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ABSTRACT: Red blood cells (RBCs) are exposed to both external
and internal sources of oxidants that challenge their integrity and
compromise their physiological function and supply of oxygen to
tissues. Autoxidation of oxyhemoglobin is the main source of
endogenous RBC oxidant production, yielding superoxide radical and
then hydrogen peroxide. In addition, potent oxidants from other blood
cells and the surrounding endothelium can reach the RBCs. Abundant
and efficient enzymatic systems and low molecular weight antioxidants
prevent most of the damage to the RBCs and also position the RBCs as
a sink of vascular oxidants that allow the body to maintain a healthy
circulatory system. Among the antioxidant enzymes, the thiol-dependent peroxidase peroxiredoxin 2, highly abundant in RBCs, is
essential to keep the redox balance. A great part of the RBC antioxidant activity is supported by an active glucose metabolism that
provides reducing power in the form of NADPH via the pentose phosphate pathway. There are several RBC defects and situations
that generate oxidative stress conditions where the defense mechanisms are overwhelmed, and these include glucose-6-phosphate
dehydrogenase deficiencies (favism), hemoglobinopathies like sickle cell disease and thalassemia, as well as packed RBCs for
transfusion that suffer from storage lesions. These oxidative stress-associated pathologies of the RBCs underline the relevance of
redox balance in these anucleated cells that lack a mechanism of DNA-inducible antioxidant response and rely on a complex and
robust network of antioxidant systems.

1. INTRODUCTION
Red blood cells (RBCs) are the most abundant cells in the
blood. The average hematocrit of 40−45% correlates with a
red blood cell count of 4.8−5.4 × 1012 cells per L,
approximately 1000 times more than white blood cells and
20 times more than platelets. Their principal function is to
transport oxygen to the tissues. To accomplish this function,
RBCs have high intracellular concentration of hemoglobin
(Hb), and binding of oxygen to Hb is highly regulated.
Nevertheless, a side effect is the generation of superoxide
radicals from autoxidation of Hb that must be controlled. In
addition, reactive species produced in the vasculature
(endothelium and other blood cells) can diffuse and reach
the RBCs. To cope with this, RBCs are equipped with a battery
of antioxidants, low molecular weight like glutathione (GSH),
and enzymes like peroxiredoxin 2, which are described in detail
below. The efficient decomposition of oxidant species along
with repair mechanisms, the elimination through proteasomal
degradation of altered proteins, and vesiculation of irreversibly
damaged cellular structures1 keep the RBCs functional for 120
days in circulation. The redox status of the RBC is important
not only to keep an adequate supply of oxygen to every tissue
cell but also to keep a healthy circulatory system due to RBC

interactions with other blood cells and the vascular
endothelium.

RBCs lack organelles like the nucleus and mitochondria;
thus, no new biosynthesis of proteins takes place in the mature
erythrocyte, and energy relies on glycolysis. Glucose is the
source of energy as ATP and also the source of reducing
equivalents such as NADH (glycolysis) and NADPH (pentose
phosphate pathway). ATP is mainly tasked with maintaining
transmembrane ion gradients, membrane integrity, and the
interaction with the cytoskeleton. This is crucial to maintain
the human RBC biconcave shape that gives RBCs flexibility to
circulate into capillaries as well as to prevent hemolysis that
will release Hb into the intravascular space with deleterious
consequences.

In this review we focus on the redox metabolism of the
human RBC, describing oxidants and antioxidants involved in
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the maintenance of redox balance. Relevant pathologies
associated with RBC oxidative stress like sickle cell disease
and thalassemia are also described.

2. THE HUMAN RBC
Human RBCs are shaped as biconcave disks with 8 μm
maximal diameter, 2 μm thickness, approximately 90 fL in
volume, and 140 μm2 surface area.2,3 The biconcave shape
results in a high surface area to volume ratio that not only
favors gas exchange but also is essential for RBC deformation.
Their particular shape and deformability allow RBCs to pass
through narrow capillaries and the interstitial slits in the
spleen.3 The ability of RBCs to deform depends on the
properties and interactions of the RBC cytoskeleton,
membrane components (proteins and lipids), and the cellular
hydration state and viscosity.4 The plasma membrane of RBCs
is composed of 43% lipids, 49% proteins, and 8%
carbohydrates in mass.5 The lipid fraction is composed of
cholesterol (45%, mol/mol) and phospholipids (55%, mol/
mol). The most abundant phospholipids are phosphatidyle-
thanolamine (PE), phosphatidylcholine (PC), and sphingo-
myelin (SM), with lower amounts of phosphatidylserine (PS),
phosphatidylinositol (PI), and glycolipids.5,6 The lipids are
distributed asymmetrically across the membrane, with
negatively charged phospholipids (PS and PI) facing the
cytosol and glycolipids facing the exterior. The exposure of PS
in the outer face of the membrane is recognized by
macrophages as a senescence signal, and these RBCs are
subsequently phagocytosed and removed from circulation.7

The interaction between the cytoskeleton and the
membrane proteins involves a large number of transmembrane
proteins. The cytoskeleton gives RBCs their ability to deform
and return to shape4 and is composed of long α- and β-spectrin
heterotetramers that form coiled fibers anchored to the
membrane by multiprotein nodal points that are bound to
band 38. The most abundant transmembrane protein is the
band 3 anion transport protein (SLC4A1), with over 106

copies per cell. It is an anion channel responsible for the
bicarbonate/chloride exchange.9 Other transporter proteins are
also abundant, such as the glucose transporter Glut1 (1.7 × 105

per cell) and aquaporin 1 (6 × 104 per cell), involved in water
transport in response to osmotic gradients.9 ATPases in the
membrane are less abundant but are responsible for
maintaining ion gradients, and particularly relevant are the
Na+/K+-ATPase and Ca2+-ATPase.9 Not as abundant but
important in the membrane dynamics of RBCs is the mechano-
sensitive PIEZO 1 calcium channel.10

The cytosol in RBCs is largely dominated by Hb (20 mM
subunit concentration), followed by carbonic anhydrase (300
μM), Prx2 (250 μM), and then proteins involved in oxidant
detoxification and the metabolism of glucose.9,11 Hb is a
heterotetramer composed of two α-globin and two non-α-
globin chains with one heme molecule bound to each globin.
The α-globin locus, located on chromosome 16, contains the
α1 and α2 genes, and the β-globin locus, on chromosome 11,
contains the β, δ, and γ loci. According to the developmental
stage, the major Hb tetramer changes from α2γ2 (HbF) in the
fetal period to α2β2 (HbA) in adulthood. In mature RBCs,
HbA is the major component, reaching a 5 mM concentration
(20 mM heme). The redox state of the heme is very important
since oxygen binds to the ferrous heme (FeII), forming
oxyhemoglobin (oxyHb). The ferric form (FeIII) or meth-
emoglobin (metHb) is unable to bind oxygen. MetHb forms

spontaneously at a rate of 3% Hb per day, and its formation
can be accelerated by drugs such as benzocaine and chemicals
such as nitrite and can also have genetic causes.12 The RBC
contains a metHb reductase enzyme system, which includes
cytochrome b5 reductase and cytochrome b5, to catalyze the
reduction of the heme iron at the expense of NADH.13

3. REACTIVE SPECIES DERIVED FROM RBCs AND
OTHER SOURCES IN THE VASCULATURE

RBCs are exposed to both endogenous and exogenous reactive
species. These reactive species, usually referred to in the
literature as reactive oxygen species (ROS) or reactive nitrogen
species (RNS), are small molecules, oxidants in general, some
of which are radicals. It should be emphasized that ROS are
not one chemical oxidant species but a wide group of
molecules. We will briefly describe the main reactive species
involved in oxidative damage to RBCs.
Superoxide. Superoxide (O2

•−) is the one-electron
reduction product of oxygen and can be produced in RBCs
by oxyHb autoxidation that also leads to the production of
metHb (Hb(FeIII)) (eq 1).

+ •Hb(Fe O ) Hb(Fe ) OII
2

III
2 (1)

Autoxidation occurs at a slow rate (k = 4.5 × 10−7 s−1)14 and is
accelerated in partially deoxygenated Hb.15 The reverse
reaction (reduction of metHb by O2

•−) is also possible with
k = 4000 M−1 s−1.16 Furthermore, O2

•− can be produced
enzymatically by NADPH oxidases (Nox2, EC 1.6.3.1) or as a
side product of mitochondrial respiration in endothelial cells
and leukocytes.17 Also, the enzyme xanthine oxidase (EC
1.17.3.2) that binds to glycosaminoglycans in endothelial
surfaces can also produce O2

•−.17 Although O2
•− can

dismutate spontaneously to oxygen and hydrogen peroxide
(H2O2) (eq 2), the enzyme superoxide dismutase (SOD1, EC
1.15.1.1), present in RBCs, accelerate this reaction several fold
(see below).18

+ +• +2O 2H H O O2 2 2 2 (2)

Superoxide per se is not very damaging and is not a strong
oxidant; even more, it can act as a reductant sometimes.
Reaction with lipid hydroperoxides has been proposed to yield
alkoxyl radicals and promote lipid oxidation, eventually leading
to RBC lysis,19 but the concentration of lipid hydroperoxides
in fresh RBCs is very low. An alternative toxic pathway is the
reaction with nitric oxide (NO•) to yield peroxynitrite (see
below).
Hydrogen Peroxide. Most H2O2 derives from O2

•−, but
some oxidases can yield H2O2 directly (Figure 1).17 In addition
to its microbicidal properties, H2O2 modulates different cell
functions including endothelial cell proliferation and survival,
platelet recruitment, insulin secretion, and cardiac remodeling
induced by hypertension.20−25 H2O2 can diffuse across the
RBC membrane very rapidly, without involving aquaporins.26

H2O2 is not a very oxidizing molecule but can yield the highly
reactive hydroxyl radical (HO•) by reduction by metals
(Fenton reaction) (eq 3) (Figure 1).

