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ABSTRACT: Several approximations are introduced and tested to
reduce the computational expenses of the explicitly correlated
coupled-cluster singles and doubles with perturbative triples
[CCSD(T)] method for both closed and open-shell species. First,
the well-established frozen natural orbital (FNO) technique is
adapted to explicitly correlated CC approaches. Second, our natural
auxiliary function (NAF) scheme is employed to reduce the size of
the auxiliary basis required for the density fitting approximation
regularly used in explicitly correlated calculations. Third, a new
approach, termed the natural auxiliary basis (NAB) approximation,
is proposed to decrease the size of the auxiliary basis needed for the
expansion of the explicitly correlated geminals. The performance of
the above approximations and that of the combined FNO-NAF-
NAB approach are tested for atomization and reaction energies. Our results show that overall speedups of 7-, 5-, and 3-times can be
achieved with double-, triple-, and quadruple-ζ basis sets, respectively, without any loss in accuracy. The new method can provide,
e.g., reaction energies and barrier heights well within chemical accuracy for molecules with more than 40 atoms within a few days
using a few dozen processor cores, and calculations with 50+ atoms are still feasible. These routinely affordable computations
considerably extend the reach of explicitly correlated CCSD(T).

1. INTRODUCTION
The reliability of quantum chemical methods strongly depends
on what level the electron correlation is taken into account.
Even methods that include up to double excitations, such as
the coupled-cluster (CC) approach with single and double
excitations (CCSD),1 are often not sufficient to achieve
chemical accuracy (∼1 kcal/mol). There is a growing
consensus that the CCSD with perturbative triples [CCSD-
(T)] approach2 is the lowest level method that can provide this
accuracy, at least for molecules of single-reference electronic
structure. Unfortunately, calculations with CCSD(T) are
rather time-consuming since the solution of the CCSD
equations scale as 6, where is a measure of the system
size, while the computation time required for the evaluation of
the perturbative triples correction scales as 7. Furthermore,
to achieve the above accuracy goal, rather large one-electron
basis sets are required, which also significantly increases the
expenses of CCSD(T) calculations as it scales as the fourth
power of the basis set size.
There are several approaches in the literature developed to

alleviate the aforementioned problems. In the first class of
methods, CC calculations are sped up by reducing the size of
the molecular orbital (MO) space in which the equations are
solved or the perturbative corrections are evaluated. The
common feature of these approaches is that the MO basis is

divided into an active and an inactive subspace, and the CC
calculation is carried out within the former subspace. Prior to
that, some transformation is performed in the MO space to
maximize the accuracy of the energy evaluated in the truncated
space. In the optimized virtual orbitals approaches, a functional
depending on the orbital rotation parameters is constructed,
and its extremum is determined.3−7 A more frequently used
approach is the frozen natural orbital (FNO) approxima-
tion.8−10 Here, a one-particle density matrix is evaluated
utilizing a lower-level, usually the first-order Møller−Plesset
(MP), wave function.5,11−13 The density matrix is diagonalized,
and the resulting eigenvectors and eigenvalues are referred to
as the natural orbitals (NOs) and the corresponding
occupation numbers. The weakly populated NOs are dropped,
and the active space is composed of the NOs of larger
occupation numbers. The error introduced by this approx-
imation can be efficiently reduced by computing the so-called
ΔMP2 correction, which is the difference of the second-order
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MP (MP2) energies evaluated in the full MO basis and the
active space.3,11 In addition, the FNO approximation can also
be improved by more advanced correction schemes14 and by
extrapolation techniques.13,15−18 The FNO approach was also
extended to open-shell systems,13,19 higher-order CC meth-
ods,20 and excited states.13,19,21−23 Concerning larger systems,
the use of FNO techniques was enabled by reduced-scaling
density matrix construction algorithms.24−27

A completely different philosophy prevails in explicitly
correlated CC methods.28−30 Here, the computation time of
CC calculations is shortened by reducing their atomic orbital
(AO) basis set requirements. This is achieved by adding
special configurations to the wave function expansion that
explicitly contain the interelectronic distances. The first
realization of the explicitly correlated CCSD method was
already published in the early 1990s,31 but it took a long time
for this method to become a viable alternative to the
conventional CCSD approach. Thanks to the subsequent
improvements in the explicitly correlated infrastructure, such
as the introduction of the Slater-type geminal correlation
factors (F12),32 the complementary auxiliary basis (CABS)
approach,33 and the efficient explicitly correlated MP2
methods,34−37 more competitive explicitly correlated CCSD
methods could be developed. The first CCSD model
employing the F12 correlation factor (CCSD-F12) was still
too expensive for routine applications,38−40 but parallel to that,
a more approximate explicitly correlated CCSD variant,
CCSD(F12), was also introduced,41,42 which is 3- to 5-
times more expensive than conventional CCSD. The break-
through came with the development of even more efficient
approximations, such as CCSD-F12a and CCSD-F12b,43,44

