Skip to main content
. 2022 Dec 21;8(1):934–945. doi: 10.1021/acsomega.2c06308

Table 2. Variable Values before and after Optimization of the LSTM Network Layer Functions.

function variable value before optimization optimized value describe
sequenceInputLayer InputSize 9 9 number of input parameters
MinLength 1 1 minimum input length of data
lstmLayer InputSize auto auto automatic adjustment
NumHiddenUnits 100, 50 128, 64 LSTM hidden layer
Bias 32 32 offset term
dropoutLayer dropout 0.2 0.2 probability of node dropping
fullyConnectedLayer OutputSize 1 1 number of output parameters
regressionLayer       regression output
trainingOptions MaxEpochs 100 50 number of training set runs
InitialLearnRate 0.005 0.001 learning rate
MinBatchSize 200 170 amount of data per training