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Abstract

Background: Establishing a large study network to conduct influenza vaccine effec-

tiveness (IVE) studies while collecting appropriate variables to account for potential

bias is important; the most relevant variables should be prioritized. We explored the

impact of potential confounders on IVE in the DRIVE multi-country network of sites

conducting test-negative design (TND) studies.

Methods: We constructed a directed acyclic graph (DAG) to map the relationship

between influenza vaccination, medically attended influenza infection, confounders,

and other variables. Additionally, we used the Development of Robust and Innova-

tive Vaccines Effectiveness (DRIVE) data from the 2018/2019 and 2019/2020 sea-

sons to explore the effect of covariate adjustment on IVE estimates. The reference

model was adjusted for age, sex, calendar time, and season. The covariates studied

were presence of at least one, two, or three chronic diseases; presence of six specific

chronic diseases; and prior healthcare use. Analyses were conducted by site and sub-

sequently pooled.

Results: The following variables were included in the DAG: age, sex, time within

influenza season and year, health status and comorbidities, study site, health-care-

seeking behavior, contact patterns and social precautionary behavior, socioeconomic

status, and pre-existing immunity. Across all age groups and settings, only adjustment

for lung disease in older adults in the primary care setting resulted in a relative

change of the IVE point estimate >10%.

Conclusion: Our study supports a parsimonious approach to confounder adjustment

in TND studies, limited to adjusting for age, sex, and calendar time. Practical implica-

tions are that necessitating fewer variables lowers the threshold for enrollment of

sites in IVE studies and simplifies the pooling of data from different IVE studies or

study networks.
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1 | INTRODUCTION

Continuous monitoring of influenza vaccines performance in real-life

settings is important to complement clinical trial data. Annual esti-

mates of influenza vaccine effectiveness (IVE) are necessary, as influ-

enza vaccines composition is reassessed every year and circulating

influenza viruses differ from season to season. However, IVE is not

only affected by circulating strains but also by the individual’s immune

response (modulated by age or other individual characteristics and

history) and vaccine production technology and formulation. The

DRIVE (Development of Robust and Innovative Vaccines Effective-

ness), launched in 2017, is a public–private partnership set up to

address the request of the European Medicine Agency (EMA) to pro-

vide annual effectiveness evaluation of all individual influenza vaccine

brands commercialized in Europe.1 A large sample size is required to

account for the diversity of influenza vaccines and vaccine recommen-

dations. Therefore, establishing a large study network to conduct

observational studies for IVE while collecting appropriate variables to

account for potential bias is important.

Observational studies of seasonal IVE are susceptible to bias and

confounding, and these factors need to be considered at the study

design and analysis stages. Differences in disease risk or in care-

seeking behaviors between vaccinated and unvaccinated subjects and

the difference in the probability of being vaccinated can substantially

bias IVE estimates. Even when reducing selection bias, the true IVE

may be overestimated or underestimated whenever confounding is

present. Several strategies are available to prevent or at least reduce

bias and confounding by known factors, such as restriction of the

study population (e.g., to persons seeking care for respiratory symp-

toms in test-negative design (TND) case-control studies or to persons

for whom a nasal swab was collected within a predefined number of

days of symptom onset), stratification of estimates (e.g., by age group

or population subgroups), matching, and statistical adjustment through

multivariate regression.2

Nevertheless, in order to make a network successful and sustain-

able on a large scale, tradeoffs should be made in the collection of the

most relevant variables. Throughout the 5 years of the DRIVE project,

field-based experts from both public and private sectors have dis-

cussed which confounders should be integrated into the generic pro-

tocol and collected by sites to ensure robust IVE estimates. EMA

scientific advice was also sought by the DRIVE partners on the

required number of confounders and the relevance of a parsimonious

analysis. For IVE analyses in the 2017/2018 influenza season, the

DRIVE took advantage of data collected through existing infrastruc-

tures and selected confounders through model building.3 In

2018/2019, the first season for which a common protocol was devel-

oped and used, IVE estimates were adjusted for a fixed, elaborate set

of confounders, namely age, sex, calendar time, presence of at least

one chronic condition, pregnancy, number of hospitalizations or Gen-

eral Practitioner (GP) visits in the previous year, and vaccination status

in previous season.4 However, some sites were not able to collect all

variables, either not at all or not for all subjects. This led to inconsis-

tent confounder adjustment across sites and exclusion of subjects

with missing values. To harmonize confounder adjustment and mini-

mize data loss, the number of covariates adjusted for was decreased

as of the 2019/2020 season, retaining only age, sex, and calendar

time.5 Parsimonious confounder adjustment was supported by a post

hoc analysis of the DRIVE’s 2018/2019 data and was previously pro-

posed by Lane et al according to an analysis of data from the

Victorian Influenza Sentinel Practice Network in Australia6 and is in

line with findings from the Canadian Sentinel Practitioner Surveillance

Network (CSPSN).7

However, we aimed to further explore the impact of potential

confounders on IVE in the context of a multi-country TND network

and to check through an in-depth multi-season secondary analysis if

our previously chosen parsimonious confounder adjustment strategy

could be justified. We constructed a DAG to map the most relevant

IVE confounders and other variables. We used the DRIVE data from

the 2018/2019 and 2019/2020 seasons to understand the role of

covariates as predictors of vaccination status and case status, and to

explore the effect of covariate adjustment on IVE point estimates.

