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Abstract 

Background  Confounding is a common issue in epidemiological research. Commonly used confounder-adjustment 
methods include multivariable regression analysis and propensity score methods. Although it is common practice to 
assess the linearity assumption for the exposure-outcome effect, most researchers do not assess linearity of the rela-
tionship between the confounder and the exposure and between the confounder and the outcome before adjusting 
for the confounder in the analysis. Failing to take the true non-linear functional form of the confounder-exposure and 
confounder-outcome associations into account may result in an under- or overestimation of the true exposure effect. 
Therefore, this paper aims to demonstrate the importance of assessing the linearity assumption for confounder-expo-
sure and confounder-outcome associations and the importance of correctly specifying these associations when the 
linearity assumption is violated.

Methods  A Monte Carlo simulation study was used to assess and compare the performance of confounder-adjust-
ment methods when the functional form of the confounder-exposure and confounder-outcome associations were 
misspecified (i.e., linearity was wrongly assumed) and correctly specified (i.e., linearity was rightly assumed) under 
multiple sample sizes. An empirical data example was used to illustrate that the misspecification of confounder-expo-
sure and confounder-outcome associations leads to bias.

Results  The simulation study illustrated that the exposure effect estimate will be biased when for propensity score 
(PS) methods the confounder-exposure association is misspecified. For methods in which the outcome is regressed 
on the confounder or the PS, the exposure effect estimate will be biased if the confounder-outcome association is 
misspecified. In the empirical data example, correct specification of the confounder-exposure and confounder-out-
come associations resulted in smaller exposure effect estimates.

Conclusion  When attempting to remove bias by adjusting for confounding, misspecification of the confounder-
exposure and confounder-outcome associations might actually introduce bias. It is therefore important that research-
ers not only assess the linearity of the exposure-outcome effect, but also of the confounder-exposure or confounder-
outcome associations depending on the confounder-adjustment method used.
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Background
Unlike in randomized controlled trials, the observed 
exposure values in observational studies are often influ-
enced by the characteristics of the study subjects. As a 
result, there might be an unintended difference in base-
line characteristics between exposed and unexposed 
individuals. If these characteristics are also associated 
with the outcome, then these covariates are confound-
ers of the exposure-outcome effect. In other words, a 
confounder is a common cause of the exposure and 
the outcome [1]. A simple comparison of the outcome 
between exposure groups then results in a biased effect 
estimate [2, 3]. Therefore, in observational studies, to 
obtain an unbiased estimate of the exposure effect it is 
necessary to remove the spurious part of the exposure-
outcome effect caused by the confounders.

There are different methods to obtain confounder-
adjusted exposure effect estimates, such as multivari-
able regression analysis and various propensity score 
(PS) methods. In multivariable regression analysis the 
confounders are added to the model in which the out-
come is regressed on the exposure [4]. This way, the 
confounder-outcome association is controlled for when 
estimating the causal effect. In propensity score meth-
ods a balancing score is created which can subsequently 
be used to adjust, stratify, or weight the exposure-out-
come effect [2, 5]. By creating this balancing score, the 
confounder-exposure association is removed and an 
unbiased exposure effect estimate can be obtained [6].

When multivariable regression analysis is used to 
adjust the relation between a continuous exposure 
and an outcome for a continuous confounder, both 
the exposure-outcome effect and the confounder-out-
come association are assumed to be linear. It is com-
mon practice to assess the linearity assumption for the 
exposure-outcome effect and there is a substantial body 
of literature that covers this topic [4, 7]. However, vari-
ous reviews found that the quality of the reporting of 
confounder adjustment methods is suboptimal [8–11] 
Often studies fail to explicitly report whether linearity 
was assessed [11]. When it is incorrectly assumed that 
the confounders are linearly related with the exposure 
and outcome (i.e., if the associations are misspecified), 
the exposure effect estimate might be over- or under-
estimated. Thus, in an attempt to remove bias, bias 
may actually be introduced. The bias that remains (or 
is introduced) after adjusting for confounding is also 
called residual confounding [7, 11, 12].