+ + +•H O Fe HO HO Fe2 2
II III (3)

Under normal physiological conditions, the concentration of
free or labile iron available for the Fenton reaction is kept very
low by extracellular and intracellular proteins, preventing the
deleterious reactions mediated by iron.27 However, different
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genetic disorders can led to iron over load.28 Such is the case of
the ferrireductase Steap3, which reduces FeIII to FeII after
DMT1 trans membrane transport.29 Mice lacking Steap3 are
deficient in erythroid ferrireductase activity and suffer from an
iron deficiency anemia.30 On the other hand, increased levels
of Steap3 result in degradation of cellular membranes through
lipid peroxidation, leading to a failure of RBC homeostasis and
hemolysis/clearance of RBCs,31 likely because of Fenton-type
reactions due to increased FeII.

Two thirds of body iron is present in circulating RBCs as
part of Hb.32 In the RBCs, the reaction of H2O2 with the heme
of oxyHb yields the pro-oxidizing ferrylHb as an intermediate
(eq 4), which can react with a second molecule of H2O2 to
yield metHb (eq 5). The reaction of H2O2 with metHb yields
ferrylHb with a protein radical that is readily detected by EPR
(eq 6).33

+ +Hb(Fe O ) H O Hb(Fe O) H OII
2 2 2

IV
2 (4)

+ + + •Hb(Fe O) H O Hb(Fe ) H O OIV
2 2

III
2 2

(5)

+ +•Hb(Fe ) H O Hb (Fe O) H OIII
2 2

IV
2 (6)

To prevent this potentially harmful reactions, the RBCs are
equipped with a robust system to reduce H2O2, including
peroxiredoxin 2, catalase, and glutathione peroxidase, which
will be discussed in detail below.34

Hydroxyl Radical. One of the most oxidizing radicals in
biology is HO•.35 It can react with most biomolecules at
diffusion-controlled rates, leading to protein, DNA, and lipid
damage.36 It can be formed from the reduction of H2O2,
mainly by reduced metal atoms, such as Cu+ and Fe2+ (Fenton
reaction) (eq 3), and also from peroxynitrite homolysis (see
below, Figure 1). In some conditions, excess labile iron in
RBCs can contribute to oxidative damage by this mechanism
(as in sickle cell disease, see below). Because of the extremely
high rates of reaction of HO• with biomolecules, the best
mechanism of defense in cells is to prevent its formation by
consuming H2O2 very rapidly (see below).

Nitric Oxide. Despite being a radical molecule, NO• is
formed in vivo as the product of specific enzymes called nitric
oxide synthases, (NOS, EC 1.14.13.39).37 NO• is an autocrine
and paracrine signaling molecule which promotes vascular
relaxation, inhibits platelet aggregation, decreases inflamma-
tion, and modulates the neural activity.38 NOSs are complex
enzymes that are constitutively expressed in endothelial cells
(NOS3) and can be induced in leukocytes (NOS2).37 Recently
an endogenous RBC NOS3 has been reported in low
abundance and with functions still poorly understood.39

These enzymes catalyze the conversion of L-arginine to NO•

and L-citrulline. The constitutive endothelial NOS3 responds
to changes in Ca2+ concentration to increase the production of
NO•. NO• produced by endothelial cells can diffuse through
cell membranes virtually unhindered and reach underlying
smooth muscle cells to cause relaxation through the activation
of soluble guanylate cyclase.40,41 A large part of NO• will
diffuse to the lumen of blood vessels, reacting mostly with
oxyHb in RBCs to yield nitrate and metHb (k = 8.9 × 107 M−1

s−1, eq 7).42,43 The exact amount of NO• that will react with
oxyHb depends mainly on the number of RBCs and the size of
the RBC-free layer created near the vessel wall by the blood
flow. The diffusion across this RBC-free layer will be the main
barrier to NO consumption by RBCs.44

+ +•Hb(Fe O ) NO Hb(Fe ) NOII
2

III
3 (7)

Another possible destiny of NO• is the reaction with O2
•− to

yield the highly oxidizing peroxynitrite (ONOO−) (Figure 1).
Peroxynitrite. The reaction between the two radicals, O2

•−

and NO•, occurs at diffusion-controlled rates to yield the
peroxynitrite anion (ONOO−) (k = 4−16 × 109 M−1 s−1; eq
8) (Figure 1).45

+• •NO O ONOO2 (8)

Peroxynitrite is a powerful one- and two-electron oxidant.45

With a pKa of 6.8, at physiological pH peroxynitrite will be a
mixture of ONOO− and the protonated peroxynitrous acid
(ONOOH). ONOOH can decay relatively slowly to nitric acid
plus a 30% fraction of HO• and nitrogen dioxide (NO2

•) (eq
9) (Figure 1).

+ [ + ]• •ONOOH HNO (70%) NO HO (30%)3 2 (9)

In RBCs, the main targets of peroxynitrite would be Prx2 (k =
1.4 × 107 M−1 s−1, pH 7.4 and 25 °C), oxyHb (k = 5.8 × 104

M−1 s−1), and CO2 (k = 5.8 × 104 M−1 s−1).46−49 Prx2 would
detoxify peroxynitrite, but if Prx2 is oxidized the reaction with
oxyHb occurs very rapidly with isomerization of peroxynitrite
to nitrate, some production of superoxide anions, and finally
oxidation of Hb to metHb47 (eq 10).

+ + + •Hb(Fe O ) ONOO Hb(Fe ) NO OII
2

III
3 2

(10)

The reaction with CO2 yields the secondary radicals NO2
• and

the carbonate radical (CO3
•−) in 33% yield (eq 11) (Figure

1).45

+ [ + ]

+ [ + ]• •

ONOO CO NO CO (67%)

NO CO (33%)

2 3 2

2 3 (11)

The carbonate radical is very reactive and will react rapidly
with sulfur-containing molecules, aromatic residues in proteins,

Figure 1. Reactive species produced in the vascular system relevant to
RBCs. Oxygen and NO• are the two main ingredients required for the
generation of reactive species that will lead to biomolecular damage.
Details about each pathway are given in the text.
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ascorbate, and urate (>107; 107−109; 109; 108 M−1 s−1,
respectively).50

Nitrogen Dioxide. Sources of NO2
• include peroxynitrite

homolytic decay46 (Figure 1), the environment, as NO2
• is one

of the main components of smoke and smog,51 the
autoxidation of NO• in lipid membranes,52 and the oxidation
of nitrite by heme peroxidases.53 NO2

• is a radical, and it is
very reactive to a variety of biomolecules, including thiolate-
containing molecules, ascorbate, and urate (k ∼ 108; 1.8−3.5 ×
107; 2 × 107 M−1 s−1, respectively50), and it can also initiate
lipid peroxidation.54 In RBCs, it is likely that both Hb thiols
and GSH are the main targets of NO2

•, whereas urate would
be the main target in plasma.
Hypochlorous Acid. The leukocytes, neutrophils, and

monocytes are recruited to sites of infection where they
phagocytize and kill invading pathogens. Upon infection-
related or inflammatory stimuli, these leukocytes generate large
amounts of H2O2 via Nox2 and release myeloperoxidase
(MPO).55 MPO is a hemeprotein that uses H2O2 to oxidize
chloride to hypochlorous acid (HOCl) (Figure 1), which is
highly cytotoxic.55 HOCl participates in both oxidation and
chlorination reactions. Chlorination reactions are evident by
the formation of chloramines and 3-chlorotyrosine. Reaction
with sulfur-containing residues such as cysteine and
methionine are expected to be the most important reactions
in biology because of their abundance and reactivity (at pH
7.4, k = 3.6 × 108 and 3.4 × 107 M−1 s−1, respectively).56

HOCl and some chloramines can diffuse across the RBC
membrane and react preferentially with cytosolic thiols.57

Unlike H2O2 and peroxynitrite, HOCl does not prefer Prx2 but
will react with GSH and likely Hb thiols.57

Hydrogen Sulfide. H2S is not an oxidant but is a relevant
redox reactive species with biological effects, including
vasorelaxation, neurotransmission, and pro- or anti-inflamma-
tory effects, depending on the pathology.58 Both endothelial
cells and RBCs have enzymes that synthesize H2S, though
unequally distributed. Endothelial cells produce H2S mainly
through cystathionine γ-lyase (CSE) and mercaptopyruvate
sulfur transferase (MST), whereas RBCs produce H2S via
MST.59,60 H2S is slightly hydrophobic and can diffuse freely
unhindered by plasma membranes, indicating that RBCs will
also be exposed to H2S produced by the endothelium.61,62 H2S
reacts with metHb in RBCs at moderate rates (kon = 3.2 × 103

M−1 s−1, eq 12) to form an intermediate iron-bound sulfidated
Hb, which can slowly release the H2S (koff = 0.053 s−1).60 In
the presence of O2, however, most H2S is rapidly oxidized to
thiosulfate and iron-bound polysulfides through poorly
characterized intermediates (eqs 13−15).60,63 Iron-bound
polysulfides can further react with endogenous GSH to yield
glutathione persulfide, which is more reactive than GSH and
has been shown to be an important inhibitor of lipid
peroxidation.63−65

+ + +Hb(Fe ) H S Hb(Fe SH ) HIII
2

III (12)

+Hb(Fe SH ) H S Hb(Fe S H)III
2

III
2 (13)

+ +nHb(Fe S H) H S Hb(Fe S H)n
III

2 2
III

2 (14)

+ +Hb(Fe S H) O Hb(Fe ) S OIII
2 2

III
2 3

2
(15)

H2S can also react with Hb to generate the green
sulfhemoglobin. The most frequent formation of sulfhemoglo-
bin in blood has been associated with misuse of sulfadrugs,

rather than H2S poisoning.66 This green sulfhemoglobin results
from the irreversible covalent reaction of sulfur to the pyrrole
ring and leads to a 135-fold decrease in oxygen affinity.67 The
mechanism of sulfhemoglobin formation is not clear, but it is
postulated to involve reaction of H2S with an oxoferryl
(Hb(FeIV�O) Por•+ or Hb(FeIV�O)) intermediate.68 The
reactions of H2S with Hb are likely important in regulating the
biological actions of H2S in the vascular system.