2 | METHODS

2.1 | DAG

We constructed a directed acyclic graph (DAG) to visually represent

the relationship between influenza vaccination and medically

attended laboratory-confirmed influenza infection presenting as

influenza-like illness (ILI) or severe acute respiratory infection (SARI).

DAGs are visual tools used to identify confounding variables and com-

mon (including unmeasured/unmeasurable) causes of the exposure

and outcome and to explicitly state the assumptions made regarding

relationships between variables.8 The full causal diagram, describing

all underlying relationships among all possible variables, is often not

known. However, in 2011, VanderWeele et al used the so-called “dis-
junctive cause criterion” to demonstrate that controlling for all

observed variables that affect the exposure, the outcome or both are

sufficient to control for confounding.9

We built upon the DAG that Lane et al developed by taking cov-

ariates used in >10% of published TND studies identified in a system-

atic review.6 Potential sources of confounding were identified from a

systematic review on bias and confounding,10 a systematic review on

determinants of influenza vaccination uptake in older adults,11 and

expert input, and were included regardless of the operational
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feasibility of data collection. Using DAGitty, a browser-based environ-

ment for creating, editing, and analyzing causal diagrams,12 we tested

the minimal sufficient adjustment set for estimating the total effect of

current influenza vaccination on medically attended influenza infec-

tion (i.e., for DAG closure).

2.2 | Dataset

This exploratory analysis made secondary use of the DRIVE datasets,

based on TND studies conducted at four GP sites and four hospital

sites in five countries in the 2018/2019 influenza season and at four

GPs sites and eight hospital sites in seven countries in the 2019/2020

influenza season (Table 1). Subject characteristics are presented in

supporting information 1. While the DRIVE covered the influenza sea-

sons from 2017 to 2022, data from the other DRIVE seasons were

not used because common protocols had not yet been implemented

in 2017/2018, the number of influenza cases in Europe was histori-

cally low as a result of the COVID-19 pandemic in 2020/2021 and,

data collection for the 2021/2022 season was still ongoing at the time

of the analysis.

Data collection and site characteristics have been previously

described more in depth elsewhere.4,5 In brief, patients with ILI were

enrolled in the primary care setting and patients with SARI in the hos-

pital setting (see Table 1 for definitions). Only community-dwelling ILI

and SARI patients presenting during the study period for analysis,

≤7 days after symptom onset and without contraindication for influ-

enza vaccination, were included in the dataset. The outcome of inter-

est was laboratory-confirmed influenza (primarily through reverse

transcription polymerase chain reaction [RT-PCR]). The exposure of

interest was any seasonal influenza vaccine (>14 days prior to symp-

tom onset) in the respective season.

2.3 | Covariates considered

Covariates selected for this study had to be present in the DAG, be col-

lected by at least 50% of the DRIVE sites in 2019/2020, and have a

T AB L E 1 Overview of sites and number of subjects (cases and controls) per site and setting in the 2018/2019 and 2019/2020 influenza

seasons DRIVE data

Number of subjects (%)

Season 2018/2019 Season 2019/2020

Country Site name
Children 6 m to
17y

Adults 18–
64y

Older adults
≥65y

Children 6 m to
17y

Adults 18–
64y

Older adults
≥65y

Primary care (ILIa)

Austria Medical U Vienna 432 (21) 422 (21) 33 (8) 639 (27) 673 (30) 47 (14)

Italy CIRI-IT GP network 384 (19) 520 (26) 190 (45) 698 (29) 524 (23) 146 (42)

Italy ISS 1149 (57) 1022 (50) 178 (42) 938 (40) 863 (38) 119 (34)

England RCGP 45 (2) 72 (4) 20 (5) 97 (4) 185 (8) 35 (10)

Total 2010 2036 421 2372 2245 347

Hospital (SARIb)

Finland Helsinki UH, Jorvi H - 103 (9) 171 (8) - 56 (5) 69 (4)

France I-REIVAC - - - - 134 (13) 246 (15)

Italy CIRI-IT BIVE 820 (51) 278 (25) 500 (23) 770 (55) 296 (28) 584 (35)

Romania IBI Matei Bals 518 (32) 356 (33) 153 (7) 500 (36) 221 (21) 78 (5)

Spain FISABIO 187 (12) 234 (21) 1099 (50) 19 (1) 157 (15) 486 (29)

Spain Germans Trias i Pujol

UH

- - - 25 (2) 68 (6) 89 (5)

Spain La Paz UH - - - - 15 (1) 21 (1)

Spain Vall d’Hebron UH 70 (4) 124 (11) 271 (12) 78 (6) 110 (10) 100 (6)

Total 1595 1095 2194 1392 1057 1673

Note: BIVE: Italian Hospital Network; CIRI-IT: Interuniversity Research Center on Influenza and other Transmissible Infections; GP: General Practitioner;

FISABIO: Foundation for the Promotion of Health and Biomedical Research of the Valencia Region; H: hospital; I-REIVAC: Innovative Clinical Research

Network In Vaccinology; IBI Matei Bals: National Institute for Infectious Diseases “Prof. Dr. Matei Balş”; ILI: influenza-like illness; ISS: Italian National