The aim of this paper is to demonstrate the importance 
of assessing the linearity assumption for confounder-
exposure and confounder-outcome associations and 
the importance of correctly specifying these associa-
tions when the linearity assumption is violated. First, we 

describe how the linearity assumption can be assessed. 
Second, we provide an overview of methods that can be 
used to model non-linear effects. Third, we review four 
well-known confounder-adjustment methods and lay out 
their respective functional form assumptions. Fourth, we 
illustrate the importance of the correct specification of 
the confounder-exposure and confounder-outcome asso-
ciations using a Monte Carlo simulation and an empiri-
cal data example. Fifth, we discuss methods that can be 
used to correctly specify the confounder-exposure and 
confounder-outcome associations.

Examination of the linearity assumption
Suppose that variable A represents a continuous inde-
pendent variable, variable B represents a continuous 
dependent variable. There are several methods to assess 
the linearity of the association between variables A and 
B. A first method is visual inspection: a scatterplot with 
variable A on the X-axis and variable B on the Y-axis 
provides an indication of the nature of the relationship 
between A and B [13]. Figure  1 provides a hypothetical 
example of a linear relationship between variables A and 
B (panel A), and a non-linear relationship between those 
variables (panel B). In both panels, the circles represent 
the observed data and the dotted line represents the lin-
ear regression line, i.e., the line that describes a linear 
relationship between variables A and B. In panel A, the 
regression line fits the data well, because the circles in the 
scatterplot resemble a straight line. In panel B, however, 
the linear regression line is not a good representation of 
the non-linear relationship between A and B, because the 
circles in the scatterplot do not resemble a straight line. 
Then, failing to model the A-B association as non-linear 
results in a biased estimate of this association.

A second method to assess linearity is to categorize 
the continuous variable A into multiple groups of equal 
sizes, e.g., based on tertiles or quartiles of the distribu-
tion of variable A. Subsequently, variable B is modelled 
as a function of a categorized variable A. If the regression 

Fig. 1  Hypothetical example of the relationship between continuous 
variables A and B, where each point represents an observation. Panel 
a: linear relationship. Panel b: non-linear relationship. The dotted 
line represents the linear regression line for the relationship between 
variables A and B 
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coefficients corresponding to the categories of variable A 
do not increase linearly, then this indicates that the A-B 
association is non-linear [7]. A third method to assess 
linearity is the addition of a non-linear term for variable 
A, e.g., a quadratic term, to the model. When adding a 
non-linear term to the model, variable B is modelled as a 
function of variable A and the non-linear term of variable 
A. If the A-B association is truly linear, then the coeffi-
cient corresponding to the non-linear term will be zero 
[4]. Often, statistical significance of the non-linear term 
is used as a threshold to determine whether the linearity 
assumption is violated.

Although in this paper we focus on linear regression 
models, the linearity assumption is also applicable to 
continuous independent variables in generalized linear 
models, such as logistic regression models. In generalized 
linear models the linearity assumption can be checked 
using the two non-visual methods, i.e., categorization of 
the independent variable and by adding non-linear terms 
for the independent variable.

Modelling non‑linear associations
There are several methods that can be used to model the 
non-linear associations, such as categorization, the use 
of non-linear terms and the use of spline functions. An 
overview of commonly used methods for modelling non-
linear associations, their application and advantages and 
disadvantages can be found in Table 1.

A first method that is sometimes used to model non-
linear associations is categorization [14–17]. Suppose 
that the confounder-outcome association is non-lin-
ear. With categorization the subjects in the dataset are 
being categorized based on their values on the continu-
ous confounder variable. Groups can be created based 
on substantively meaningful cut-off points or statistical 
cut-off points (e.g., tertiles or quartiles). Subsequently, 
n-1 dummy variables are created based on the categori-
cal confounder variable, where n represents the number 
of categories. For example, if the variable consists of four 
categories, then three dummy variables are created. The 
reference group is coded as 0 in each of these dummy 
variables, while in each dummy variable one of the 
other groups is coded as 1. Subsequently, the outcome 
is regressed on the dummy variables, where the regres-
sion coefficient for each dummy variable represents the 
difference in the outcome between the group coded as 1 
and the reference group. A disadvantage of modelling a 
non-linear association by categorization is that the mag-
nitude of the association is assumed to be the same for 
all subjects a within a specific group [14–17]. Therefore, 
a potential non-linear association within a category is not 
captured in the analysis.

