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Abstract

A unique high-valent copper nitrite species, LCuNO2, was accessed via the reversible one-electron 

oxidation of [M][LCuNO2] (M = NBu4
+ or PPN+). The complex LCuNO2 reacts with 2,4,6-tri-

tert-butylphenol via a typical proton-coupled electron transfer (PCET) to yield LCuTHF and the 

2,4,6-tri-tert-butylphenoxyl radical. The reaction between LCuNO2 and 2,4-di-tert-butylphenol 

was more complicated. It yielded two products: the coupled bisphenol product expected from 

a H-atom abstraction and 2,4-di-tert-butyl-6-nitrophenol, the product of an unusual anaerobic 

nitration. Various mechanisms for the latter transformation were considered.

Graphical Abstract

Corresponding Author William B. Tolman – wbtolman@wustl.edu. 

The authors declare no competing financial interest.

■ ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c03790.
Experimental details, UV–vis and EPR spectral data, cyclic voltammetry data, oxidation of CuII via UV–vis, resonance Raman 
spectral data, UV–vis spectral reactivity traces, EPR and UV–vis spectral product analysis, reactivity plot, 1H NMR spectral product 
analysis, and an alternative nitration mechanism (PDF)
Accession Codes
CCDC 2125948 contains the supplementary crystallographic data for this paper. These data can be obtained free of 
charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge 
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

HHS Public Access
Author manuscript
Inorg Chem. Author manuscript; available in PMC 2023 February 07.

Published in final edited form as:
Inorg Chem. 2022 February 07; 61(5): 2662–2668. doi:10.1021/acs.inorgchem.1c03790.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ccdc.cam.ac.uk/data_request/cif


∎ INTRODUCTION

Copper nitrite complexes have been studied extensively as models for the active sites of 

copper-containing nitrite reductases (CuNIRs),1–25 key enzymes in global denitrification and 

mammalian and plant signaling pathways.26 These model complexes contain CuI or CuII, 

often in coordination geometries relevant to the CuNIR active site, and they typically reduce 

NO2
− to NO, a reaction also performed by the enzymes. It has been proposed for CuNIRs 

that one-electron reduction of NO2
− to NO involves an initial proton transfer facilitated 

by neighboring amino acid residues.27–31 Inspired by this notion, recent work has probed 

the ability of copper(II) nitrite complexes to perform proton-coupled electron transfer 

(PCET).10,19 Notably, PCET was invoked in the reaction of a copper(II) nitrite complex with 

2,4-di-tert-butylphenol (DTBP) that underwent subsequent nitration, an unusual anaerobic 

transformation.19 Such a process is relevant to tyrosine nitration, which normally occurs via 

an attack by peroxynitrite.32–34

Considering that higher-oxidation-state species generally exhibit enhanced PCET 

reactivity,35–38 we sought to prepare a complex with a [CuNO2]2+ core (formally 

containing CuIII) that would represent a rare example of a high-valent metal nitrite 

species.39–41 Specifically, previous success in using the hindered dianionic ligand bis(2,6-

diisopropylphenylcarboxamido)-pyridine (L2−) to prepare reactive complexes with cores 

[CuX]2+ (X = OR,42–47 SR,48 OOR,49 O2CR,50,51 F, Cl, and Br52) led us to target LCuNO2. 

Herein, we describe the successful generation and spectroscopic characterization of this 

novel high-valent metal nitrite species, as well as preliminary studies of PCET reactivity 

with phenolic substrates that result in an unusual anaerobic nitration.

■ RESULTS AND DISCUSSION

Synthesis and Characterization of [M][LCuNO2] (M = NBu4
+ or PPN+).

