampling; the specific optimization routine can be selected using corresponding 

Python arguments to HDXer as exemplified in the tutorial notebooks. If the optimal βC 

and βH remain consistent as each region of the protein is excluded from the analysis, the 

predictive model is likely to be equally suited to all protein regions. By contrast, if the 

optimal parameters for individual regions vary beyond the range that the user would expect, 

according to the parameter exploration of Section 4.1 (e.g. Figure 3), it is possible that 

a single predictive model does not estimate Pi for all those protein regions with equal 

accuracy. In that event, and assuming that other sources of error are thought to be consistent 

across each protein region, users may choose to repeat their HDXer analyses using target 
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data divided into sets, each set encompassing a given protein region, and each associated 

with a different predictive model. The structural effects of reweighting should then be 

analyzed separately for each protein region.

6.3 Uncertainty resulting from the candidate ensemble

The final source of error in HDXer analyses is perhaps the most straightforward for users 

to identify and characterize. As referenced throughout the tutorials, an ideal candidate 

ensemble for reweighting should cover all ‘experimentally-relevant’ protein conformational 

states but contain very few ‘irrelevant’ conformations. Extraneous protein conformations 

pose a challenge because they must be downweighted in order to amplify the ‘signal’ of 

structural motifs that conform well to the experimental HDX-MS data. This ‘structural 

noise’ can arise either from insufficient sampling in the generation of the candidate 

ensemble, or from systematic sampling of conformations that are not relevant to fitting 

of the target data (for example, if apo conformations are included in an ensemble being 

reweighted to fit HDX-MS data of a holo protein-ligand complex). The presence and the 

quantitative effects of any uncertainty in the candidate structures can be interrogated using a 

combination of two approaches.

Random uncertainty in the HDXer calculations can be characterized by repeating identical 

HDXer analyses with smaller random subsamples (ca. 10-33% of the full population) of 

the candidate ensemble. By applying this bootstrapping-style approach to the structures 

in the candidate ensemble, users can estimate the mean and confidence intervals of 

conformational populations in the final reweighted ensemble. In the event that users 

have already generated the candidate ensemble from independent MD simulations, an 

alternative approach to characterize the variance in sampling would be to simply average the 

reweighting results from HDXer analyses applied to each simulation separately. However, 

from our experience we recommend applying the bootstrapping approach to an ensemble 

combining all independent simulations together, rather than analyzing each simulation 

separately, since even subtle differences in the structures sampled by each simulation can 

lead to systematically different HDXer results.

To test for systematic errors in the candidate structures, users should begin by performing 

a thorough structural analysis, for example using dimensionality reduction or clustering 

techniques, in order to classify and quantify each conformational state present in their 

initial ensemble. Then, following a similar leave-one-out approach to that used above 

to identify systematic errors in the target data, users can perform repeated HDXer 

analyses using subsections of the candidate ensemble, systematically excluding each 

classified conformational state from the initial ensemble. Reweighting with the remaining 

conformational states can then be quantified with respect to the final Wapp value, the 

RMSE to the target data, and to the resultant reweighted populations, whether up- or 

down-weighted. Each trial candidate ensemble may lead to either improved (i.e. smaller 

Wapp, smaller RMSE) or worsened (i.e. larger Wapp, larger RMSE) fit to the target data. 

Substantial changes in reweighting results during a leave-one-out analysis would indicate 

that the excluded conformational state has an outsized influence on the final reweighted 

ensemble. Such states are potential outliers or sources of systematic uncertainty in the 
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reweighting results and should be visualized and assessed to determine the reason for the 

leveraging effects of including or excluding that state. Finally, if large RMSE to the target 

data remains, regardless of the selected conformational ensemble and applied Wapp, this 

might suggest that neither any structural state sampled by the MD simulation, nor any 

population mixture of sampled states, represents the experimental ensemble well.

6.4 Considerations in experimental design

The previous sections provide a number of practical approaches to assess and rectify any 

ambiguities in the computational reweighting applied by HDXer. However, any ambiguities 

that arise from the experimental data itself will be challenging and time-consuming to 

understand using the post hoc HDXer analyses described above. For example, if the HDX-

MS experiments are known to probe a highly diverse conformational ensemble with many 

states of varied populations, lengthy testing may be required to validate that the HDXer 

reweighted ensembles cover the complete experimental ensemble. Users should therefore 

carefully consider the design and analysis of their HDX-MS experiments from the outset. 

Below, we include some key points for HDX-MS experimental design that arise from our 

own experience of HDXer analyses.