Another method that can be used to model the non-
linear associations is the inclusion of non-linear terms, 
such as quadratic or cubic terms, in the regression model 
[18]. Suppose that the confounder-outcome association 
follows a quadratic shape, then this can be modelled by 
regressing the outcome on the original confounder vari-
able and a quadratic term for the confounder. Adding 
non-linear terms increases the flexibility of the model, 
but also reduces the interpretability of the results [18]. 
However, using non-linear terms to approximate the 
non-linearity of the confounder-exposure or confounder-
outcome association does not affect the interpretability 
of the exposure effect.

Spline regression is another method that can be 
used to model non-linear associations. Two types of 
splines that are commonly used are linear splines and 
restricted cubic splines. With spline regression, the 
confounding variable is also categorized, but instead of 
assuming that the association is of the same magnitude 
for all subjects in a specific category, a regression line 
is estimated for each category [4, 13, 19]. Depending 
on whether linear or restricted cubic splines are used, 
the estimated regression line is linear or non-linear, 
respectively. The cut-off points in between categories 
are called knots. A 1-knot spline function is based on 
two categories, a 2-knot spline function on three cat-
egories, a 3-knot spline function on four categories, 
etcetera. Detailed information on the estimation of 
splines can be found elsewhere [20]. Like with non-lin-
ear terms, the interpretation of the coefficients can be 
complicated when spline functions are used [13]. How-
ever, because we are not necessarily interpreting the 
coefficients of the confounder-exposure or confounder-
outcome associations, spline functions are a good and 
efficient way to approximate the non-linear shapes of 
those associations.

Confounder‑adjustment methods
Studies are often interested in estimating the average 
effect of an exposure on an outcome. In terms of poten-
tial outcomes, the average effect of the exposure on 
the outcome is defined as the difference between two 
expected potential outcome values under two expo-
sure values, i.e., E[Y(1) − Y(0)]. To obtain an unbiased 
estimate of this exposure effect it is necessary to adjust 
for any confounding. In this study we discuss four con-
founder-adjustment methods: multivariable regres-
sion analysis, covariate adjustment using the propensity 
score (PS), inverse probability weighting (IPW) and dou-
ble robust (DR) estimation. As assessing the linearity 
assumption for the exposure-outcome effect is common 
practice, throughout this paper we assume that the 
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exposure-outcome effect is always correctly specified as 
linear. However, we believe that the information in this 
paper also applies to models in which the exposure-out-
come effect is (correctly specified as) non-linear. Table 2 
shows which association (i.e., the confounder-exposure 
or the confounder-outcome association, or both) has to 
be correctly specified for each method in order to obtain 
unbiased exposure effect estimates.

Multivariable regression analysis
With multivariable regression analysis, the outcome 
is modelled as a function of the exposure and the con-
founders [4] (eq. 1):

where Y and X represent the continuous outcome and a 
dichotomous exposure, respectively, and i1 represents 
the intercept term. β1 is the multivariable confounder-
adjusted exposure effect estimate and β2 to βn + 1 are the 
coefficients that correspond to the continuous confound-
ing variables C1 to Cn.

Multivariate regression analysis adjusts for confound-
ing of the exposure-outcome effect by adding con-
founders C1 to Cn to the equation [4, 13]. If there are no 
unobserved confounders and the linear regression model 
in eq. 1 is correctly specified, then parameter β1 is equal 
to the average treatment effect E [Y(1)-Y(0)] [21].

In eq.  1, a linear association is assumed between the 
exposure and the outcome, and between each confound-
ing variable and the outcome [13]. The confounder-
exposure association is not modelled, therefore no 
assumptions are made about the functional form of that 
association.