The addition of the corresponding nitrite salt [M][NO2] to LCu(MeCN) (MeCN = 

acetonitrile) in tetrahydrofuran (THF) resulted in the formation of copper(II) complexes 

[M][LCuNO2] (M = NBu4
+ or PPN+), which were isolated as powder blue solids and 

characterized by elemental analysis, UV–vis and electron paramagnetic resonance (EPR) 

spectroscopy, and X-ray crystallography for M = PPN+ (Scheme 1). The X-ray structure of 

[PPN][LCuNO2] shows nitrite bound strongly to the Cu ion through one O atom [Cu1–O3 

= 1.9667(13) Å] with an additional weak interaction through the second O atom [Cu1–O4 = 

2.4622(14) Å; Figure 1]. This binding geometry is similar to that observed for carboxylate 

ligands in the series [NBu4][LCu(O2CR)],50,51 and the N–O bond distances are comparable 

to those in other complexes containing CuII(η1-ONO) cores.3,13–15,17,19,24,51,53–59 The Cu 

ion adopts a square-planar geometry (τ4 = 0.16),60 and the Cu1–N1, Cu1–N2, and Cu1–N3 

bond lengths are similar to those in the previously reported [LCuX]− complexes.42,44,46–52

The X-band EPR spectra for [M][LCuNO2] (M = NBu4
+ or PPN+) in THF at 30 K are 

nearly identical and exhibit typical signals for S = 1/2 square-planar copper(II) complexes 

(Figures 2 and S1). Spectral parameters were estimated by simulation, with the best match 

to the 17-line experimental superhyperfine pattern resulting when only three N atoms were 

included (Table S1). From these results and the similarity of the spectrum to those of other 
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[LCuX]− complexes,42,44,46–52 we conclude that little spin density is present on the nitrite 

N atom and that the superhyperfine coupling arises from interactions with the N atoms of 

L2−. The UV–vis spectra for [M][LCuNO2] (M = NBu4
+ or PPN+) in THF show typical 

d–d transitions (λ ~ 586 nm; ε ~ 480 M−1 cm−1; Figure S2). Cyclic voltammetry for 

[NBu4][LCuNO2] in THF (0.3 M [NBu4][PF6]) revealed a pseudoreversible wave with E1/2 

= +180 mV versus ferrocene/ferrocenium (Fc/Fc+; linear plot of ipa vs ν1/2; Figure S3). 

This oxidation potential is similar to those measured for the [LCu(O2CR)]−/0 series (range 

= 150–298 mV)51 and 347 mV higher than that for [LCuOH]−/0,47 all which track inversely 

with the basicity of the anionic “X” ligands (greater basicity, lower potential; Table S2).

Synthesis and Characterization of LCuNO2.

The addition of 1 equiv of acetylferrocenium tetrakis(3,5-bis-(trifluoromethyl)phenyl)borate 

([AcFc][BArF24]) to a solution of [NBu4][LCuNO2] in THF at −80 °C resulted in the 

immediate development of a deep Prussian blue color and the appearance of intense features 

at 478 nm (ε = 5350 M−1cm−1), 655 nm (ε = 9170 M−1 cm−1), and 816 nm (ε = 7180 

M−1 cm−1) in the UV–vis spectrum (Figure 3a). Variation of the amount of [AcFc]+ between 

0.2 and 1.8 equiv showed the attainment of maximum absorbance for the new features 

when 1 equiv of [AcFc]+ was added (Figures 3b and S4). Also, the addition of 1 equiv 

of decamethylferrocene (Fc*) bleached the solution to yield the spectrum of [LCuNO2]−, a 

process that could be repeated (2 times; Figure S5). Taken together, the evidence supports 

reversible one-electron oxidation of [NBu4][LCuNO2].

The new UV–vis features that appear upon oxidation of [NBu4][LCuNO2] are similar to 

those seen for other LCuX complexes and bear particular resemblance to those found for the 

LCuO2CR series.51 These features were assigned using time-dependent density functional 

theory to ligand-to-metal charge transfer (LMCT) involving N-aryl π → Cu d and N-amide 

π → Cu d transitions.50 Consistent with these assignments, the energy of these transitions is 

inversely proportional to the electron-withdrawing characteristics of the carboxylate ligand. 