4. ANTIOXIDANT SYSTEMS IN RBCs
The RBC contains several antioxidant systems that allow it to
cope with extensive oxidative stress. These include low
molecular weight systems involved in cytosolic protein and
membrane lipid protection and enzymatic systems that can
react and reduce mostly water-soluble oxidants. The following
section gives a detailed description of the most relevant
antioxidant systems in RBCs.
Superoxide dismutases (SODs, EC 1.15.1.1) are enzymes

that catalyze the dismutation or disproportionation of two
molecules of O2

•− to O2 and H2O2 (eq 2).69 Interestingly, this
reaction occurs spontaneously (k = 2 × 105 M−1 s−1), yet it is
accelerated 4 orders of magnitude (2 × 109 M−1 s−1) by these
enzymes. Considering the relatively high abundance of SOD
and diffusion-limited reactivity, the enzyme-catalyzed reaction
is the principal O2

•− dismutation mechanism in aerobic
organisms.70,71

SODs are metalloenzymes classified by the metal ions they
bind. There are three forms in mammals: SOD1 and SOD3
that are copper−zinc superoxide dismutases (Cu/Zn SOD),
and SOD2 that is a manganese SOD (MnSOD).71,72 RBCs
contain Cu/Zn SOD1 which is accountable for at least 95% of
the Cu content, and it is present at an approximate
concentration of 4 μM.73,74 SOD1 is a homodimeric protein
of 32 kDa in which each monomer contains a CuII and a ZnII

ion in its structure.75 The catalytic metal is CuII, while ZnII has
a rather indirect role in catalysis since it stabilizes the active site
structure and adjusts its redox potential.76 During catalysis, the
CuII ion is reversibly reduced and oxidized by two consecutive
encounters with O2

•− (eqs 16 and 17).

+ +•SOD(Cu Zn ) O SOD(Cu Zn ) OII II
2

I II
2 (16)

+ +
+

• +SOD(Cu Zn ) O 2H

SOD(Cu Zn ) H O

I II
2

II II
2 2 (17)

In the resting state, the oxidized CuII binds the oxygen atom of
a water molecule and is connected to the ZnII ion by a histidine
residue (His63). The first O2

•− travels down a positively
charged active site channel to bind the CuII and displaces the
water molecule. Then, the bound O2

•− reduces CuII to CuI

which leads to O2 formation, the loss of the Cu−His61
coordination bond, and His63 protonation (eq 16). The
second O2

•− binds to the CuI and oxidizes it to CuII, while it
receives two protons coming from the His63 and the solvent,
which yield H2O2 (eq 17). As the H2O2 leaves the active site,
the Cu−His63 coordination bond is reestablished, and the
enzyme returns to the resting state.77,78

SOD1 activity is correlated with RBC physiology, protecting
RBC proteins against O2

•−-mediated damage. Studies on mice
RBCs lacking SOD1 have shown an early increase in their size
and a decreased life span (60% of that of control mice),
ultimately leading to anemia. Furthermore, these RBCs
exhibited high oxidant and metHb levels that had a
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concomitant increase with age. Moreover, SOD1-deficient
RBCs exhibited bound immunoglobulins, and deposits of
immune complexes were found in the glomeruli of these mice,
which is a hallmark of autoimmune pathology.79 All these
effects have been proven to be significantly reverted by the
transgenic expression of SOD1.80 RBCs from SOD1 knockout
mice also exhibited high levels of oxidized carbonic anhydrase
2 (CA2), which leads to its proteasomal degradation and RBC
malfunction. Moreover, the accumulation of oxidized CA2
alters proteasomal activity and disturbs protein homeostasis in
the RBC.81

Additionally, in human RBCs, SOD1 can be post-transla-
tionally phosphorylated and/or glutathionylated near the
dimer interface. Specifically, the glutathionylation of Cys111
disrupts the dimer interface and yields SOD1 monomers that
are significantly less active.82

Overall, SOD1 plays a main role in the RBC antioxidant
system because it scavenges the O2

•− that is continuously
produced by oxyHb autoxidation. Although SOD1 activity
prevents generation of more potent oxidants such as
peroxynitrite (Figure 1), its reaction yields H2O2, which can
further oxidize cellular components and/or produce HO•.
Therefore, SOD1 must act concertedly with the H2O2
reduction systems in order to complete its antioxidant
function.
Peroxiredoxins (Prx, EC 1.11.1.15) are peroxidases that

reduce H2O2 and other hydroperoxides (ROOH), using highly
reactive cysteine residues. They are ubiquitous, abundant,
present in all cell compartments, and indispensable for aerobic
life. There are three Prx isoforms in RBCs, namely, Prx1, Prx2,

and Prx6.83 Among them, Prx2 is the most abundant in the
RBC with a concentration of 240−410 μM.9,84,85

Prx2 belongs to the Prx1 class of the Prx family, also known
as typical two-cysteine Prx. These Prx are homodimers (44
kDa) arranged in a head-to-tail fashion that further form
toroid-shape homodecamers (220 kDa) (Figure 2). Dimeriza-
tion is necessary for complete active site folding since each
monomer has two halves of an active site: the amino-terminal
(N-ter) head and the carboxi-terminal (C-ter) tail. During
catalysis, the N-ter active site peroxidatic cysteine (CP) reacts
with H2O2 to form a sulfenic acid on CP (CPSOH) (Figure 2).
Then, CPSOH reacts with the C-term active site, resolving
cysteine (CR) from an adjacent subunit (Figure 2), to form an
intermolecular disulfide bond that is later reduced by the
thioredoxin/thioredoxin reductase (Trx/TR) system at the
expense of NADPH. Occasionally, the CPSOH can react
further with H2O2 to form sulfinic (CPSO2) or sulfonic acid
(CPSO3), which reversibly or irreversibly inactivates the
enzyme.86

The Prx2 CP can react with both H2O2 and peroxynitrite
extremely fast, with rate constants of 1 × 108 and 1.4 × 107

M−1 s−1, respectively.45,49,87 Nevertheless, the catalytic cycle of
Prx2 is significantly delayed by the CP‑-CR disulfide formation
(0.3 s−1), which makes the enzyme prone to hyperoxidation,
leading to the accumulation of CPSO2 and/or CPSO3. Prx2
switches its oligomeric form based on the redox state of CP and
CR: the dithiol is a stable decamer, while the disulfide-bonded
Prx2 is predominantly a covalent dimer.88,89 Prx2 in the RBCs
is present mostly in the reduced state, and harsh oxidative
insults are needed to accumulate oxidized Prx2.83 In some
cases, the recycling of Prx2 is compromised by low NADPH

Figure 2. Peroxiredoxin activity. The reduced Cys52 in Prx2 (CPSH) is oxidized by H2O2 and other oxidants to sulfenic acid (CP-SOH). This
CPSOH reacts with the CRSH, forming an intermolecular disulfide bridge. The disulfide-oxidized Prx2 is predominantly a dimer and is reduced by
Trx, TR, and NADPH. The oxidized CPSOH can alternatively react with a second oxidant molecule to yield the hyperoxidized sulfinic acid
(CPSO2). The latter can either be repaired to the active enzyme by sulfiredoxin (Srx) or form stacked decamer high molecular weight structures.
The structure of decameric Prx2 (5IJT) shows reactive cysteine residues in yellow, and each dimer is shown in green and blue, as sides of the
pentagon.
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availability, such as in G6PD deficiencies that will be discussed
below.90

Prx2 is involved in different aspects of the RBC physiology.
From an early stage, highly concentrated Prx2 is necessary in
the erythropoiesis process, particularly in the erythroblast,
acting as an antioxidant when Hb synthesis is at its peak and
large amounts of heme and iron are handled.91 The absence of
Prx2 at this stage has shown defective erythropoiesis and iron
toxicity.