Propensity score adjustment
The PS is the predicted probability of endorsing exposure 
(eq. 2):

(1)E(Y |X ,C) = i1 + β1X + β2C1 + · · · + βn+1Cn

where X represents the dichotomous exposure, i2 is the 
model intercept and λ1 to λn are regression coefficients 
corresponding to confounders C1 to Cn.

The propensity score is estimated in two steps. First, 
the exposure is modelled as a function of the con-
founders C1 to Cn using a logistic regression model. 
Second, each individual’s predicted probability of 
endorsing the exposure is estimated, which is the pro-
pensity score [2, 6, 22].

The PS can be used in different ways to adjust for con-
founding. In this paper we discuss three of these meth-
ods: covariate adjustment with the PS, inverse probability 
weighting and double robust estimation. All three meth-
ods assume that the propensity score is correctly speci-
fied, i.e., that the log odds of the exposure is linear in 
the confounders. Details on the computation of the PS 
in general and other PS methods such as matching and 
stratification can be found elsewhere [2, 6, 22–29].

Covariate adjustment using the propensity score
Because the PS contains information on the confounders, 
it is possible to adjust for confounding by modelling the 
outcome as a function of the exposure and the PS [2, 22]. 
Thus, instead of conditioning on confounding variables 
C1 to Cn as in eq. 1, we now condition on the PS (eq. 3):

where Y and X represent the continuous outcome and the 
dichotomous exposure, respectively, and i3 represents the 
intercept term. β∗

1
 is the PS confounder-adjusted expo-

sure effect estimate and β∗
2
 is the coefficient that corre-

sponds to the propensity score PS.
Because in eq.  3 the outcome is regressed on the 

exposure and the propensity score, linearity assump-
tions apply both to the exposure-outcome effect and the 

(2)

PS = P(X = 1|C1, . . . ,Cn) =
1

1+ e−(i2+�1C1+···+�nCn)

(3)E(Y |X ,PS) = i3 + β∗
1X + β∗

2PS

Table 2  Confounder-adjustment methods and the association(s) that need to be correctly specified to obtain an unbiased estimate of 
the exposure effect

Abbreviations: PS propensity score, IPW inverse probability weighting, DR double robust, PS-outcome effect, n/a: not applicable, requires a correctly specified 
propensity score (i.e., the log odds of the exposure is linear in the confounders)

Confounder-adjustment methods Confounder-exposure association Confounder-
outcome 
association

Multivariable regression analysis n/a √

Covariate adjustment using the PS§ √ √*

IPW§ √ n/a

DR estimation§ Both associations need to be specified but estimators are consistent if either is correctly 
specified
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PS-outcome association. Whereas all PS methods require 
the PS to be adequately specified, this is the only PS 
method that additionally makes assumptions about the 
linearity of the PS-outcome association [2, 4].

Inverse probability weighting
Inverse probability weighting uses weights based on the 
PS to create a pseudo-population in which each con-
founder combination is balanced between the exposed 
and unexposed groups. When there is perfect confounder 
balance between the groups there is no longer an associa-
tion between confounders C1 to Cn and the exposure [4]. 
With weighting, individuals who are underrepresented 
get larger weights assigned, whereas individuals who are 
overrepresented get smaller weights assigned.

For exposed individuals the weight is calculated as 1
PS

 , 
whereas for unexposed individuals the weight is calcu-
lated as 1

1−PS
 [2, 30]. A potential issue with IPW is that the 

weights can be unstable. This is because individuals with 
a PS close to 0 receive very large weights, whereas indi-
viduals with a PS close to 1 receive very small weights. 
Subjects with these large weights will then dominate the 
weighted analysis, resulting in a large variance of the 
IPW estimator [31]. As an alternative, stabilized weights 
have been proposed [2]. This reduces the weights of the 
treated individuals with a small PS and the untreated 
individuals with a large PS. For exposed individuals, these 
stabilized weights are calculated as p

PS
 and for unexposed 

individuals stabilized weights are calculated as 1−p
1−PS

 , with 
p being the probability of exposure without considering 
the confounders [2]. After calculating the weights for all 
individuals the IPW confounder-adjusted exposure effect 
is estimated by performing a weighted regression analysis 
with the exposure as the only independent variable.