Thus, for example, LCuO2CC6F5 with the most electron-withdrawing carboxylate and the 

lowest carboxylic acid aqueous pKa of 1.4861 yields the most electrophilic Cu ion and 

the lowest-energy feature at 866 nm, whereas LCuO2CCH3 with its absorption feature at 

809 nm has the least electrophilic Cu ion in the series with a carboxylic acid aqueous 

pKa of 4.8.51 The lowest-energy peak for the product of one-electron oxidation of [NBu4]

[LCuNO2] has λmax = 816 nm, intermediate in the LCuO2CR series, consistent with a 

nitrous acid aqueous pKa of 3.16, and in line with an analogous LMCT assignment.62 

Finally, a peak at 634 cm−1 was observed in the resonance Raman spectrum of LCuNO2 

(λex = 660 nm), which we assign as ν(Cu–O) based on nearly identical peaks present in 

previously measured spectra for LCuX with X = O-based ligands (Figure S6).47,49 Taken 

together, the UV–vis and resonance Raman spectra and titration/stoichiometry/reversibility 

data support formation of LCuNO2 upon one-electron oxidation of [NBu4][LCuNO2].

PCET Reactivity.

Treatment of LCuNO2 with 2,4,6-tri-tert-butylphenol (TTBP; 50 equiv) in THF at −80 °C 

led to decay of the absorptions associated with LCuNO2. This decay was monitored over 

~40 min, and a global fit of the decay spectra to a second-order reaction model using 
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ReactLab Kinetics63 yielded a k2 of 1(1) × 10−1 M−1 s−1. The UV–vis spectrum of the 

product solution (Figure S7) indicated formation of the 2,4,6-tri-tert-butylphenoxyl radical 

(characteristic peaks around 400 and 660 nm)64,65 and LCu(THF) (d–d transition at 570 

nm).50 The radical was also identified by EPR spectroscopy, and from integration, a yield 

of 61% was determined (Figure S8). In a separate experiment designed to detect possible 

coproduct NO, a solution of TTBP (50 equiv) was added to a solution of LCuNO2 at −40 

°C and allowed to warm to room temperature in the presence of a solution of CoTPP 

(TPP = 5,10,15,20-tetraphenyl-21H,23H-porphine).20,40,66,67 Subsequent analysis of the 

latter solution by UV–vis spectroscopy revealed the formation of (NO)CoTPP in an amount 

corresponding to ~15% yield of NO from the PCET reaction (Figure S9). We presume 

that HNO2 also forms in the PCET reaction but decays via unidentified processes, which 

might also lead to NO. An alternative PCET pathway (analogous to the one previously 

identified in a reaction of the CuII-NO2 complex)19 would involve the initial formation 

of NO and LCuIIIOH, but the latter would be expected to react further with TTBP and 

generate an additional 1 equiv of the phenoxyl radical (Scheme S1). The observed low 

yield of the radical and the low yield of NO argue against this pathway being the dominant 

H-atom-transfer step.68,69

The rate constant found for the reaction of TTBP with LCuNO2 is similar to that for the 

reaction with LCuO2CC6H4(Cl) under the same conditions [k2 = 3(1) × 10−1 M−1 s−1],50 but 

it is ~100 times smaller than that for the reaction with LCuOH [k2 = 2(1) × 101 M−1 s−1].50 

These rate constants are in line with thermodynamic considerations, particularly the E1/2 and 

pka values. Thus, the [LCuNO2]−/0 E1/2 of 180 mV versus Fc/Fc+ and the pKa of HNO2 

of 3.1662 fall close to the corresponding E1/2 and carboxylic acid pKa values for the series 

[LCuO2CR]−/0, and the former E1/2 values correlate with the log k2 values for the reaction 

with TTBP (Figure S10).51 These relationships support similar driving forces for the PCET 

reactions. Likewise, the greater basicity of LCuOH that results in the formation of a stronger 

O–H bond underlies its faster PCET reactions.43

Nitration Reactivity.

UV–vis monitoring of the reactions between LCuNO2 and varying amounts of DTBP (1–

60 equiv) in THF at −40 °C resulted in t1/2 values of 613, 318, 252, and 176 s in the 

presence of 1, 20, 40, and 60 equiv of substrate, respectively (Figure S11). While the trend 

in the t1/2 values indicates a dependence of the rate on the DTBP concentration, the decay 

data could not be fit to simple kinetic models (i.e., pseudo first order; Figure S11c,f,i,l). 

These findings suggest that a more complicated reaction occurs with DTBP compared to 

TTBP. Product analysis was performed in an attempt to understand the results from the 

kinetic experiments. A peak at 570 nm in the final UV–vis spectrum suggests formation 

of LCu(THF). To identify the organic products, reactions were performed on a larger scale 

(2.67 mM) at −40 °C in THF using 0.5 or 1 equiv of DTBP for 2 h or 10 equiv of DTBP 

for 1 h, and the residues were analyzed by 1H NMR spectroscopy (Figures S12–S14). 