Furthermore, Prx2 specifically protects Hb against oxidation
and is fundamental for the stabilization of its structure. Mice
models lacking Prx2 show increased Hb oxidation, Heinz body
precipitation, and hemolytic anemia,92 despite having intact
catalase and GPx functionality.93,94 It has also been shown that
the decameric state of Prx2 is needed to prevent H2O2-induced
Hb aggregation.95

A small part of the RBC’s Prx2 pool is located in the cell
membrane, where it has been associated with the cytoplasmic
domain of a band 3 anion transport protein, spectrin, and the
Gardos channel.96−98 Although the function of Prx2 in the
RBC membrane is still elusive, the increase of membrane-
bound Prx2 is a marker of RBC oxidation and stress.99,100

Interestingly, Prx2 also exhibits functions outside the RBC, as
an enhancer of the cytotoxic activity of natural killer cells
against tumor cells and as a proinflammatory cytokine that is
excreted in exosomes.101,102

Thioredoxin is a small monomeric protein (12 kDa) which
has a conserved active site sequence Cys-Gly-Pro-Cys. The N-
terminal Cys attacks the target protein disulfide, generating a
transient mixed disulfide (eq 18) that is then reduced by the C-
terminal Cys in the active site of Trx to generate an
intramolecular disulfide in Trx and the protein thiol (eq
19).103 RBCs contain Trx1 that participates in antioxidant
defenses, acting as electron donors to several enzymes,
including Prx2, and is reduced by Trx reductase (TR).
Secreted Trx1 can mediate immune responses in association
with Trx-interacting protein.8

+Trx(SH) Pr(SS) Trx(SH)(SS)Pr(SH)2 (18)

+Trx(SH)(SS)Pr(SH) Trx(SS) Pr (SH)2 (19)

Thioredoxin reductase (TR, EC 1.8.1.9) is a homodimeric
selenocysteine-containing flavoprotein member of the pyridine
nucleotide-disulfide oxidoreductase family. RBCs contain TR1,
and each subunit contains FAD and NADPH binding domains.
The dimer is accommodated head to tail. The electrons are
transferred from NADPH to FAD (eq 20), then to the N-
terminal redox-active dithiol (eq 21), then to the C-terminal
selenylsulfide in the other subunit (eq 22), and finally to the
disulfide substrate (eq 23).104

+ +
+

+

+

TR(FAD)(SS)(SeS) NADPH H

TR(FADH )(SS)(SeS) NADP2 (20)

TR(FADH )(SS)(SeS) TR(FAD)(SH) (SeS)2 2 (21)

TR(FAD)(SH) (SeS) TR(FAD)(SS)(SeHSH)2 (22)

+
+

TR(FAD)(SS)(SeHSH) Trx(SS)

TR(FAD)(SS)(SeS) Trx(SH)2 (23)

Substrates of TR include Trx, glutaredoxins, and others.105

Although a lower activity of TR has been measured in human

RBCs compared to other cells, it is enough to keep Prx2 in the
reduced state.83 The TR/Trx system appears to be connected
to the GR/GSH system. For instance, when TR is down-
regulated, Trx can be reduced by Grx/GSH, and when GR is
downregulated, TR can reduce GSSG to GSH.105

Catalases (EC 1.11.1.6) are ubiquitous enzymes that
catalyze the decomposition of H2O2 into water and O2. They
can be organized into four main groups: monofunctional
catalases (typical catalases), bifunctional catalase-peroxidases,
nonheme catalases, and miscellaneous proteins with minor
catalytic activities.106 Human RBC catalase is found at a
concentration of 11−12 μM (subunit concentration) and
belongs to the group of monofunctional catalases. It is a
tetrameric enzyme consisting of four identical subunits of 59.7
kDa, and each subunit contains a heme group, iron(III)
porphyrin IX, and a tightly bound NADPH molecule.34,107

The decomposition of H2O2 occurs in two steps. In the first
step, H2O2 oxidizes the heme iron (FeIII) to form the
intermediate compound I, a π-porphyrin cation radical
containing FeIV (catalase Fe•IV�O) (eq 24). The rate constant
for this step per subunit is k = 0.6 × 107 M−1 s−1. One of the
protons of the H2O2 molecule is transferred from one end to
the other via a histidine residue in the active site, and this
polarizes and breaks the O−O bond in the H2O2. In the next
step (k = 1.7 × 107 M−1 s−1, per subunit), a second H2O2
molecule acts as a reductant, producing water and O2 and
returning the enzyme to the FeIII resting state (eq 25).108,109

Unlike other enzymes, it is not possible to saturate catalase
with H2O2, and kinetics follows a first-order reaction on H2O2
concentration.110

+ +•catalase(Fe ) H O catalase(Fe O) H OIII
2 2

IV
2

(24)

+
+ +

•catalase(Fe O) H O

catalase(Fe ) O H O

IV
2 2

III
2 2 (25)

Despite being categorized as monofunctional, typical catalase
can catalyze the oxidation of two-electron donors other than
H2O2 from compound I. Compound I can also be reduced to
inactive compound II by one-electron donors (eq 26), and this
may be reduced to the native form by another one-electron
reduction (eq 27). When compound II reacts with H2O2,
inactive compound III is formed (eq 28).111,112

+ +• •catalase(Fe ) XH catalase(Fe O) XIV IV (26)

+ + •catalase(Fe O) XH catalase(Fe ) XIV III (27)

+
+

•

•

catalase(Fe O) H O

catalase(Fe O ) H O

IV
2 2

III
2 2 (28)

The oxidizing and reducing power during the normal catalytic
cycle of catalase comes from H2O2 (eq 24 and eq 25), so
NADPH does not appear to be essential for catalytic activity.
Therefore, several hypotheses have been proposed about the
role of NADPH in catalase, the main one being that it protects
the enzyme from inactivation by H2O2 by preventing the
formation of compound II.111,112

Glutathione peroxidase (EC 1.11.1.9) is part of the thiol-
dependent antioxidant systems of RBCs. It catalyzes the
reduction of hydroperoxides through a process that involves
GSH, glutathione reductase (GR), and NADPH. Eight
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different glutathione peroxidases (GPx1−GPx8) are found in
mammals, with GPx1 being the predominant one in RBCs at
1.5 μM.23,75 GPx4 is also present, although it is 20 times less
abundant.9 Both isoforms are selenoenzymes, with an active
site consisting of a catalytic tetrad formed by a selenocysteine
residue, along with a glutamine, a tryptophan, and an
asparagine.113−115 They differ, however, in their oligomeric
state and their substrates. GPx1 is a homotetramer and reacts
more rapidly with H2O2 and other small organic hydro-
peroxides, whereas GPx4 is monomeric and reacts more
rapidly with larger and more complex molecules, such as
phospholipid and cholesterol hydroperoxides, even when
bound to the membrane surface.116−118

The catalytic cycle of GPx is based on a ping-pong
mechanism and can be separated in two half-reactions, an
oxidative and a reductive phase.119,120 During the oxidative
phase, the hydroperoxide is reduced upon reaction with the
active site of the enzyme, while its selenocysteine residue is
oxidized to selenenic acid (k1 H2O2 = 4.1 × 107 M−1 s−1, k1 t-
BuOOH = 4.2 × 106 M−1 s−1) (eq 29).121,122 In the reductive
half-reaction, the enzyme is regenerated in two subsequent
steps. A first molecule of GSH binds to the enzyme through a
selenosulfide bond (eq 30), which is then broken by a second
GSH, yielding glutathione disulfide (GSSG) and the reduced
form of the enzyme (eq 31).121,123,124

+ +GPx(SeH) ROOH GPx(SeOH) ROH (29)

+ +GPx(SeOH) GSH GPx(SeSG) H O2 (30)

+ +GPx(SeSG) GSH GPx(SeH) GSSG (31)

While GPx1 has a high specificity for GSH, this is not the case
for all the GPx isoforms, as a gradual loss in substrate
specificity has been observed. GPx4 can accept other protein
thiols and even thiol groups in its own structure as electron
donors.116,125

RBCs from GPx1 knockout mice showed increased cell
susceptibility to lysis by organic peroxides, such as t-butyl
hydroperoxide and cumene hydroperoxide.126,127 In these
cases, the oxidative damage was often observed at the
membrane level, with the appearance of newly oxidized
thiols.128 It was also reported that GPx1 can translocate to
the membrane of RBCs in conditions of oxidative stress, before
Prx2 or catalase.129 In addition, a recent report indicates the
anticorrelation of RBC hemolysis with functional Gpx4 (lyso-
phospholipids).130 These results support the theory that, in
RBCs, the main role of GPxs is to protect the lipid membrane
from oxidative attack by hydroperoxides of a different nature.
Glutathione reductase (GR, EC 1.6.4.2) is a flavoenzyme

that catalyzes the recycling of GSSG back to GSH at the
expense of NADPH. With a homodimeric structure, both GR
subunits are connected via a disulfide bond. Each one can be
divided into four domains and present NADPH, FAD, and
GSSG binding sites. The FAD domain holds a redox-active
disulfide that takes part in the reduction of GSSG.131

GR presents a ping-pong mechanism of catalysis, with a
cycle that can be separated in two, oxidative and reductive,
half-reactions.120 In the beginning, NADPH binds to the
enzyme and reduces the flavin (eq 32), which in turn
establishes a charge-transfer complex with one of the cysteines
of the active site (Cys63), breaking the previous disulfide bond
(eq 33). NADP+ is released and replaced by a new molecule of
NADPH. Next, a GSSG forms a mixed disulfide with the

enzyme (eq 34), and after its reduction, two molecules of GSH
are produced, along with the regeneration of the oxidized
enzyme (eq 35).132

+ +
+

+

+

GR(FAD)(SS) NADPH H

GR(FADH )(SS) NADP2 (32)

GR(FADH )(SS) GR(FAD)(SH)2 2 (33)

+
+

GR(FAD)(SH) GSSG

GR(FAD)(SH)(SSG) GSH
2

(34)

+GR(FAD)(SH)(SSG) GR(FAD)(SS) GSH (35)

In RBCs, GR is found predominantly in its reduced form since
the concentration of NADPH is five times larger than the Km
for the enzyme.133 This allows GR to continuously maintain
the levels of GSH in the millimolar range as well as preserve
the balance of NADPH and NADP+ pools in the pentose
phosphate pathway.134

Glutaredoxins (Grx, EC 1.20.4.1) are ubiquitous cysteine-
dependent enzymes that catalyze both the formation and
reduction of mixed disulfides between protein thiols and
GSH.135 They can be classified into two groups: dithiolic and
monothiolic. The first group are two-cysteine oxidoreductases
that get their reduction equivalents from either GSH or TR.
On the other hand, monothiolic Grx lacks oxidoreductase
activity and has only one active site cysteine that it uses
alongside GSH to assemble and transfer iron−sulfur clusters
([Fe−S]) to proteins.136,137

Two Grxs are found in the mature RBC, Grx1 and Grx3, and
their concentration range is 4−8 μM and 0.6−0.8 μM,
respectively.9 Grx1 is a two-cysteine Grx that can reduce both
protein disulfides and protein−GSH mixed disulfides (deglu-
tathionylation). In the first case, the amino-terminal (N-ter)
active site cysteine attacks the protein disulfide to form a mixed
disulfide between Grx and the protein (eq 36). Then, the C-
terminal cysteine forms an intramolecular disulfide bond with
the N-ter cysteine which yields the reduced protein (eq 37).
Later, the oxidized Grx is reduced by two molecules of GSH to
restore the dithiolic enzyme and form GSSG (eq 38), which
ultimately will be reduced to GSH at the expense of GR and
NADPH.