Institute of Health; RCGP: Royal College of General Practitioners Research and Surveillance Centre; SARI: severe acute respiratory infection; U: University;

UH: University Hospital.
aILI was defined as an individual presenting with sudden onset of symptoms; AND at least one of the following systemic signs or symptoms: fever/

feverishness, malaise, headache, and myalgia; AND at least one of the following respiratory symptoms: cough, sore throat, and shortness of breath.
bSARI was defined as a hospitalized person with a suspicion of infection with at least one of the systemic signs or symptoms defined above or

deterioration of general condition; AND at least one of the respiratory symptoms defined above, at admission or within 48 h after admission.
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prevalence of at least 10% in one of the age groups. This was done as

variables with a low prevalence are unlikely to lead to a large change in

the coefficients. The following covariates fulfilled these criteria and

were included: age; sex; calendar time (i.e., week of symptom onset of

current ILI/SARI episode); absence or presence of at least one, two, or

three chronic diseases (up to 12 chronic disease types were considered;

supporting information 2); presence of specific chronic diseases (can-

cer, cardiovascular disease, diabetes, lung disease, renal disease, and

obesity); number of hospitalizations in the last year (0, 1–2, >2); and

number of primary care visits in the last year (0, 1–5, >5). Smooth func-

tions of age and calendar time were modeled by penalized (10-dimen-

sional) cubic regression splines13 estimated using restricted maximum

likelihood for smoothness selection.14 In case fewer than 10 unique

age or onset date values were observed, the effect of age or onset date

wasmodeled using a linear function instead.

Data on age, sex, date of symptom onset, and the presence of at

least one chronic condition were available for all sites/seasons,

whereas availability of specific chronic diseases and prior healthcare

use varied across sites (supporting information 3).

2.4 | Predictors of vaccination and the outcome

Seasonal influenza vaccines are preferentially assigned to specific

population groups according to their specific indication (different vac-

cines are recommended depending on age and/or on the presence of

medical conditions) and according to national or regional vaccine

recommendations,15,16 reflecting known risk factors for medically

attended influenza in the general population. However, it is less clear

whether these covariates are predictors for laboratory-confirmed

influenza (“being a case”) among ILI/SARI patients included in TND

studies, where the comparator group consists of medically attended

non-influenza ILI/SARI patients. We used logistic regression to iden-

tify which covariates were associated with vaccination among test-

negative controls (as a proxy for the general population) and which

covariates were associated with influenza among ILI/SARI patients, by

vaccination status. Odds ratios (OR) adjusted for age, sex, calendar

time, site, and season were calculated. Analyses were stratified by age

(6 months (m) to 17 years (y), 18 to 64 y, ≥65 y) and setting (hospital

vs primary care).

2.5 | Quantifying potential confounding effects

Following the convention used in TND studies, IVE was defined as

100 * (1 – OR), where the OR is the ratio of the odds of being a test-

positive case among the vaccinated compared to the odds of being a

test-positive case among the unvaccinated. The effect of each covari-

ate on the IVE was explored. Reference models adjusted for age, sex,

calendar time, and season were built. Age, sex, and calendar time are

frequently adjusted for covariates in IVE studies.2,17 The covariate

“influenza season” was included, as the analysis used data from two

influenza seasons (2018/2019 and 2019/2020).

Comparator models were adjusted for one additional covariate (see

section covariates considered). The absolute and relative changes in IVE

obtained through comparator models versus the reference models (and

for the reference model compared to a model adjusted for season only)

were described. Absolute changes were calculated as IVE comparator mod-

el � IVE reference model. Relative changes were calculated as IVE comparator

model/IVE reference model. Relative changes of >10% were considered

meaningful.6,18–20 Conditional logistic regression models were fitted

(similar to Lane et al6) on the site and season level for each age group,

and the changes in IVE estimates were pooled by setting through

random-effects meta-analysis using the Hartung–Knapp–Sidik–

Jonkman method.21 Confidence intervals for the change-in-estimate

parameters were constructed using non-parametric bootstrap.22 Only

the pooled (and not the site-specific) results are presented.

To understand the minimum strength of association (on the risk

ratio scale) that an unmeasured confounder would need to have with

the vaccination and/or outcome, conditional on the covariates in the

reference model, to fully explain away the observed IVE, E-values

were calculated (post-hoc).23,24 E-values were calculated for the

pooled IVE point estimates, by age and setting, and corresponding CI

limited closest to 0.

3 | RESULTS

A DAG was constructed (Figure 1). We were in agreement with the

rationale for including the covariates age, sex, calendar time within

the influenza season (month, week etc.), health status and comorbid-

ities, study site, and year in the DAG described by Lane et al6 Addi-

tionally, Lane et al describe the exclusion (restriction) criteria applied

to the study population (too long interval between onset and speci-

men collection, presenting outside influenza risk period, and symptom

onset <15 days after vaccination).6 We were also in agreement with

these criteria; and they were part of the DRIVE study’s inclusion/

exclusion criteria. In our DAG, we combined health status, non-

immunocompromising comorbidities, and immunocompromising

comorbidities into one confounder, as we considered comorbidities to

be part of “health status,” and we considered both types of comorbid-

ities to impact the outcome (whereas in the DAG by Lane et al, only

immunocompromising conditions are linked to the outcome). Exam-

ples of ways that health status and comorbidities could be operationa-

lized include looking at the presence of comorbidities that lead to a

recommendation for influenza vaccination, the presence of individual

comorbidities, number of comorbidities, frailty, and number of recent

hospitalizations. Four additional covariates were included in our DAG:

healthcare-seeking behavior, pre-existing immunity from infection or

vaccination, social contact patterns and precautionary social behavior,

and socioeconomic status. The rationale for their inclusion is

described in depth in Table 2. In order to be classified as a case in a

TND study, an individual has to be exposed to the influenza virus,

develop ILI or SARI, seek medical care, be tested for influenza, and

have a positive test result. The confounders associated with the out-

come in the DAG may impact one or more of these steps.
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The minimal sufficient adjustment sets for estimating the total

effect of current influenza vaccination on medically attended influ-

enza infection include all confounders except for sex and socioeco-

nomic status, as their relationship with the outcome is mediated via

other confounders. Note that despite this finding, we decided to

include sex in our reference model for further analyses as data on

multiple other confounders (for which sex may serve as a partial

proxy, such as healthcare-seeking behavior or contact with young

children25,26) are absent.

3.1 | Predictors of vaccination status and the
outcome

Among the 11 tested covariates (presence of chronic conditions [≥1,

≥2, ≥3], cancer, cardiovascular disease, diabetes, lung disease, obe-

sity, renal disease, number of hospitalizations, and number of GP

visits in the past year) all except cancer were predictive (adjusted

odds ratio [aOR] significantly different from 1) of influenza vaccina-

tion among test-negative controls in at least one age group/setting

combination (Figure 2). The number and percentage of subjects with

each covariate by vaccination status and the aORs are presented in

supporting information 4. The presence of at least one chronic con-

dition was predictive of vaccination across all age groups and set-

tings, with aORs ranging from 2.3 (95%CI 1.5–3.7) among older

adults in primary care to 4.5 (95%CI 2.9–7.0) among children in the

hospital setting. No trends across age groups regarding aOR of the

number of chronic conditions were observed. Cardiovascular disease

was the strongest predictor in children (aOR 10.5 [95%CI 1.6–70.4]

in the primary care and 6.3 [95%CI 2.8–14.3] in the hospital set-

tings). In adults, the strongest predictors were the number of GP

visits and lung disease in the primary care setting (aOR 3.9 [95%CI

2.0–7.3] and 3.9 [2.5–6.2], respectively) and the presence of at least

one chronic condition in the hospital setting (aOR 2.5 [95%CI 1.8–

3.7]). Obesity (aOR 4.7 [95%CI 1.4–15.5]) and at least five GP visits

were the strongest predictors in older adults in the primary care

and hospital settings, respectively. No predictors of non-vaccination

were identified.

Predictors of ILI/SARI subjects testing positive versus negative

for influenza were evaluated by vaccination status (Figure 2). The

number and percentage of cases and controls with each covariate and

the ORs are presented in supporting information 5. The majority of

statistically significant predictors were identified among unvaccinated

subjects. The presence of at least one chronic condition in children in

the hospital setting and cardiovascular diseases among adults in the

hospital setting and older adults in the primary care setting were pre-

dictors of both the vaccination status and outcome in the

unvaccinated.

3.2 | Relative change in IVE estimate

Absolute and relative changes in IVE of comparator models versus the

reference models are shown in Table 3 (in the primary care setting)

and Table 4 (in the hospital setting). One comparator model resulted

in a > 10% relative change of the IVE point estimate: for older adults

in the primary care setting, additionally adjusting for lung disease

increased the IVE estimate by 15%.

F I GU R E 1 Directed acyclic graph showing the relationship between current influenza vaccination and medically attended influenza infection.
Exposure and arrows pointing toward the exposure are shown in green, outcome and arrows pointing toward the outcome in orange, other
variables and arrows in blue. Adapted from Lane et al.6 * indicates the variable was not included in the DAG by Lane et al. † Healthcare seeking
behavior: In addition to whether or not an individual seeks care, the timing of care seeking is important and applying time-related restriction
factors (regarding too long interval since symptom onset, too short interval since vaccination, and presentation when influenza is not circulating)
is recommended. DAG, directed acyclic graph
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Results for the reference model versus the model adjusted for

season only are shown in supporting information 6. In the primary

care setting, adjusting for calendar time increased the IVE estimate by

16% among children and 24% among older adults.

A sensitivity analysis in which reference models were adjusted for

age, sex, time, season, and presence of at least one chronic condition

was carried out (supporting information 7). Similar to the main

analysis, additionally adjusting for lung disease led to a 12% relative

increase of the IVE estimate among older adults in the primary care

setting.

As a secondary exploratory analysis, the analysis was repeated

using a propensity-score weighted model (see supporting informa-

tion 8 for details on methods). Findings were very similar to the condi-

tional model; the only covariate that led to a > 10% relative change in

T AB L E 2 Rationale for inclusion of confounders in the DAG

Confounder Rationale for inclusion in the DAG

Healthcare-seeking behavior In TND studies, there is less bias because of healthcare-seeking behavior, defined as a person’s propensity
to seek care when ill, than in cohort studies, as the study population is restricted to persons who seek

medical care for ILI or SARI [45]. However, as described by Sullivan et al., “someone’s propensity to

seek care, […] is based on many factors” and is therefore “unlikely to be completely captured by a single

binary indicator of whether or not a person presents himself/herself to a physician when experiencing

influenza symptoms, so healthcare-seeking would remain partially unobserved and the TND design is

unlikely to completely block the effects of this confounder” [46]. Healthcare-seeking behavior, in

general, may also be associated with increased opportunities to be offered influenza vaccine.