Two products were identified: the coupled bisphenol product, 3,3′,5,5′-tetra-tert-butyl-[1,1′-
biphenyl]-2,2′-diol, and 2,4-di-tert-butyl-6-nitrophenol (Scheme 2). The yields of bisphenol 

and 2,4-di-tert-butyl-6-nitrophenol and the amount of unreacted DTBP varied with differing 

equivalents of DTBP (Table 1). The data show that the yield of nitrated product and the 

Bouchey and Tolman Page 4

Inorg Chem. Author manuscript; available in PMC 2023 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conversion of substrate increase in the reactions with fewer equivalents of DTBP used. We 

interpret these results (greater nitration when LCuNO2 is in excess) to indicate that nitration 

involves multiple equivalents of LCuNO2.

The product 2,4-di-tert-butyl-6-nitrophenol could be formed from the reaction between 

LCuNO2 and DTBP via multiple possible mechanisms. LCuNO2 could abstract a H atom 

from DTBP, resulting in a [LCuHNO2] adduct (which presumably decays to LCuTHF 

and HNO2) and the phenoxyl radical of DTBP, which could react with another 1 equiv 

of LCuNO2 in a “rebound” type of reaction to form LCuTHF and a nitrated phenol 

product (Scheme 3, path A). There is precedence to support the “rebound” pathway given 

that LCuF was reported to functionalize substrates via H-atom abstraction and radical 

capture, or “rebound”.52 Conversely, multiple pathways where free NO2 is liberated are 

possible (Scheme 3), and free NO2 has been studied for its oxidation and nitration 

chemistry with DTBP.70 If LCuNO2 does disproportionate into LCuTHF and free NO2, 

then this is an unusual transformation of mildly oxidizing nitrite to NO2. The results of 

the stoichiometry experiments are taken as evidence for Scheme 3, with path A being the 

predominant nitration mechanism, because the dependence of the nitrated product yield on 

the stoichiometry of LCuNO2 suggests that limiting consumption of LCuNO2 by PCET 

favors nitration.

LCuNO2 could be involved in generation of the phenoxyl radical of DTBP via a 

nucleophilic attack of the phenol on the nitrite ligand of LCuNO2, as previously seen for 

a CuII-NO2 compound (Scheme S2).66,71 The products of the nucleophilic attack would 

be O-nitrosated DTBP and LCuIIIOH, which would react with another 1 equiv of DTBP 

to form bisphenol. The O-nitrosated DTBP would then release NO and the phenoxyl 

radical of DTBP, which could then combine to form 2,4-di-tert-butyl-6-nitrophenol.71 The 

stoichiometry experiments do not support this nitration mechanism because it does not 

use more than 1 equiv of LCuNO2 to nitrate the phenol. However, we cannot rule out 

nucleophilic attack of the phenol on LCuNO2 to form the phenoxyl radical of DTBP, which 

then could react with another 1 equiv of LCuNO2 via the “rebound” mechanism.

Alternatively, 2 equiv of the [LCuHNO2] adduct could functionalize DTBP directly, 

resulting in the nitrated phenol product of DTBP (Scheme 3, path B). This mechanism 

is consistent with the stoichiometry experiments, and there is literature precedence for 

the involvement of a nitrous acid adduct, [CoHNO2]2+,72 nitrating DTBP. However, we 

view this mechanism unlikely for [LCuHNO2] because one of the products would be an 

unprecedented {CuNO}10 complex.