+Grx(SH) Pr(SS) Grx(SH)(SS)Pr(SH)2 (36)

+Grx(SH)(SS)Pr(SH) Grx(SS) Pr (SH)2 (37)

+ +Grx(SS) 2GSH Grx(SH) GSSG2 (38)

In the case of deglutathionylation, the enzyme exhibits classical
ping-pong catalysis, where first the N-ter cysteine reacts with
the glutathionylated protein or low molecular weight thiol,
yielding glutathionylated Grx and reduced protein. Then, GSH
reduces the Grx−GSH mixed disulfide, to form reduced Grx
and GSSG, which is later reduced by GR and NADPH.138,139

Inside the RBCs, Grx1 has been found responsible for the
deglutathionylation of Hb, phosphofructokinase, and the
reduction of low molecular weight disulfides.140 Glutathiony-
lation of Cys93 of the Hb β-chain is thought to be a protection
mechanism against oxidation, yet it can disrupt the interaction
between α and β subunits, affecting O2 and heme binding.
Additionally, it has been shown that Grx1 reduces pyruvate
kinase and restores thiol groups of proteins in the RBC
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membrane.141 Grx1 is also responsible for the reduction of
dehydroascorbate to ascorbate (vitamin C), which acts as a
reducing agent within RBCs.142

On a different note, Grx3 is a cytosolic, monothiolic,
multidomain Grx, whose role in the mature RBC is still elusive.
Nevertheless, studies on a zebrafish model propose that the
function of Grx3 is important at the early erythroblast stage,
specifically in the maturation of [Fe−S]-containing proteins,
the heme synthesis pathway, and iron uptake and distribu-
tion.143

Glutathione (GSH), the tripeptide γ-glutamyl cysteinyl
glycine (Figure 3), is considered the main intracellular low
molecular weight antioxidant but is also a key determinant of
redox signaling and xenobiotic metabolism and one of the
most important ways of reducing power in the cell.144 In
RBCs, the intracellular concentration of GSH is relatively high

(0.4−3 mM145,146), and the normal physiological GSH/GSSG
ratio is higher than ten.145 Biosynthesis of GSH occurs in the
cytosol in a tightly regulated manner. Key determinants of
GSH synthesis are the availability of the sulfur amino acid
precursor, cysteine, and the activity of the rate-limiting
enzyme, glutamate cysteine ligase (GCL, EC 6.3.2.2). GCL
is a heterodimer composed of a catalytic (GCLC) and a
modifier (GCLM) subunit.147 The holoenzyme is regulated by
reversible protein phosphorylation and pyridine dinucleotide
phosphate-dependent allostery.148 Glutathione synthetase (GS,
EC 6.3.2.3), the second enzyme in GSH synthesis, catalyzes
the condensation of γ-glutamylcysteine and glycine, to form
GSH.145 Both enzymes depend on ATP production by
glycolysis in the RBC.149

Cysteine for GSH synthesis is taken up from plasma by
facilitated diffusion (L-transport system) and secondary active

Figure 3. Main low molecular weight antioxidants in RBCs are the water-soluble urate, glutathione, and ascorbate and the lipid-soluble α-
tocopherol. These antioxidants can form stable radicals after one-electron oxidation that can be repaired by other antioxidants. The ultimate source
of reducing power is given by NADPH, which can be used to yield GSH, which can be used to reduce DHA to ascorbate, which can reduce the
urate radical and also the α-tocopheroxyl radical back to their reduced forms.
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transport (alanine-serine-cysteine transporter, Asc-1) by
RBCs.150,151 The liver and kidney play a fundamental role,
providing GSH as a cysteine precursor for interorgan
exchange.152 Hepatic GSH is transported into blood and
rapidly degraded to cysteine in the circulation by plasma-
membrane-bound enzymes γ-glutamyltranspeptidase (γ-GT)
and dipeptidases of the kidney and other organs.153,154 γ-
Glutamyl-cycle-encompassing GSH synthesis, transport, and
catabolism coordinate the redox state of cells and tissues and
thiol homeostasis.155 Transsulfuration and thiol/disulfide
exchange reactions are additional sources of plasma cys-
teine.156,157

A significant percentage of GSH is produced de novo daily
by RBCs to compensate the active export of GSSG and GSH
conjugates.158,159 Carbon monoxide poisoning as well as
oxidants like peroxynitrite promote the release of both GSH
and GSSG from RBCs.159,160 The multidrug resistance-
associated proteins (Mrp/Abcc) mediate GSH export and
homeostasis in a variety of cells.161,162 Mrp/Abcc-1, -4, -5, and-
10 were identified by mass spectrometry in RBC membranes.9

The Mrp proteins, in addition to mediating GSH efflux, also
export GSSG, S-nitrosoglutathione, GSH−metal complexes, as
well as other GSH S-conjugates. The ability to export both
GSH and oxidized derivatives of GSH provides these
transporters with the capacity to directly regulate the cellular
thiol-redox status and, therefore, the ability to influence
signaling and biochemical pathways.163 As mentioned above,
GSH is regenerated from GSSG by the NADPH-dependent
GR (Figure 3).
Ascorbate (vitamin C, AscH) cannot be synthesized by

humans and must be obtained from the diet. At neutral pH,
most of it is present in the anionic ascorbate form rather than
as ascorbic acid. Ascorbate is an electron donor that can be
oxidized by either one electron to the ascorbyl radical or two
electrons to dehydroascorbate (DHA), but this is usually
rapidly reduced back to ascorbate (Figure 3).164 Ascorbate can
react with free radicals in the cytosol and also keep α-
tocopherol (vitamin E) in the reduced state in the plasma
membrane (Figure 3).165−167

Unlike other human cells, there is no active transport for
ascorbate in RBCs.164 Instead, DHA is transported into the
RBC by glucose transporters GluT, where it is reduced back to
ascorbate by GSH and Grx.168 The concentration of DHA in
plasma is estimated to be 1−2% that of ascorbate.164 The
concentration of ascorbate in human RBCs is directly
proportional and slightly lower than in plasma, amounting to
35 μM in average.169 At this concentration, ascorbate will likely
not act as a direct free radical scavenger but may aid in keeping
α-tocopherol reduced in the membrane and participate in
enzymatic reactions. Human RBCs contain the duodenal
cytochrome b561 isoform in the membrane that was shown to
transport reducing equivalents from ascorbate in the cytosol to
the exterior and may contribute to maintaining plasma
ascorbate in the reduced state.170

RBCs from type 2 diabetes patients are mechanically more
fragile than control RBCs.171 It was proposed that excess
glucose competes with DHA transport and leads to lower
intracellular concentration of ascorbate that then leads to
increased membrane rigidity and cell fragility.172 The causes
are not clear and may involve enzymatic reactions that use
ascorbate as a substrate rather than antioxidant effects or a
combination of both.172

The addition of either ascorbate or DHA to blood stored for
transfusion only slightly decreased storage lesions.173,174 In
contrast, the addition of ascorbate together with N-acetyl
cysteine (NAC) to RBCs stored for transfusion resulted in
overall improvement of RBC quality, in particular, GSH and α-
tocopherol levels, leading to lower rates of lipid oxidation. The
glycolytic flux was diminished, but ATP and NADH were
higher than in the control, and NADPH increased only
transiently. A decrease in hemolysis was observed only for 21
days of storage.175 Millimolar concentrations of ascorbate
obtained by high dose intravenous infusion of vitamin C were
found to increase metHb formation and Prx2 oxidation,
suggesting that high concentrations may be detrimental to
RBCs.176

Vitamin E encompasses eight fat-soluble compounds
containing a chromane ring with a hydroxyl group at C-6
and a polyprenoid side chain, with three isopentyl units at the
C-2 position. When the polyprenoid chain is saturated, the
isomers are tocopherols, and when it is unsaturated, they are
tocotrienols. According to the number and position of methyl
groups in the aromatic ring, they are called α, β, δ, and γ
tocopherol. These compounds are synthesized mainly by
plants and cyanobacteria. Although γ-tocopherol is the most
abundant in the diet, α-tocopherol shows greater bioavailability
in plasma and human tissues (Figure 3).177,178 It is
preferentially retained by the organism, thanks to the α-
tocopherol transfer protein, which is expressed in the liver and
presents greater selectivity for α-tocopherol than other
compounds.179,180

Although there is some controversy about its main role, α-
tocopherol is considered the most important antioxidant-
protecting membrane lipid against oxidative damage.181,182

Lipid peroxidation mainly affects polyunsaturated fatty acids
(PUFAs) and leads to the formation of lipid hydroperoxides,
lipid alcohols, and aldehydes. Membrane lipid peroxidation
begins with the attack of reactive species capable of removing a
hydrogen atom from a PUFA. PUFAs are particularly
susceptible to these oxidants since they possess easily
oxidizable bisallylic hydrogens.183 Hydrogen abstraction leads
to a carbon-centered radical that tends to stabilize by
molecular rearrangement to produce a conjugated diene,
which rapidly reacts with oxygen to give a lipoperoxyl radical.
Lipoperoxyl radicals abstract hydrogen atoms from other lipid
molecules, forming a lipid hydroperoxide and fueling the chain
reaction of lipid peroxidation.184 The hydroxyl group in α-
tocopherol competes with the unsaturated chains for the
reaction with the lipoperoxyl radical, forming a less reactive
tocopheroxyl radical, thus preventing the propagation of the
chain reaction (Figure 3).35 This radical can be reduced to α-
tocopherol by ascorbate through its oxidation to ascorbyl
radical, two of which can dismutate to ascorbate and
DHA.167,185 Alternatively, the tocopheroxyl radical can be
further oxidized to the stable form, α-tocopherylquinone
(Figure 3).