IPW does not make any linearity assumptions about 
the confounder-outcome or PS-outcome association [29]. 
Thus, IPW only assumes a correctly specified propensity 
model. If the propensity model is misspecified this results 
in inappropriate weights and possibly a biased IPW con-
founder-adjusted exposure effect estimate [32].

Double robust estimation
Double robust estimation combines multivariable regres-
sion analysis and IPW and is done in two steps: first, a 
propensity model is specified and stabilized weights are 
calculated. Second, a weighted analysis is conducted in 
which the outcome is regressed on the exposure and the 
confounders.

Because the model is weighted by the stabilized weights, 
an adequately specified propensity model is needed. In 
addition, because the confounders are included in the 
regression analysis, linearity assumptions about the con-
founder-outcome association are made. However, only 

one of these two associations (i.e., either the confounder-
exposure associations in the propensity model or the 
confounder-outcome associations in the multivariable 
regression model) has to be correctly specified to obtain an 
unbiased exposure effect estimate [29, 32, 33]. However, if 
both effects are misspecified, the DR exposure effect esti-
mate may be even more biased than the estimate of a less 
robust single confounder-adjustment method such as mul-
tivariable regression or IPW [34, 35].

Simulation study
Simulation methods
A simulation study was designed to assess and compare 
the performance of the four confounder-adjustment meth-
ods. Four different scenarios were considered based on 
the (mis)specification of the confounder-exposure and 
confounder-outcome association (see Table 3). The R pro-
gramming language version 4.0.3 was used to generate and 
analyse the data [36].

To model both misspecified and correctly specified 
confounder-exposure and confounder-outcome associa-
tions, first two continuous confounders were generated. 
Confounder Z was generated from a standard normal dis-
tribution, and confounder C was its corresponding squared 
term. The dichotomous exposure was generated from a 
binomial distribution conditional on confounder Z and its 
squared term C (eq. 4), and the continuous outcome was a 
function of the exposure and confounders Z and C (eq. 5).

This way, the exposure and the outcome had a quad-
ratic relation with each of the confounders. Next, we esti-
mated the confounder-adjusted exposure-outcome effect 
using the four confounder-adjustment methods. In the 
scenarios in which the non-linearity of the confounder-
exposure and confounder-outcome association were cor-
rectly specified, the analysis was adjusted for confounders 

(4)P(X = 1|Z,C) =
1

1+ e−(i4+θ1Z+θ2C)

(5)E(Y |X ,Z,C) = i5 + γ1X + γ2Z + γ3C

Table 3  Overview of simulated scenarios

Scenario Confounder-exposure 
association

Confounder-
outcome 
association

Scenario 1 Correctly specified Correctly specified

Scenario 2 Correctly specified Misspecified

Scenario 3 Misspecified Correctly specified

Scenario 4 Misspecified Misspecified
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Z and C. This way, the underlying quadratic relation was 
modelled. In the scenarios in which the effects were mis-
specified, only confounder Z was included in the analysis. 
This way, only the incorrect linear relation was modelled. 
Sample sizes were 200, 500 and 1000. The parameter 
value for the exposure-outcome effect was set to 0.59 to 
mimic a large effect size. The parameter values for the 
confounder-exposure and confounder-outcome associa-
tion were set to −0.14, −0.39, − 0.59 and 0.14, 0.39 and 
0.59 to mimic negative and positive small, medium and 
large effect sizes, respectively [37]. In total, 72 condi-
tions were simulated (4 scenarios; 3 sample sizes; 6 con-
founder-exposure and confounder-outcome effect sizes) 
with 1000 repetitions per condition, resulting in 72,000 
observations.

The performance of the confounder-adjustment meth-
ods was compared based on the absolute bias (AB) and 
the relative bias (RB) [38]. AB is the absolute difference 
between the estimated exposure effect and the true expo-
sure-outcome effect of 0.59. RB is the ratio of AB to the 
true exposure-outcome effect [38, 39]. For both perfor-
mance measures a lower score corresponds to a better 

performance. The simulation code is available in addi-
tional file 1.