Many HDX-MS experiments are designed to probe molecular complexes, for example 

in epitope/paratope mapping or protein-ligand binding studies. In this case, it is crucial 

to consider the thermodynamics and kinetics of the molecular association during the 

experiment. Users should carefully choose protein/ligand concentrations, equilibration 

times, and dilution ratios to ensure that the system studied is both at equilibrium, and as 

monodisperse as possible, during the experiment. Otherwise, experimental solutions that 

contain a mixture of conformational states or states that interconvert over experimental 

timescales, may give rise to HDX-MS signals that are particularly challenging to interpret. 

To avoid this, HDX-MS can be coupled to additional structural techniques, ranging from 

size-exclusion chromatography to native MS, for sample quality assurance [48, 63].

Assessing the quality of the obtained MS data is also crucial for reliable HDXer analyses. 

First, data should be inspected and carefully filtered to remove as much uncertainty as 

possible from the measured deuterium uptake values. For example, selecting peptides based 

on intensity (i.e. signal/noise ratio) and monitoring for artifacts (e.g. signs of aggregation) 

in mass envelopes, can minimize uneven redundancy across the protein and maximize 

the representation of peptides with state-to-state differences. Second, because predictive 

protection factor models are only applicable to exchange events with EX2-type behavior, 

peptides that exhibit EX1 or mixed EX1/EX2 behavior should be excluded. Furthermore, 

since peptides can manifest different exchange regimes over the timescale of an HDX-MS 

experiment, users should consider removing all data from labeling times at which EX1 

behavior is observed, in order to minimize the uncertainty present in the remaining (shorter) 

experimental labeling time data.

The suggestions provided above will aid the selection of reliable HDX-MS data as a target 

for reweighting analyses, but do not guarantee that every datapoint is uncertainty-free. 

Thus, careful experimental design is not a substitute for assessing the robustness of the 

HDXer reweighted ensembles using the methods described in Sections 6.1–6.3. Instead, 
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well-characterized, high-quality experimental data will simplify the quality control steps of 

HDXer analyses and enhance the accuracy and reliability of the structural interpretations. 

Accordingly, we recommend that both components (i.e., experimental and computational) be 

considered and designed in tandem. Such a strategy results in a single, integrative, HDX-MS 

and HDXer workflow, that, in our experience, is most likely to succeed in producing in an 

unambiguous answer to the biological question of interest.
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Figure 1. 
Schematic of HDX ensemble reweighting for a given peptide segment. The calculated HDX-

MS deuterated fraction for each frame in a candidate ensemble of structures is described 

by an initial distribution of calculated HDX-MS data (solid black line) with an ensemble 

average (dashed black line) that differs from the experimentally-measured value (orange 

dashed line). Maximum-entropy reweighting applies the minimum possible bias (arrow) to 

create a corrected distribution (cyan line) with an ensemble average that now conforms to 

the experimental value within a defined level of uncertainty (shading).
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Figure 2. 
Workflow of a typical HDXer analysis. Input structural and experimentally-measured HDX-

MS (orange; the dashed line denotes an optional input) can be processed through multiple 

analysis steps (blue), to obtain calculated HDX-MS data and/or a reweighted structural 

ensemble as outputs (green). The corresponding software packages or python functions 

are listed alongside each method. The tutorials cover all aspects of HDXer usage, from 

preparing input data to interpreting the outputs.
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Figure 3. 
Effect of changing the βC and βH parameters used to calculate HDX-MS data for the BPTI 

trajectories used in Tutorial 2. Contours indicate the root mean square error in lnPi as βC 

(x-axis) or βH (y-axis) are varied from their default values, βC = 0.35 and βH = 2.0
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Figure 4. 
Decision plot for the BPTI MD simulation trajectories. An L-shaped curve reveals a sharp 

increase in work versus the mean squared error, suggesting potential overfitting at values of 

γ for which work values are higher than that at the inflection point. Here, a γ value of 2.0 

is selected based on the shape of the curve and on a cutoff of 4.0 kj mol−1 in the apparent 

work value (dashed line). The weights obtained at this value of γ will be used for further 

structural interpretation.
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Figure 5. 
Target fractional deuteration values for selected residues in BPTI after 1 minute labeling 

(orange) overlaid with values obtained for a structural ensemble before reweighting (dark 

blue) and after reweighting (light blue). Although H-D exchange is predicted accurately 

for many residues, some discrepancies between prediction and experiment remain, even 

following reweighting.
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Figure 6. 
Effect of reweighting on the calculated deuteration levels in the BPTI structural ensemble. 

(A) Difference in calculated HDX-MS for each residue at different labeling times shown 

as a heat map. Red represents an increase in deuteration and blue represents a decrease in 

deuteration after reweighting. (B) For each labeling timepoint, the difference in HDX is 

mapped onto an example BPTI crystal structure (protein databank entry 5PTI).
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