The concentration of α-tocopherol in RBCs has been
determined to be 1.7−7.8 μM.186−192 This concentration is in
agreement with kinetic predictions that indicate that the α-
tocopherol/lipid ratio in membranes must be of the order of
1/1000 in order to be an effective chain-breaking antiox-
idant.35

Interestingly, it has been seen that intracellular parasites,
including the RBC-infecting Plasmodium falciparum, are

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c06768
ACS Omega 2023, 8, 147−168

155

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06768?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


capable of synthesizing tocopherol as a defense mechanism
against oxidative stress.193−196

Uric acid is the final product of the catabolism of purine
bases. Its formation is catalyzed by the enzyme xanthine
oxidase (XO, EC 1.17.3.2), which converts hypoxanthine to
xanthine and xanthine to uric acid. This series of reactions uses
O2 as an electron acceptor, thus yielding O2

•− and H2O2 as
secondary products. The antioxidant potential of uric acid
resides in its ability to react with strong oxidants, such as
peroxyl radicals and HO•. Urate can be oxidized by one-
electron transfer to a urate radical anion, which can then be
recycled in the presence of ascorbate (Figure 3). In a two-
electron transfer reaction, urate is oxidized predominantly to
allantoin (Figure 3) and also parabanic acid, oxaluric acid, and
other compounds.197−199

In mammals, xanthine oxidase is mostly located in the liver,
but it has also been found in epithelial cells of mammary glands
and capillary endothelial cells in adipose, cardiac, and lung
tissues.200 The RBC, on the other hand, does not show
xanthine oxidase activity, so uric acid is not expected to be
produced by the RBC.201 However, they are exposed to high
concentrations of uric acid present in plasma (200−400 μM),
where it represents one of the most important soluble
antioxidants, accounting for 30−65% of the peroxyl-radical-
scavenging capacity.202,203 Furthermore, it was revealed in
earlier studies that RBCs are able to uptake uric acid, but it
should be noted that there is not a consensus value reported
for the intracellular concentration reached, and the mechanism
is not fully understood. The main route was proposed to be an
active transporter, with simple diffusion occurring in the
absence of ATP.204−207

Regarding its possible antioxidant role, in vitro studies have
shown that uric acid could help neutralize the oxidant species
produced from Hb autoxidation. It was reported that it can
limit the rate of formation of metHb, probably by reacting with
intermediates like NO2

• and ferrylHb.204,205 Experiments
performed in RBCs from volunteers before and after physical
exercise, where oxidative stress is increased, support this idea
of uric acid as an antioxidant. The results exhibited an increase
in uric acid concentrations inside RBCs, which decreased after
an hour, following the appearance of allantoin.208 Other
studies carried out in RBC ghosts have shown that uric acid
added externally could protect RBC membranes from oxidative
stress. Lipid peroxidation was observed to be diminished in
ghosts exposed to t-butyl hydroperoxide or 2,2′-azobis(2-
amidinopropane) dihydrochloride (AAPH) when treated with
uric acid.204,209,210 Along the same lines, more recent
observations made in RBCs stored for transfusion indicate
there could be a beneficial effect in supplementing samples
with uric acid.211 RBC concentrates that proceeded from
donors with higher levels of uric acid in plasma manifested less
deterioration during storage. Mainly, a lower percentage of
echinocytes, band 3 proteolysis, and a diminished binding of
calpain and Prx2 to the membrane were observed.212

5. GLUCOSE METABOLISM IN RBCs AND
GENERATION OF NADPH

RBCs do not contain mitochondria, and the glucose
metabolism is dominated by glycolysis and the pentose
phosphate pathway (PPP). Glycolysis provides ATP needed
to maintain the ion gradients across the membrane and NADH
for metHb reduction to oxyHb and pyruvate reduction to
lactate. The PPP provides NADPH, one of the most important

biological carriers of reducing equivalents, working usually as a
coenzyme. This molecule is ubiquitously distributed in
different cells, where it plays an essential role in redox
homeostasis. In human RBCs, the concentration of NADPH
has been reported to range from 16 to 44.9 μM.213−218

In RBCs, NADPH provides reducing power which is used
by different antioxidant enzymes to fight against oxidative
damage,219−222 and it is mainly produced by glucose-6-
phosphate dehydrogenase (G6PD) and 6-phosphogluconate
dehydrogenase (6PGD), enzymes involved in the PPP.
Glucose-6-phosphate dehydrogenase catalyzes the first step
of the PPP, converting glucose-6-phosphate to 6-phosphoglu-
conolactone, using NADP+ as the substrate and Mg2+ as the
cofactor and producing NADPH. The Km for NADP+ has been
reported to be 4.2 × 10−6 M at pH = 7.6.223 The third step of
the PPP is catalyzed by 6-phosphogluconate dehydrogenase.
This enzyme uses Mn2+ as a cofactor and NADP+ as a
substrate to catalyze the decarboxylation of 6-phosphogluco-
nate, producing ribulose-5-phosphate, CO2, and NADPH. A
Km = 20 μM at pH = 8 has been reported.224

The fluctuations of O2 concentrations to which RBCs are
subjected in the circulation regulates the flux of glucose to
generate ATP by glycolysis or NADPH by the PPP.225 In the
pulmonary capillaries, where O2 concentration is relatively
high, the glycolytic enzymes are inhibited by their association
to band 3, pushing glucose and the flux of electrons to the PPP.
Conversely, in peripheral vascular beds with lower O2 tensions,
deoxygenated Hb binds band 3, displacing the glycolytic
enzymes which became active.226,227 Oxidative modification of
GAPDH reroutes glycolysis to PPP to fuel NADPH biosyn-
thesis.228,229

NADPH is used in RBCs as a substrate of two enzymes that
are relevant to support the antioxidant defenses, GR and TR.
On one hand, GR recycles GSSG to GSH, which is used by
GPx and Grx. On the other hand, TR keeps Trx in the reduced
state, which serves as an electron delivery system that is used
by Prx2 and reduction of other cysteines due to its disulfide
reductase activity.230 As will be discussed below, glucose-6-
phosphate dehydrogenase deficiency is a common human
enzymopathy that leads to several phenotypes ranging from
neonatal jaundice to acute anemia, indicating how important
NADPH is to prevent oxidative stress in RBCs.231

Recent studies have shown that the exposure of RBCs to
different exogenous substances (exposome), including pre-
scribed and over-the-counter drugs, smoking, as well as
drinking coffee and taurine-rich beverages, can influence
glucose use and NADPH production, impacting the capacity
of the cells to cope with oxidants.219−222

6. INTEGRATING THE OXIDANT CHALLENGES AND
THE ANTIOXIDANT DEFENSES OF RBCs

RBCs are exposed to both endogenous and exogenous
oxidants. In circulation and mainly in microcirculation, RBCs
come in contact with oxidants generated by surrounding cells
and tissues. Endothelial cells, and leukocytes in particular,
express the enzymes devoted to the production of NO•, O2

•−,
and H2O2. In leukocytes, the inducible isoform of the NOS
(NOS2, EC 1.14.13.39) and the NADPH-oxidase (Nox2, EC
1.6.3.1) generates NO• and O2

•−.232,233 Both leukocytic
enzymes are activated during inflammation, and in many
cases MPO is released and produces HOCl. In blood-vessel-
lining endothelial cells, NO• and H2O2 are produced by NOS3
and Nox1, 2, 4, and 5, contributing to maintain the normal
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blood flow.234 The imbalance in the relative production of
endothelial-derived relaxation and contraction factors alters
endothelial physiology and may lead to impairment of the
normal blood flow.17 Moreover, uncontrolled production of
oxidants has been involved in the development of chronic
diseases, such as atherosclerosis and neurodegenerative
diseases.235 As mentioned above, NO• and O2

•− are weak
oxidants, but they can give rise to more potent oxidant
molecules like peroxynitrite, H2O2, and HO• (Figure
1).11,236,237

The oxidants generated both in the vasculature and by the
surrounding tissues converge toward the blood. Due to their
abundance and the high membrane permeability, RBCs are
preferential targets for the oxidants reaching the bloodstream.
In fact, uncharged NO•, H2O2, ONOOH, and HOCl freely
diffuse through the lipid bilayer, while anion channels, like the
exceedingly abundant band 3 anion transport protein, allows
the permeation of O2

•− and ONOO− through the RBC
membrane.26,41,238 Once inside the RBC, the oxidants are
rapidly decomposed by a complex and concerted antioxidant
machinery, resulting in a marked concentration gradient across
the membrane and promoting the entry and decomposition of
more oxidant molecules, supporting the role of RBCs as an
efficient sink of oxidants, protecting cells and tissues from
uncontrolled oxidative stress.