In additional file 2 we show an extra condition in which 
the direction of the exposure effect changes if the non-
linearity of the confounder-exposure and confounder-
outcome associations is not modelled correctly.

Simulation results
Table  4 shows the mean estimated exposure effect, AB 
and RB for all models across the four simulated scenarios 
based on a sample size of 500 and positive confounder-
exposure and confounder-outcome associations. Results 
for sample sizes 200 and 1000 can be found in additional 
files 3 and 4, respectively.

In scenario 1, where both the confounder-exposure and 
confounder-outcome associations were correctly speci-
fied, multivariable regression analysis, PS adjustment and 
DR estimation all performed well. When the confounder-
outcome association was misspecified (scenario 2), mul-
tivariable regression analysis and DR estimation resulted 
in biased exposure effect estimates. PS adjustment still 
performed well, but had the PS-outcome association 
been misspecified as well, then residual bias would also 

Table 4  Model performance across all simulated scenarios, n = 500

Abbreviations: n: sample size, cx-association: confounder-exposure association, cy-association: confounder-outcome association, β̂ : mean estimated exposure 
effect, AB: absolute bias, RB: relative bias, PS: propensity score, IPW: inverse probability weighting, DR: double robust 

Parameter values for the confounder-exposure and confounder-outcome associations

0.14 0.39 0.59

β̂ AB RB β̂ AB RB β̂ AB RB

Scenario 1: correct specification of cx-association & correct specification of cy-association
Multivariable regression analysis 0.5900 0.0000 0.0000 0.5900 0.0000 0.0000 0.5900 0.0000 0.0000

Covariate adjustment using the PS 0.5901 0.0001 0.0001 0.5907 0.0007 0.0012 0.5909 0.0009 0.0015

Stabilized IPW 0.5903 0.0003 0.0005 0.6030 0.0130 0.0220 0.6417 0.0517 0.0876

DR estimation 0.5900 0.0000 0.0000 0.5900 0.0000 0.0000 0.5900 0.0000 0.0000

Scenario 2: correct specification of cx-association & misspecification of cy-association
Multivariable regression analysis 0.6263 0.0363 0.0615 0.8051 0.2151 0.3646 0.9859 0.3959 0.6711

Covariate adjustment using the PS 0.5901 0.0001 0.0001 0.5907 0.0007 0.0012 0.5909 0.0009 0.0015

Stabilized IPW 0.5903 0.0003 0.0005 0.6030 0.0130 0.0220 0.6417 0.0517 0.0876

DR estimation 0.5905 0.0005 0.0008 0.6064 0.0164 0.0278 0.6465 0.0565 0.0957

Scenario 3: misspecification of cx-association & correct specification of cy-association
Multivariable regression analysis 0.5900 0.0000 0.0000 0.5900 0.0000 0.0000 0.5900 0.0000 0.0000

Covariate adjustment using the PS 0.6267 0.0367 0.0622 0.8147 0.2247 0.3808 1.0155 0.4255 0.7212

Stabilized IPW 0.6276 0.0376 0.0638 0.8339 0.2439 0.4134 1.0676 0.4776 0.8096

DR estimation 0.5900 0.0000 0.0000 0.5900 0.0000 0.0000 0.5900 0.0000 0.0000

Scenario 4: misspecification of cx-association & misspecification of cy-association
Multivariable regression analysis 0.6263 0.0363 0.0615 0.8051 0.2151 0.3646 0.9859 0.3959 0.6711

Covariate adjustment using the PS 0.6267 0.0367 0.062 0.8147 0.2247 0.3808 1.0155 0.4255 0.7212

Stabilized IPW 0.6276 0.0376 0.0638 0.8339 0.2439 0.4134 1.0676 0.4776 0.8096

DR estimation 0.6273 0.0373 0.0533 0.8261 0.2361 0.4002 1.0456 0.4556 0.7723
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have been observed for that method. In both scenarios 1 
and 2, bias was observed for IPW as IPW is a large sam-
ple technique [3]. Increasing the sample size resulted 
in exposure effect estimates closer to the true effect. In 
scenario 3, where the confounder-exposure association 
was misspecified but the confounder-outcome asso-
ciation was correctly specified, multivariable regression 
analysis and DR estimation performed well, whereas PS 
adjustment and IPW resulted in biased exposure effect 
estimates. When both associations were misspecified 
(scenario 4), all methods resulted in biased exposure 
effect estimates. In all scenarios, the amount of bias 
depended on the strength of the confounder-exposure 
and confounder-outcome associations: the weaker the 
associations were, the less biased was observed. The same 
patterns can be observed for negative confounder-expo-
sure and confounder-outcome associations. For detailed 
results see additional file 5.