Healthcare-seeking behavior bias is likely more pronounced for mild disease than for severe disease.

Healthcare-seeking behavior is not straightforward to operationalize, but proxies could include sex (with

females being generally more prone to seek care than males25), the number of recent GP visits, or up-

to-date pneumococcal vaccination (for adult age groups).19

Pre-existing immunity from infection

or vaccination

Depending on the circulating influenza strains and the degree and duration of residual immunity, persons

having recently experienced an influenza infection may be (partially) protected from influenza [47, 48].

At the same time, a recent prior influenza infection has been reported by GPs as a factor that increases

influenza vaccine acceptance [49]. Confounding because of immunizing infections may be expected to

vary across seasons, as population-level intensity, severity of recent influenza seasons and changes in

influenza vaccine composition could impact the perceived necessity of vaccination.

Prior influenza vaccination may be a confounder of IVE when influenza vaccination in the current season is

associated with vaccination history and when vaccination modifies the risk of natural infection because

of lower previous risk of infection or persisting immunity [50]. However, prior influenza vaccination is

highly predictive of influenza vaccination in the current season29; this collinearity may lead to

overadjustment if this variable is included in statistical models.

Social contact patterns and

precautionary social behavior

Social contact patterns affect the risk of exposure to influenza virus. Social contact patterns may be related

to occupation; healthcare workers with direct patient contact may be more likely to have occupational

exposure to influenza, and this group is typically targeted for influenza vaccination [51]. Contact

patterns have been highly associated with age and household size, whereas the average number of

contacts varies between countries [52–54]. Persons working with young children may be more willing

to accept vaccination if they have an additional risk factor (e.g., a medical condition). Among older

adults, social inclusion into family or informal social networks—which may increase their number of

contacts—was found to positively affect vaccine uptake.11 In a study conducted among older adults in

three European countries, exposure to children under the age of five living outside of the household

explained 10% of all acute respiratory tract infections [55].

Precautionary social behavior affects the risk of exposure to influenza virus and may impact motivation to

be vaccinated. Although precautionary behavior is always relevant in the prevention of influenza,

preventive measures such as face mask wearing, physical distancing, and handwashing have become

widespread since 2020 with the COVID-19 pandemic. These measures against SARS-COV-2 virus

transmission also impact the circulation of other respiratory viruses such as influenza, as illustrated by

the strong reductions in influenza circulation in Europe in the 2020/2021 Northern Hemisphere winter

[56]. In addition, precautionary behavior such as mask wearing and distancing likely lead to a smaller

dose of the initial inoculum if exposed despite the measures taken, thereby reducing the chance of

developing severe disease [57]. The relevance of precautionary social behavior in IVE studies will likely

depend on future COVID-19 containment measures.

Socioeconomic status and ethnicity Higher socioeconomic status or educational level may support increased vaccine uptake (in older adults),11

and uptake has been found to be lower in certain ethnic groups (migration background, religion) [58–
61]. At the same time, it may impact healthcare-seeking behavior (including accessibility of healthcare)

and other social aspects such as contact patterns and health beliefs leading to precautionary behavior,

and health status.

Note: GP: General Practitioner; DAG, directed acyclic graph; TND, test-negative design; ILI, influenza-like illness; SARI, severe acute respiratory infection;

IVE, influenza vaccine effectiveness.
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T AB L E 3 Absolute and relative changes in IVE estimate when adjusting for an additional covariate compared to the reference model adjusted
for age, sex, calendar, and season, by age group in the primary care setting

Change in IVE estimate

Children Adults Older adults

Absolute % Δ
Relative Δ
(ref = 1.0) Absolute % Δ

Relative Δ
(ref = 1.0) Absolute % Δ

Relative Δ
(ref = 1.0)

Chronic conditions

≥ 1 0.1 (�0.6; 0.7) 1.00 (0.98; 1.02) 2.6 (�8.1; 13.3) 1.02 (0.91; 1.15) 1.4 (�44.0; 46.9) 1.02 (0.90; 1.16)

≥ 2 0.0 (�0.0; 0.0) NA (NA; NA) 0.6 (�2.2; 3.5) 1.01 (0.97; 1.05) 0.7 (�7.5; 8.8) 1.01 (0.88; 1.15)

≥ 3 NA (NA; NA) NA (NA; NA) 0.4 (�0.5; 1.3) 1.01 (0.99; 1.02) �1.4 (�14.0; 9.8) 0.97 (0.67; 1.41)

Specific conditions

Cancer �0.2 (�0.5; 0.3) 0.99 (0.98; 1.01) 0.2 (�1.6; 1.9) 1.00 (1.00; 1.01) 0.0 (�8.9; 8.8) 1.00 (0.93; 1.08)

Cardiovascular

disease

�0.7 (�2.0; 0.4) 0.97 (0.92; 1.01) 2.0 (�8.8; 12.8) 1.04 (1.00; 1.07) �9.2 (�25.0; 8.2) 0.90 (0.77; 1.06)