The antioxidant systems in RBCs act in concert to detoxify
most of the reactive species produced by RBCs and their
surroundings. OxyHb autoxidation generates O2

•− that is
rapidly converted to H2O2 by SOD1. There has been a long
debate about the relative importance of the different
antioxidant systems in RBCs responsible for H2O2 detox-
ification. Kinetics and further experimental confirmation
indicate that the first line of defense of RBCs against H2O2
is Prx2, supported by its abundance and very high reaction rate
(Table 1).34 Prx2 activity is mainly sustained by Trx/TR and

ultimately NADPH from the PPP.34 When NADPH is
depleted and Prx2 is completely oxidized, catalase acts as the
second line of defense. In many experimental conditions Prx2
is completely oxidized, and catalase has been observed as the
main antioxidant enzyme, resulting in a persistent confounding
factor in the literature.34 GPx1 is expected to play a minor role
in H2O2 detoxification mainly because of its lower
abundance34,85,97 but seems to be more important in the
reduction of lipid hydroperoxides.123

The lipids in the membrane are protected against oxidation
by α-tocopherol and ascorbate that act in concert to reduce
lipid peroxyl radicals to lipid hydroperoxides. The α-
tocopheroxyl radical is reduced by ascorbate, and the resulting

DHA is reduced by Grx and GSH. The lipid hydroperoxides
are then reduced by GPx and GSH to the corresponding
alcohols to prevent the formation of the highly reactive alkoxyl
radicals. Protein thiols can be protected from irreversible
oxidation by glutathionylation,243 and this modification can be
reversed by Grx1. The products of H2S reaction with metHb,
in particular the polysulfides, could yield glutathione persulfide
and other persulfides that could also protect against protein
and lipid oxidation in RBCs, but this remains to be proven.

Peroxynitrite will also react preferentially with Prx2, while
NO2

•, HO•, and CO3
•−, which are more reactive and less

selective, will react with the most abundant target, Hb. It all
indicates that the RBC is well-equipped to prevent the
formation of these highly reactive species that will damage Hb,
essential for the main RBC function. Most of these reactions
are shown in Figure 4, intended to illustrate the complexity,
redundancy, and robustness of RBC antioxidant systems.

7. ALTERATIONS IN RBC REDOX HOMEOSTASIS LED
TO DISEASES

Oxidative stress was found in several hereditary RBC diseases,
including the hemoglobinopathies (sickle cell disease and
thalassemia) and glucose-6-phosphate dehydrogenase defi-
ciency. Although oxidative stress is not the primary etiology
of these diseases, oxidative damage to the RBC plays a crucial
role in early removal of RBCs from circulation or provoking
hemolysis; thus, anemia is a common feature to all these
patients. A single mutation in the β globin gene of Hb, the
substitution of the sixth glutamic acid for valine (Glu6Val,
HbS), is the cause of sickle cell disease (SCD). Under hypoxic
conditions, the deoxygenated state of HbS polymerizes as
fibers in RBCs, which deform into sickle-shaped cells that
occlude capillaries and cause intravascular hemolysis. Poly-
merized HbS reduces cell deformability and impairs rheology
and survival of RBCs. In heterozygotes, the coexistence of HbA
and HbS in RBCs prevents polymerization of HbS, but SCD
manifests in homozygotes. These people display anemia,
feeding disorders, splenomegaly, and recurrent infections. In
addition, vascular occlusion can cause cerebral infarction.
There was an early report indicating HbS can autooxidize twice
as fast as HbA; however, comparable rates were shown
later.244,245 Nevertheless, hemolysis releases Hb, iron, and
increased HO• production via Fenton reaction, indicating
oxidative stress is an important feature of SCD.246 Free Hb
released from intravascular hemolysis of the sickle erythrocytes
induces endothelial dysfunction by depleting endothelial NO•,
heme-mediated inflammation, and iron overload.247 Desferox-
amine as an iron chelator and a catalase mimetic were shown
to decrease oxidative stress and inflammation in murine
models of SCD.248,249 Hydroxyurea, approved by the FDA to
treat SCD, increases fetal HbF with no β-chain and reduces the
tendency for HbS to polymerize.250

Thalassemia is defined as a quantitative imbalance of α- and
β-Hb chain production. α-Thalassemia develops when a gene
deletion in the α-globin locus (α1 and α2) occurs. The excess
of β-chains leads to the formation of Hb β4 that is stable but
incapable of carrying oxygen. Conversely, β-thalassemia (or
minor thalassemia) is mainly caused by a missense mutation
(single amino acid substitution) in the β-globin gene. The
excess of α-chains cannot form a tetramer; heme is easily
released; oxidative stress in RBCs is installed; and anemia is
observed. It was reported that an elevated content of GSH in

Table 1. Concentrations and Rate Constants of the RBC
Components Responsible for H2O2 Removal

Reactant with
H2O2

Concentration
(μM)

Second-order rate
constant

(M−1 s−1)

Pseudo-first-order
rate constant

(s−1)

Peroxiredoxin-2 ∼30034,97,239 1 × 10845,49,87 ∼30,000
Catalase 1134 6 × 106108 66
Glutathione

peroxidase 1
∼134,240 2 × 107241 ∼20

Hemoglobin,
oxyHb

20,000242 100242 2

Glutathione,
GSH

1,500244 0.4245 6.3 × 10−4
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RBCs significantly reduced the sensitivity of thalassemic RBCs
to hemolysis and phagocytosis by macrophages.251

As mentioned before, glucose-6-phosphate dehydrogenase
(EC 1.1.1.49, G6PD) participates in the generation of
NADPH. G6PD deficiency is the most common human
enzyme defect, an X-linked hereditary genetic defect due to
mutations in the g6pd gene (about 140 mutations have been
described, mostly single amino acid substitution). The clinical
manifestation is hemolytic anemia triggered by exogenous
agents like drugs and fava beans (so-called favism).231 The
G6PD enzyme is critical to protect RBCs against oxidative
stress, and subjects with deficiency in this enzyme are at risk of
hemolysis under certain conditions. An increase in oxidative
markers has been observed in these patients, and management
of G6PD deficiency is to prevent hemolysis by avoiding
oxidative stress. Successful treatment on favism-induced rats
was reported with antioxidant β-carotene and also with a small-
molecule activator AG1 that promotes the G6PD dimeric state
on patient RBCs.252,253

8. RBC AGING IN CIRCULATION AND IN PACKED RBC
FOR TRANSFUSION

Despite the effectivity of the RBC antioxidant systems, these
hematic cells are constantly challenged. Moreover, in the

capillaries, the increase of partially oxygenated Hb raises the
rate of Hb autoxidation254 as well as exposure to the oxidants
generated by other cells and tissues.255 This repeated exposure
to oxidants deteriorates the capacity of RBCs to cope with
them and to fulfill their physiological function. The increased
metHb concentration impairs the capacity of RBCs to
transport oxygen but also increases the adherence of Hb to
the RBC membrane, impacting ATP synthesis and exposing its
molecular components to the deleterious effects of superoxide
and derived oxidants. The oxidative insult disrupts the
interactions between membrane lipids and proteins and the
cytoskeleton, compromising the ability of RBCs to squeeze and
transverse narrow capillaries, affecting also the transport of ions
and organic molecules like glucose through the membrane.255

The accumulation of altered proteins and lipids leads to
vesiculation of the plasma membrane with the consequent
release of extracellular vesicles in order to remove damaged
and potentially toxic molecules.256−258 While vesiculation is an
important homeostatic mechanism, excessive shedding of
membrane parts inevitably leads to less deformable RBCs
that are more prone to lysis.259 These aging-related changes are
enhanced in RBCs affected by genetic disorders and also in
RBCs exposed to oxidative stress.258,260

Figure 4. Antioxidant systems in RBCs are robust and redundant, allowing the detoxification of several oxidants (shown in red boxes) such as O2
•−,

H2O2, and ONOO− that could lead to more potent and less selective oxidants such as NO2
• and HO•, which could result in hemoglobin damage,

affecting RBC functionality. Oxidants can be generated endogenously or can be from other cells in the blood vessels. The RBC contains low
molecular weight antioxidants, such as GSH, ascorbate, and α-tocopherol, and several enzymatic systems (in ovals of different colors). Reduction
reactions are shown by green arrows. The reducing power for the antioxidant systems in RBCs is ultimately provided by NADPH from glucose-6-P
and the pentose phosphate pathway. Details of the different pathways are given in the text.
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The lifespan of mature RBCs is ∼120 days. The removal of
senescent or damaged RBCs involves tightly regulated
molecular mechanisms, with participation of splenic and liver
macrophages.261−263 The phagocytic response of these macro-
phages is triggered by the absence of CD47 and the exposure
of phosphatidylserine in the outer membrane leaflet of
senescent or damaged RBCs.264 The progressive loss of
elasticity and increased rigidity are also responsible for the
recognition of RBCs by the phagocytic cells.263,265 Another
important mechanism promoting the engulfment of RBCs is
triggered by the formation of antigens on the cells’ surface due
to the interaction between denatured Hb and band 3,
disrupting the membrane structure and leading to clustering
of membrane proteins and the formation of protein aggregates.
Band-3-centered protein aggregates become targets for
opsonization by naturally occurring antibodies.265−267 Those
changes also occur in some genetic disorders, such as sickle cell
disease (SCD), spherocytosis, and thalassemia as well as
acquired pathologies such as sepsis, malaria, or diabetes,
shortening the life span of affected RBCs.268−270