CCSD(2)F12,
45,46 and the CCSD(F12*)47 methods. These

models are only reasonably more costly than standard CCSD,
while preserving the accuracy of the full CCSD-F12
approach.48 Explicitly correlated CCSD methods can also be
augmented with perturbative triples corrections.44,49 For this
purpose, probably our (T+) correction published recently is
the most appropriate choice50 (see Sect. 2.5).
In addition to the FNO and F12 techniques, several other

approaches are available to speed up CC calculations. Many
modern CCSD(T) implementations, both conventional and
explicitly correlated, use the density fitting (DF) approxima-
tion.18,50,51 Further performance improvement can be attained
by data compression techniques, such as the tensor hyper-
contraction scheme52−54 or our natural auxiliary function
(NAF) approach.55 The DF-CCSD(T) method was also
combined with the FNO technique,56 and recently we have
demonstrated that a combined FNO-NAF-DF approach can
result in speedups of 1 order of magnitude for conventional
CCSD(T) calculations.18 This approach in conjunction with
our efficient, parallel, integral-direct CCSD(T) algorithm57

significantly broadens the scope of near basis set limit
CCSD(T) computations.18

A separate class of reduced-cost CCSD(T) methods is
formed by the various local CCSD(T) approaches, which
utilize the short-term nature of the electron correlation.58−66

The common feature of these schemes is that the occupied
MOs are localized, and local domains of AOs, virtual orbitals,
or fitting functions are assembled for each localized MO or for
each pair thereof. These domains are then employed to
eliminate the negligible wave function parameters and
integrals. The most successful local CC methods also introduce
FNO-like approximations and make use of pair- and orbital-

specific NOs to further compress the MO space,67−72 and
these approaches were also combined with F12 techniques to
accelerate the basis set convergence of local CCSD(T)
calculations.73−76 The scaling of CCSD(T) can even be
reduced to linear with the aforementioned local correlation
approximations,67−71,77 but of course, one also has to ensure a
sufficient level of convergence for a larger number of such local
approximations. Another point to consider is that local
approximations start to fully operate for relatively large
molecules�typically for systems with 30−50 or more atoms
depending on the structure. Under this range, optimized
CCSD(T) implementations or CCSD(T) approaches utilizing
FNO and related approximations are competitive, as we have
recently demonstrated for conventional CCSD(T).18

In this study, our intention is to develop a reduced-cost
explicitly correlated CCSD(T) approach that is as accurate as
the parent method and more efficient than local CCSD(T)
approximations for molecules of a couple of dozens of atoms.
Motivated by the success of the combined FNO-NAF
approach for conventional CCSD(T),18 we embark on
adapting these approximations to explicitly correlated CCSD-
(T) methods. Furthermore, we also inspect the possibilities for
the reduction of the size of the CABS�a concept that does
not occur for conventional CCSD(T). We also discuss the
required modifications for the (T+) correction when the latter
is used together with explicitly correlated CCSD models.
Finally, we demonstrate that the new FNO-CCSD(F12*)(T+)
method can approach the basis set limit for up to 53-atom
molecules using only a few dozen compute cores within a few
days of wall time.

2. THEORY
First, to facilitate the understanding of the following
discussion, we briefly summarize the special features of
explicitly correlated CCSD methods. Then, the various
approximations are introduced to reduce their computational
costs. Finally, we consider the necessary modifications in the
evaluation of the perturbative triples correction when the latter
is employed together with the reduced-cost CCSD-F12
approximations developed.
2.1. Explicitly Correlated CCSD Methods. In conven-

tional CCSD theory,1 the wave function is written in an
exponential form as

| = | °eT (1)

where | ° is the reference determinant and = +T T T1 2
denotes the cluster operator with

= +T t a i
a i

i
a

1
, (2)

and

=
< <

+ +T t a b i j
a b i j

ij
ab

2
, (3)