Diabetes - - 5.2 (�21.7; 32.1) 1.03 (0.79; 1.34) 1.7 (�9.9; 11.7) 1.02 (0.93; 1.11)

Lung disease �0.0 (�1.3; 1.2) 1.00 (0.97; 1.03) �1.8 (�23.8; 20.3) 1.01 (0.71; 1.44) 14.0 (�8.6; 34.8) 1.15 (1.00; 1.34)

Obesity �0.0 (�0.2; 0.2) 1.00 (0.99; 1.01) �0.4 (�12.8; 12.0) 0.99 (0.82; 1.21) 2.2 (�21.1; 20.7) 1.02 (1.01; 1.04)

Renal disease - - 0.3 (�6.2; 6.8) 1.00 (0.90; 1.12) �0.6 (�6.8; 4.0) 0.99 (0.94; 1.04)

Healthcare use in past year

Hospitalizations 0.3 (�0.1; 0.7) 1.01 (0.99; 1.03) �0.7 (�10.9; 9.5) 0.99 (0.87; 1.13) 1.0 (�0.7; 2.8) 1.01 (0.98; 1.04)

GP visits �1.3 (�4.2; 1.4) 0.98 (0.93; 1.03) 2.4 (�2.2; 6.6) 1.04 (0.96; 1.12) 0.2 (�12.2; 11.3) 1.00 (0.87; 1.15)

Note: GP: General Practitioner; IVE, influenza vaccine effectiveness.

F I GU R E 2 Predictors of vaccination among test-negative controls and predictors of testing positive for influenza (case) and testing negative
for influenza (control), by vaccination status, based on odds ratios adjusted for age, sex, calendar time, and season that do not include one in the
95%CI. Variables that are predictors of both vaccination status and the outcome are marked in bold. The covariates included in the analyses were

presence of at least one, at least two, and at least three chronic diseases (≥1, ≥2, ≥3 chronic); presence of cancer, cardiovascular disease, diabetes,
lung disease, renal disease, and obesity; and number of hospitalizations and primary care visits in the last year.’-’ signifies no significant
predictors.
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the IVE estimate was lung disease in older adults in the primary care

setting, which led to a 16% increase.

E-values for the IVE point estimate ranged from 1.3 (for older

adults in the primary care setting) to 4.0 (for children in the primary

care setting) (supporting information 9). This means that the observed

IVE of 6.3% in older adults and 56.5% in children in the primary care

setting could be explained away by an unmeasured confounder that

was associated with influenza vaccination and/or the outcome by a

risk ratio of at least 1.3-fold and 4.0-fold, respectively.

4 | DISCUSSION

In our study, based on data collected in the 2018/2019 and

2019/2020 influenza seasons, the results showed that additionally

adjusting for chronic conditions or prior healthcare use in site- and

age-specific models adjusted for age, sex, calendar time, and season

did not lead to meaningful changes in the relative IVE estimate. This

justifies a simple, harmonized approach to confounder adjustment in

TND studies.

The only exception was the variable “lung disease,” adjusting for

which increased the relative IVE by 15% among older adults in the pri-

mary care setting. Close to the threshold was also “cardiovascular dis-
ease” in the same population, decreasing the relative IVE by 10%. It

would be of interest to know if these findings can be replicated in

other VE networks. In previous research, Foppa et al found that not

adjusting for chronic cardiopulmonary conditions could overestimate

IVE if highly vaccinated controls with respiratory non-ARI (acute

respiratory infection) exacerbations were included in the study.27 This

highlights the difference between risk factors for influenza in the gen-

eral population (such as in cohort studies) and among patients seeking

care for respiratory symptoms (such as in TND studies). For TND

studies to identify risk factors for case status, these risk factors must

be “either [be] totally distinct or clearly different in magnitude from

the risk factors of illnesses that manifest with similar symptoms”.28

In both primary care and hospital settings, the presence of at least

one chronic condition was a stronger predictor of vaccination among

children than in the other age groups. This finding was expected, as

vaccination was recommended and free in 2018/2019 and

2019/2020 for all children ≥6 months only for one site (in England)

part of the DRIVE network; for other sites/countries, vaccination is

recommended for children with comorbidities. By contrast, recom-

mendations in adults also encompass occupational groups and all

older adults are recommended for vaccination, thereby expecting to

dilute chronic conditions as a predictor of vaccination.

The covariates available in the dataset used were insufficient for

DAG closure; therefore, residual confounding cannot be ruled out. For

some covariates on which we have no data, such as socioeconomic

status, data collection may be feasible in IVE studies (even if practi-

cally challenging in some settings). Several of the other variables in

the DAG are challenging to account for in IVE studies. For example,

data collection on variables such as contact patterns and precaution-

ary behavior, which require behavioral questionnaires ideally adminis-

tered before symptom onset, is unlikely to be considered a priority in

large IVE studies. Detailed data on prior potentially immunizing influ-

enza episodes is not widely available as respiratory infections are

T AB L E 4 Absolute and relative changes in IVE estimate when adjusting for an additional covariate compared to the reference model adjusted
for age, sex, calendar, and season, by age group in the hospital setting