Under storage of packed RBCs for transfusion, several aging
RBC phenotypes are evident, dominated by the so-called
“storage lesions”.271 This term brings together a set of
progressive structural and metabolic changes in RBCs stored
for transfusion. These lesions include the oxidation of lipids
and proteins and affect RBC metabolism by compromising the
activity of key enzymes, leading to a marked decrease in ATP
and 2,3-diphosphoglycerate levels.272 The decrease in ATP
deregulates cation homeostasis and alters membrane asymme-
try, triggering the exposure of phosphatidylserine and
phosphatidylethanolamine, normally confined to the inner
bilayer.273 The structural disorganization of the membrane and
the cytoskeleton, together with the lack of control in calcium
homeostasis, leads to a progressive loss of the biconcave disc
shape and the ability of the RBC to squeeze, properties that
allow rapid gas exchange with the environment and traversing
narrow capillary beds, characteristics of healthy RBCs.274

Additionally, functional and structural changes have been
observed at the level of band 3.275 This protein, in addition to
mediate the membrane Cl−/HCO3

− exchange, is also a key
regulator of the RBC cytoskeleton dynamics and cell
metabolism.9,276 During storage, a disruption of the interaction
of band 3 with cytoskeleton proteins and a progressive
clustering of the protein has been observed.96,277 These
changes, which also involve other proteins and lipids of the
membrane, lead to changes in the shape of RBCs and give rise
to extracellular vesicles containing altered cellular compo-
nents.278 Cellular reducing power is also affected as a
consequence of metabolic changes, with a decrease in GSH
and NADPH,145,279 compromising the ability of RBCs to
respond to oxidative stress, both in the transfusion bag and in
the circulation after transfusion. Under normal conditions,
band 3 acts as a nucleation center for various enzymes of the
glycolytic pathway in RBCs, regulating the flow of glucose
toward ATP generation or NADP reduction, depending on the
oxygen level. This fine metabolic regulation mediated by band
3 is disrupted in aged cells by oxidation, fragmentation, and
nonenzymatic glycation of the protein.276 These structural and
functional changes are reproduced in RBCs carrying altered
Hb and in RBCs lacking or carrying band 3 poly-
morphisms.280−283 Moreover, altered RBCs and the extrac-
ellular vesicles released by them can trigger an inflammatory
response, evolving to major complications in the transfusion

recipient.284 Although leukoreduction has improved several
parameters, concerns about the safety of RBCs stored for
longer periods and the patient outcomes still persist.285−287 At
present, most of the efforts in blood storing for transfusion are
directed to decrease these aging- and oxidative-related changes
in order to ensure a safe therapy for the transfusion recipients.
Furthermore, there are genetic and environmental differences
between donors which make blood a nonstandardized
therapeutic tool. A genome-wide association study (GWAS)
identified G6PD polymorphism to impair RBC recovery after
transfusion and modulate disease severity in hemolytic
diseases.288−290

9. CONCLUSIONS
RBCs are exposed to oxidants of endogenous and exogenous
origin but are well-equipped to cope with these oxidants. The
antioxidant defense includes low molecular weight molecules
such as GSH, ascorbate, urate, and α-tocopherol, enzymes such
as SOD1 and catalase, and multienzymatic systems, such as
Prx2/Trx/TR and Gpx/GSH/GR, that ultimately depend on
the reducing power provided by the PPP in the form of
NADPH. Many of these enzymes react very rapidly with mildly
oxidizing reactive species, such as O2

•−, H2O2, and ONOO−,
suggesting that the main purpose of these antioxidant systems
is to avoid the formation of the more potent and less selective
oxidants HO•, NO2

•, and CO3
•− that will damage Hb and

compromise RBC function. Even though RBCs are very robust
to oxidant damage, congenital defects including hemoglobino-
pathies and G6PD deficiency result in less viable RBCs, related
to rapid accumulation of damaged biomolecules in these
RBCs. Furthermore, the RBCs that are stored for transfusion
for medium to long periods of time also suffer from storage
lesions related to the oxidant damage of biomolecules.

RBCs in circulation are exposed to constant oxidative stress,
and maintenance of an adequate redox balance is essential to
pursue their physiological function and to preserve Hb as an
oxygen carrier as well as a flexible membrane for sustained
microcirculation dynamics.

■ AUTHOR INFORMATION
Corresponding Author
Ana Denicola − Laboratorio de Fisicoquímica Biológica,

Instituto de Química Biológica, Facultad de Ciencias,
Universidad de la Repub́lica, Montevideo 11400, Uruguay;
Centro de Investigaciones Biomédicas (CEINBIO),
Universidad de la Repub́lica, Montevideo 11800, Uruguay;

orcid.org/0000-0002-5181-9708; Phone: (+598) 2525
0749; Email: denicola@fcien.edu.uy

Authors
Matias N. Möller − Laboratorio de Fisicoquímica Biológica,

Instituto de Química Biológica, Facultad de Ciencias,
Universidad de la Repub́lica, Montevideo 11400, Uruguay;
Centro de Investigaciones Biomédicas (CEINBIO),
Universidad de la Repub́lica, Montevideo 11800, Uruguay;

orcid.org/0000-0002-3486-8217
Florencia Orrico − Laboratorio de Fisicoquímica Biológica,

Instituto de Química Biológica, Facultad de Ciencias,
Universidad de la Repub́lica, Montevideo 11400, Uruguay;
Laboratorio de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la Repub́lica,
Montevideo 11400, Uruguay; Centro de Investigaciones

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c06768
ACS Omega 2023, 8, 147−168

159

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ana+Denicola"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-5181-9708
https://orcid.org/0000-0002-5181-9708
mailto:denicola@fcien.edu.uy
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Matias+N.+Mo%CC%88ller"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3486-8217
https://orcid.org/0000-0002-3486-8217
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Florencia+Orrico"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06768?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Biomédicas (CEINBIO), Universidad de la Repub́lica,
Montevideo 11800, Uruguay

Sebastián F. Villar − Laboratorio de Fisicoquímica Biológica,
Instituto de Química Biológica, Facultad de Ciencias,
Universidad de la Repub́lica, Montevideo 11400, Uruguay;
Centro de Investigaciones Biomédicas (CEINBIO),
Universidad de la Repub́lica, Montevideo 11800, Uruguay

Ana C. López − Laboratorio de Fisicoquímica Biológica,
Instituto de Química Biológica, Facultad de Ciencias,
Universidad de la Repub́lica, Montevideo 11400, Uruguay;
Laboratorio de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la Repub́lica,
Montevideo 11400, Uruguay; Centro de Investigaciones
Biomédicas (CEINBIO), Universidad de la Repub́lica,
Montevideo 11800, Uruguay

Nicolás Silva − Laboratorio de Fisicoquímica Biológica,
Instituto de Química Biológica, Facultad de Ciencias,
Universidad de la Repub́lica, Montevideo 11400, Uruguay;
Laboratorio de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la Repub́lica,
Montevideo 11400, Uruguay; Centro de Investigaciones
Biomédicas (CEINBIO), Universidad de la Repub́lica,
Montevideo 11800, Uruguay; Departamento de Medicina
Transfusional, Hospital de Clínicas, Facultad de Medicina,
Universidad de la Repub́lica, Montevideo 11600, Uruguay

Marcel Donzé − Laboratorio de Fisicoquímica Biológica,
Instituto de Química Biológica, Facultad de Ciencias,
Universidad de la Repub́lica, Montevideo 11400, Uruguay;
Centro de Investigaciones Biomédicas (CEINBIO),
Universidad de la Repub́lica, Montevideo 11800, Uruguay

Leonor Thomson − Laboratorio de Enzimología, Instituto de
Química Biológica, Facultad de Ciencias, Universidad de la
Repub́lica, Montevideo 11400, Uruguay; Centro de
Investigaciones Biomédicas (CEINBIO), Universidad de la
Repub́lica, Montevideo 11800, Uruguay

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.2c06768

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Financial support was provided by Universidad de la Repub́lica
(CSIC I+D grupos 46725 to A.D. and CSIC I+D 2020 to
M.N.M.) and Agencia Nacional de Investigación e Innovación,
ANII (FMV_1_2019_1_155597 to L.T.). M.N.M., F.O.,
S.F.V., A.C.L., N.S., L.T., and A.D. were partially supported
by PEDECIBA, Uruguay. F.O. and A.C.L. were partially
supported by scholarships from Comisión Académica de
Posgrado, Universidad de la Repub́lica. S.F.V., N.S., and
M.D. were partially supported by scholarships from ANII.

■ ABBREVIATIONS
RBC red blood cell
Hb hemoglobin
GSH glutathione
GSSG glutathione disulfide
PE phosphatidylethanolamine
PC phosphatidylcholine
SM sphingomyelin
PS phosphatidylserine
PI phosphatidylinositol

band 3 band 3 anion transport protein (SLC4A1)
Prx2 peroxiredoxin 2
oxyHb oxyhemoglobin
metHb methemoglobin
O2

•− superoxide
Nox2 NADPH oxidase 2
SOD1 superoxide dismutase 1
H2O2 hydrogen peroxide
NO• nitric oxide
HO• hydroxyl radical
NOS nitric oxide synthases
ONOO− peroxynitrite
ONOOH peroxynitrous acid
NO2

• nitrogen dioxide
CO3

•− carbonate radical
MPO myeloperoxidase
HOCl hypochlorous acid
Trx thioredoxin
TR thioredoxin reductase
cat catalase
GPx glutathione peroxidase
GR glutathione reductase
Grx glutaredoxin
AscH ascorbate
DHA dehydroascorbate
XO xanthine oxidase
PPP pentose phosphate pathway
G6PD glucose-6-phosphate dehydrogenase
6PGD 6-phosphogluconate dehydrogenase
SCD sickle cell disease
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