Empirical data example
To demonstrate the consequences of misspecification of 
the confounder-exposure and confounder-outcome asso-
ciation we used an illustrative example from the Amster-
dam Growth and Health Longitudinal Study (AGHLS). 
The AGHLS is an ongoing cohort study that started in 
1976 to examine growth and health among teenagers. 
In later measurement rounds, health and lifestyle meas-
ures, determinants of chronic diseases and parameters 
for the investigation of deterioration in health with age 
were measured [40]. For this demonstration we use data 
collected in 2000, when the participants were in their late 
30s.

Using data from the AGHLS, we estimated the effect 
of overweight (BMI ≥ 25) on systolic blood pressure. 
We adjusted this effect for confounding by alcohol con-
sumption (measured in number of glasses per week) and 
cardiorespiratory fitness (VO2max). Only subjects with 
complete data on all variables were included in the anal-
yses (n = 359). Note that this data example is included 
for illustrative purposes only and therefore represents a 

simplified scenario. In reality, it is likely that there will 
be additional confounders and time-varying confound-
ers. As a result, substantive interpretations should be 
approached with caution.

First, we examined the linearity of the confounder-
exposure and the confounder-outcome associations. We 
did this by categorizing alcohol consumption and car-
diorespiratory fitness, and separately regressing over-
weight and systolic blood pressure on the categorized 
confounders. In both cases, the regression coefficients 
corresponding to the categories of alcohol consumption 
and respiratory fitness did not increase linearly. Thus, 
both confounder-exposure and confounder-outcome 
associations were non-linear. There were no violations of 
the linearity assumption for the exposure-outcome effect, 
as systolic blood pressure was compared across only two 
groups (i.e., healthy weight and overweight). Second, to 
demonstrate the consequences of misspecification, we 
modelled systolic blood pressure as a function of over-
weight, adjusting for alcohol consumption and cardiores-
piratory fitness. We did this first by (falsely) assuming a 
linear relation between the confounders and overweight 
and between the confounders and systolic blood pres-
sure. Next, we took these non-linear associations into 
account by adjusting for alcohol consumption and cardi-
orespiratory fitness using 3-knot restricted cubic spline 
(RCS) regression, which has the ability to.

fit non-linear shapes. A detailed explanation of RCS 
regression can be found elsewhere [4]. Although imple-
menting RCS regression might still not equal perfect 
specification of both effects, it provides a better repre-
sentation of the true non-linear relations than simply 
assuming linear confounder-exposure and confounder-
outcome associations.

The results of the analyses can be found in Table  5. 
Across all four methods, the exposure effects were 
smaller in magnitude when the confounder-exposure 
and confounder-outcome associations were modelled as 
non-linear. Given that in our example the confounder-
exposure and confounder-outcome associations were 

Table 5  The effect of overweight on systolic blood pressure, adjusted for alcohol consumption. 2nd column: linear models in which 
the confounder-exposure and/or confounder-outcome associations are modelled as linear. 3rd column: spline models in which the 
confounder-exposure and/or confounder-outcome associations are modelled as non-linear

Abbreviations: PS: propensity score, IPW: inverse probability weighting, DR: double robust, β: regression coefficient, CI: confidence interval

Linear models Non-linear spline models
β (95% CI) β (95% CI)

Multivariable regression analysis 3.589 (0.686; 6.493) 3.022 (0.136; 5.908)

Covariate adjustment using the PS 3.739 (0.822; 6.656) 3.062 (0.164; 5.960)

Stabilized IPW 4.121 (1.110; 7.132) 3.813 (0.807; 6.819)

DR estimation 3.983 (1.262; 6.704) 3.585 (0.879; 6.291)
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non-linear, the exposure effects were overestimated when 
the confounder-exposure and confounder-outcome asso-
ciations were incorrectly modelled as linear.