Change in IVE estimate

Children Adults Older adults

Absolute Δ (%) Relative Δ Absolute Δ (%) Relative Δ Absolute Δ (%) Relative Δ

Chronic conditions

≥ 1 �11.8 (�57.4; 33.8) 0.92 (0.54; 1.59) �0.5 (�5.0; 4.0) 0.99 (0.93; 1.07) �0.5 (�1.8; 0.8) 0.99 (0.98; 1.01)

≥ 2 0.1 (�10.8; 11.0) 1.00 (0.88; 1.15) �1.4 (�4.5; 1.6) 0.98 (0.93; 1.03) 0.2 (�1.1; 1.4) 1.00 (0.98; 1.03)

≥ 3 �0.1 (�0.5; 0.3) 1.00 (0.99; 1.01) 0.5 (�2.7; 3.8) 1.01 (0.97; 1.05) 0.3 (�0.3; 1.0) 1.01 (0.99; 1.02)

Chronic condition category

Cancer �0.5 (�0.9; �0.1) 0.99 (0.98; 1.00) �0.7 (�2.3; 0.9) 0.99 (0.97; 1.01) �0.2 (�0.9; 0.5) 1.00 (0.99; 1.01)

Cardiovascular

disease

�0.7 (�24.3; 23.0) 1.00 (0.78; 1.28) �1.1 (�3.2; 0.9) 0.99 (0.96; 1.02) 0.0 (�1.5; 1.5) 1.00 (0.98; 1.03)

Diabetes 0.1 (�7.2; 7.3) 1.00 (0.91; 1.10) �0.2 (�3.3; 2.9) 1.00 (0.96; 1.04) 0.2 (�1.1; 1.4) 1.00 (0.98; 1.03)

Lung disease �1.1 (�57.8; 55.6) 0.98 (0.49; 1.98) 0.6 (�2.5; 3.8) 1.01 (0.96; 1.05) �0.1 (�1.0; 0.8) 1.00 (0.98; 1.01)

Obesity �0.2 (�1.6; 1.2) 1.00 (0.98; 1.02) �0.6 (�1.7; 0.5) 0.99 (0.98; 1.00) �0.1 (�1.5; 1.3) 1.00 (0.98; 1.02)

Renal disease �5.5 (�73.6; 62.7) 0.99 (0.65; 1.49) �0.2 (�1.7; 1.4) 1.00 (0.96; 1.03) �0.9 (�3.1; 1.2) 0.99 (0.97; 1.02)

Healthcare use in past year

Hospitalizations �2.3 (�5.1; 0.4) 0.96 (0.88; 1.04) �1.3 (�3.8; 1.2) 0.99 (0.95; 1.03) �1.1 (�5.0; 2.9) 1.00 (0.96; 1.04)

GP visits �1.1 (�8.2; 5.1) 0.96 (0.77; 1.17) �0.6 (�82.0; 80.8) 1.00 (0.79; 1.27) 1.6 (�4.8; 8.0) 1.03 (0.96; 1.10)

GP: General Practitioner; IVE, influenza vaccine effectiveness.
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frequently not medically attended or based on clinical diagnosis only.

Although vaccination status in prior seasons is likely to be retrievable,

it is highly collinear with influenza vaccination in the present season

and its inclusion in the statistical model may therefore lead to overad-

justment.29 The DAG describes the relationship between current

influenza vaccination and medically attended laboratory-confirmed

influenza infection presenting as ILI/SARI, that is, test-positive cases.

Test-negative controls, who present with non-influenza respiratory

infections, are not described in the DAG. However, IVE estimates can

be biased by factors that modify non-ILI ARI risk and many may be

associated with influenza vaccination.19,27,30

Sullivan et al have reviewed the inclusion (and definition) of key

variables in the principal analysis of 85 IVE studies and described how

many studies applied the restriction criteria and adjusted for specific

covariates.17 Clearly, there is important variation between studies.

Examples of networks other than the DRIVE are the outpatient

United States Flu VE Network, the United States Hospitalized Adults

IVE Network (HAIVEN), the European I-MOVE network, and the

CSPSN, all of which adjusted IVE estimates for age and calendar time

and accounted (through adjustment or restriction) for the interval

from symptom onset to testing.7,31–34 The US Flu VE Network addi-

tionally adjusted for sex, self-rated general health, race, and Hispanic

ethnicity31; the HAIVEN for sex and race/ethnicity34; and I-MOVE for

sex, chronic conditions, and study site.32,33 CSPSN found that addi-

tional adjustment for sex and presence of at least one comorbidity

resulted in an absolute change of the IVE of ≤4% and, therefore, did

not include these variables in their final model.7

The present study has several limitations. This was a secondary

analysis of an existing dataset. Collection of data on chronic condi-

tions (beyond “presence of at least one chronic condition”) and prior

healthcare use were not mandatory and were consequently not avail-

able for all sites, sometimes only for a subset of subjects within one

site. To optimize the use of all existing data, a complete case analysis

was performed for each model. The drawbacks are, first, that the set

of subjects included in each analysis was not identical, and second,

that the number of conditions eligible to be counted to build the vari-

ables “presence of at least two or three chronic conditions” was not

the same across all sites. Furthermore, the lack of more granular infor-

mation on chronic conditions in the dataset, such as on the precise

condition, disease severity, and frailty for older adults, precludes the

possibility to assess in more detail the potential chronic conditions/

diseases associated with the likelihood of being diagnosed with

influenza.