Yet another pathway to generate 2,4-di-tert-butyl-6-nitrophenol from LCuNO2 and DTBP 

would involve one-electron oxidation of DTBP by LCuNO2, with the resulting cation-radical 

phenol species reacting with free nitrite, as proposed for the protonated cryptand-capped 

tripodal CuII-NO2 compound.19,73 We rule this pathway out because the reported Eox value 

of DTBP is 1.03 V versus Fc/Fc+ (converted from 1.43 V vs SCE),74 which is about 

800 mV higher than the E1/2 value found for the [LCuNO2]−/0 couple. As discussed for 

the protonated cryptand-capped tripodal CuII-NO2 compound, phenol nitration typically 

occurs via O2-dependent pathways through metal peroxynitrite species. The reactions of the 
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compounds LCuNO2 and the protonated cryptand-capped tripodal CuII-NO2 species are two 

recent examples of phenol nitration that occur through uncommon anaerobic pathways.19

■ CONCLUSIONS

The copper(II) nitrite starting materials [M][LCuNO2] (M = NBu4
+ or PPN+) were 

prepared and characterized by UV–vis and EPR spectroscopy, CHN analysis, and X-

ray crystallography. Electrochemical and chemical oxidations of [LCuNO2]− revealed a 

reversible one-electron oxidation to an intriguing [CuNO2]2+ core, and LCuNO2 was 

characterized at low temperatures by UV–vis and resonance Raman spectroscopies. To our 

knowledge, this complex is a unique example of a high-valent copper nitrite complex. The 

reaction between LCuNO2 and TTBP revealed that LCuNO2 can abstract H atoms from 

O–H substrates at rates comparable to those in LCuO2CR complexes.51 Interestingly, the 

reaction between LCuNO2 and DTBP yielded not only the expected PCET product but 

the ortho-nitrated phenol as well. Although there are multiple possible mechanisms that 

could result in the nitrated phenol, detection of the nitrated product indicates that LCuNO2 

(or a derivative) can functionalize substrates, a type of transformation that has only been 

demonstrated by X = halides for LCuX complexes.52
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Figure 1. 
X-ray crystal structure of [PPN][LCuNO2] with the PPN cation and H atoms omitted for 

clarity. All non-H atoms are shown as 30% thermal ellipsoids. Selected bond distances 

(Å) and angles (deg): Cu1–O3, 1.9667(13); Cu1–O4, 2.4622(14); Cu1–N1, 1.9987(13); 

Cu1–N2, 1.9242(14); Cu1–N3, 1.9985(13); N1–Cu1–N3, 160.25(6); N1–Cu1–N2, 80.26(5); 

N2–Cu1–N3, 80.48(6); N2–Cu1–O3, 178.01(6).
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Figure 2. 
X-band EPR spectrum of [NBu4][LCuNO2] in THF (black, experimental; red, simulation). 

Parameters: temperature 30 K; microwave frequency 9.38 GHz; microwave power 0.0002 

mW; modulation amplitude 9.8 G; modulation frequency 100 kHz. Parameters from the 

simulation are listed in Table S1.

Bouchey and Tolman Page 12

Inorg Chem. Author manuscript; available in PMC 2023 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(a) Overlay of UV–vis spectra of [NBu4][LCuNO2] (blue) and the species generated upon 

the addition of 1 equiv of [AcFc][BArF24] to [NBu4][LCuNO2] (red). Conditions: −80 °C in 

THF. (b) Plot of corresponding molar absorptivity values at λ = 655 nm versus equivalents 

of [AcFc][BArF24] added to [NBu4][LCuNO2] at −80 °C in THF.
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Scheme 1. Copper Complexes Discussed in This Work, with Formal Oxidation States Indicated
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Scheme 2. Observed Reactants and Products When LCuNO2 Is Reacted with DTBP
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Scheme 3. Possible Mechanisms of Phenol Nitration by LCuNO2
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Table 1.

Results from Product Analysis of the Reactions between LCuNO2 and Various Equivalents of DTBP
a

equiv nitrated phenol % yield bisphenol % yield
b % of unreacted phenol mass balance

c
 (%) % of phenol converted

d

10 0.5 8.2 94 102.7 8.5

0.7 8.8 95 104.5 9.1

1 15 42 45 102 56

17 43 42 102 59

0.5 48 26 30 104 71

46 24 28 98 71

a
All data were from 1H NMR spectral integrations using integration of the trimethoxybenzene peak at 6.09 ppm (3 protons) as a standard. All 

values are based on the DTBP loading.

b
Values take into consideration that 2 mol of DTBP is required to form 1 mol of bisphenol.

c
Mass balance values over 100% are due to the standard error in the 1H NMR integration values.

d
Calculated by the equation (nitrated phenol % yield + bisphenol % yield)/mass balance.
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