Discussion
This paper aimed to demonstrate the importance of 
assessing the linearity assumption for confounder-
exposure and confounder-outcome associations and 
the importance of correctly specifying these associa-
tions when the linearity assumption is violated. If these 
associations are incorrectly specified as linear, then 
bias might be introduced in an attempt to remove bias. 
Our simulation study showed that bias is introduced if 
the confounder-exposure and/or the confounder-out-
come association are misspecified. The amount of bias 
also depended on the confounder-adjustment method 
and the strength of the confounder-exposure and con-
founder-outcome association. We also illustrated how 
misspecification of the confounder-exposure and/or con-
founder-outcome associations biases exposure-outcome 
effect estimates our empirical data example. The simula-
tion study and the empirical data example both showed 
that merely adjusting for confounding is not enough, but 
that correct specification of all effects in the model is 
crucial to obtain unbiased exposure effect estimates.

Reporting of confounding
The results in this paper demonstrate that misspecifica-
tion of the confounder-exposure and confounder-out-
come associations may lead to additional bias. However, 
in practice residual confounding may often go unno-
ticed, as inappropriate reporting makes it difficult to 
assess the reliability and validity of study results. In 2007 
the STROBE (Strengthening the Reporting of Obser-
vational Studies in Epidemiology) initiative published a 
checklist of items that should be addressed in reports of 
observational studies, including two items that address 
confounding (9 ‘Bias’ and 12 ‘Statistical methods’) [41]. 
The explanatory and elaboration document of STROBE 
acknowledges that adjusting for confounding may involve 
additional assumptions about the functional form of 
the studied associations [42]. Despite the publication of 
the STROBE checklist, the overall quality of reporting 
of confounding remains suboptimal [9, 43]. To increase 
transparency on the risk of residual confounding, we 
advise researchers to report how the functional form of 
the confounder-exposure and confounder-outcome asso-
ciation was assessed and taken into account.

Limitations
The simulation study in this paper is a simplified repre-
sentation of real world scenarios. We adjusted for one 

confounder, whereas in reality there might be multiple 
confounders. If there are multiple confounders, then 
the confounder-exposure and confounder-outcome 
association of each of the confounders needs to be 
assessed and non-linear effects need to be modelled for 
confounders that are not linearly related to either the 
exposure or the outcome. In the PS methods, the PS-
outcome association was linear, so no additional bias 
was observed in scenarios in which the confounder-
outcome association was misspecified. However, if the 
PS-outcome association is also misspecified, residual 
bias would be observed. Therefore, the linearity of the 
relation between the PS and the outcome should always 
be checked. IPW is known to perform less well in small 
samples, which was also confirmed in our simula-
tion [3]. Last, in this paper we assume associations are 
either misspecified or correctly specified, whereas in 
reality, naturally, everything exists in shades of grey. In 
addition, there are other important contributors to bias 
in the exposure effect estimate that researchers should 
be aware of, such as omitted confounders, adjustment 
for colliders, and measurement error in the confound-
ers. A limited theoretical understanding of factors that 
influence exposures and outcomes may cause research-
ers to overlook important confounders or to adjust for 
a collider (i.e., a variable that is influenced by both the 
exposure and outcome). In both situations the estimate 
of the exposure effect will be biased [44]. Finally, there 
may be residual confounding when the confounders are 
measured with error [45].

Conclusion
To summarize, in this study we showed the impor-
tance of correctly specifying the confounder-exposure 
and confounder-outcome associations to obtain unbi-
ased exposure effect estimates. When these effects 
are misspecified, bias might actually be introduced in 
an attempt to remove bias. Thus, to estimate unbiased 
effects it is important to examine the linearity of the 
confounder-exposure or confounder-outcome associa-
tion depending on the confounder-adjustment method 
used and to adjust the model accordingly.
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