There is no gold standard for the inclusion of chronic conditions

in IVE studies. From a vaccination policy standpoint, the European

Centre for Disease Prevention and Control (ECDC) provided a list of

chronic conditions of importance to target the individuals with a

higher risk of associated complications in case of influenza infection.35

Nevertheless, all conditions are considered equally likely to give rise

to annual vaccination, although there may be a difference in proactive

communication and vaccination by GPs, based on the specific condi-

tion of the patient. Furthermore, some studies demonstrated the

importance of focusing on the frailty syndrome when assessing IVE,

particularly in older adults.36 Frailty is a dynamic and multifactorial

syndrome in older adults that represents a reduction in physiological

reserve, limited ability to resist environmental stressors, and increased

risk of functional decline. Frailty is a state of increased vulnerability to

adverse outcomes compared to others of the same age.37 Applied

studies highlighted the substantial confounding effect of frailty in the

context of IVE studies and underscored the importance of using this

multidimensional component instead of isolated factors to account for

the health status and vulnerability of study participants.38

The statistical model used was a conditional model (also used in

the DRIVE IVE studies4,5), which models the effect of potential con-

founders on the outcome. A drawback of this model is that the non-

collapsibility of the odds ratio and incidence ratio implies that changes

in the IVE because of the exclusion or inclusion of a covariate might

not be caused by the confounding effect.8 This is more problematic

for common outcomes (such as ILI) than for relatively rare outcomes

(such as SARI).39–41 However, the findings based on the propensity-

score weighted model were very similar. Several assumptions underlie

the statistical model, such as the absence of unmeasured confounders

(which we consider unlikely, considering the DAG), that the effects

take place on the logarithmic scale and that the effects are linear. We

focused on the relative change rather than absolute change in IVE to

have a more harmonized comparison across the age groups and set-

tings. The 10% change threshold used to select meaningful covariates,

though also commonly used by others,6,18–20 is arbitrary. We study

multiple covariates, age groups and settings, thereby increasing the

possibility of chance findings. However, we have identified only one

covariate that met the threshold.

There is a risk of bias associated with unadjusted IVE estimates.42

In our study, all estimates were minimally adjusted for age, sex, calen-

dar time, and season. The finding that adjustment for additional vari-

ables did not lead to a meaningful impact on the IVE (with one

exception) can be because the evaluated covariates are not true con-

founders, because of the low magnitude of the effect of true con-

founders, and/or because of the low prevalence of the variable in the

population. Omitting variables with low prevalence only has a rela-

tively small impact on IVE compared to more prevalent conditions

with the same effect on the exposure and outcome.43

Although most estimates of the relative change in IVE were close

to 1.0, indicating little to no impact of additional adjustment on the

IVE estimates in the current dataset, variability was observed in the

width of the CI. Multiple covariates analyzed in adults and older adults

in the primary care setting and in children in the hospital setting had a

CI that encompassed a > 10% relative change in the IVE, which repre-

sents an important side note when generalizing the findings to poten-

tial future IVE studies. In addition, in the primary care setting, the only

stratification for which a confounder was found that led to a > 10%

relative change in the IVE, the number of older adults was substan-

tially lower than for the other age and setting stratifications.

A strength of the study is that the analysis is based on two sea-

sons of data from a network of multiple European countries using har-

monized data collection (through a core protocol and codebook).

Furthermore, we started by building a theoretical framework to justify
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the selection of covariates in the confounder analysis and provided a

reference point for confounding in future DRIVE and possibly other

(network-based) IVE studies.

Adequate confounder adjustment in vaccine monitoring studies is

important to correctly interpret VE estimates for public health action

and regulatory purposes. An efficient network collects data on a mini-

mum set of variables that are directly relevant for the VE analyses. E-

values can be used to understand the magnitude an unmeasured con-

founder should have to cancel out the observed effect;24 however, no

general rule can exist about small vs. large E-values and thus the use

of the E-value should be considered as a complementary parameter

only.44 Collecting additional variables may be of interest for descrip-

tive purposes or for exploratory analyses but should not form a barrier

to participation in a study network. Nevertheless, the impact of

potential confounders on the observed effects should continue to be

evaluated, especially if the context changes (e.g., relative vaccine

effectiveness, COVID-19 vaccines, etc.) or new data on potential con-

founders become available (e.g., on frailty).

5 | CONCLUSION

The present study supports a parsimonious approach to confounder

adjustment, limited to adjusting for age, sex, and calendar time, in

network-based TND IVE studies conducting analyses stratified by age

groups and site and subsequently pooled by age and setting. For older

adults in the primary care setting, additional adjustment for lung dis-

ease can be considered. The findings were reassuring as this parsimo-

nious approach has been applied by the DRIVE since the 2019/2020

influenza season to produce brand-specific IVE and report annual esti-

mates to regulatory authorities. Practical implications are that necessi-

tating fewer variables lowers the threshold for enrollment of sites in

IVE studies and simplifies the pooling of data from different IVE stud-

ies or study networks, both of which are important to increase the

sample size and geographic coverage (important for brand-specific

IVE assessment because of fragmented vaccine landscape) of IVE

studies.
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