Here, ti
a and tij

ab are the cluster amplitudes, and indices i, j, ...
(a, b, ...) refer to occupied (virtual) spin orbitals, while p, q, ...
will label generic MO indices. Operators a+ and i− are creation
and annihilation operators, respectively. The CCSD energy,
ECCSD, and the wave function parameters are obtained by
substituting eq 1 into the Schrödinger equation and projecting
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onto the space of the reference and the singly |( )i
a and

doubly |( )ij
ab excited determinants as

°| | ° =H Ee eT T CCSD (4)

| | ° =He e 0i
a T T (5)

| | ° =He e 0ij
ab T T

(6)

where H is the Hamiltonian.
In explicitly correlated approaches,28−30 the wave function is

augmented with geminals

| = |w Q S f ijij ij12 12 (7)

explicitly containing the interelectronic distances r12. Here,
=f (1/ )e r

12
12 is the F12 correlation factor with γ as an

exponent, and Q12 stands for a strong orthogonality projector,
which orthogonalizes the pair functions to all possible products
of the Hartree−Fock (HF) MOs. For the latter, almost all
modern F12 approaches use ansatz 2,

=Q O O VV(1 )(1 )12 1 2 1 2 (8)

or one of its approximate forms, where O1 and V1 are the
projectors onto the space of occupied and virtual HF MOs,
respectively, and the subscript refers to the number of the
electron. Operator Sij is defined by the

= +S P3
8

1
8ij ij (9)

expression, where Pij permutes the spatial components of spin
orbitals i and j in determinant |ij⟩. In practice, the functions
|wij⟩ are represented by an expansion in determinant basis |αβ⟩
formed from a formally complete virtual basis, hereafter
indexed by α, β, .... In the CABS approach,33 which is also
utilized in this study, this virtual basis is formed from the HF
virtual MOs and a complementary MO basis. To construct the
latter, an AO-like auxiliary basis is employed. The functions of
this basis are orthogonalized to the HF MOs, and the resulting
orbitals are canonicalized, that is, the Fock-operator is
diagonalized in their basis. Hereafter, a′ and b′ will stand for
the CABS representation of the complementary virtual orbitals,
while the orbitals in the HF MO plus CABS basis will be
denoted by p′ and q′. With the aid of the complete virtual
basis, the explicitly correlated geminals can be represented by
the

| = |
<

wij
kl

kl ij
(10)

combination of determinants, where = |w wkl kl .
In explicitly correlated CCSD theories,38,40,42,43,46,47 the

cluster operator also incorporates an additional operator,

=
< < <

+ +T c w i j
i j k l

ij
kl

kl2
(11)

generating double excitations into the above pair functions
with cij

kl as the corresponding amplitudes. Equations 4−6 still
hold in the explicitly correlated case with the modified cluster
operator = + +T T T T1 2 2, and further equations,

| | ° =He e 0ij
kl T T

(12)

are needed to determine the cij
kl coefficients. However, in

practice, eqs 4−6 and 12 are significantly simplified in the
state-of-the-art explicitly correlated CCSD approaches. In
addition to the extensive use of the resolution of identity
(RI) approximation for the many-electron integrals, small
higher-order T2 contributions are neglected. The method can
further be improved by the fixed-amplitude approach.78 Here,
the coefficients cij

kl are fixed at =cij
kl

ik jl il jk, which not
only guarantees the fulfillment of the cusp conditions for
singlet and triplet electron pairs but also enhances computa-
tional efficiency. In the most advanced explicitly correlated
CCSD methods,43,47 if the fixed-amplitude approximation is
invoked, all T2 contributions can be computed once before
solving the CCSD equations. These F12-dependent contribu-
tions can be absorbed in the conventional CCSD inter-
mediates, which also means that the operation count for the
solution of the CCSD equations is hardly affected, and there is
no reference to the complementary basis. The evaluation of the
F12-dependent terms scales as +n n n n no

2
v
4

o
3

v
2

c, where no, nv,
and nc are the number occupied, virtual, and complementary
virtual orbitals, respectively, whereas the scaling of the CCSD
equations still does not exceed n no

2
v
4.

From our point of view, it is important to note that the latter
explicitly correlated CCSD methods also require the
calculation of the MP2-F12 correlation energy in advance of
the solution of the CCSD equations. The uncoupled
contributions in the explicitly correlated part of the MP2-
F12 correlation energy are also added to the CCSD correlation
energy. These are the pure contributions of the explicitly
correlated geminals, excluding the coupling to | ij

ab . The latter
is the contribution of intermediate C of MP2-F12 theory to the
MP2-F12 correlation energy [see, e.g., eqs 7 and A3 of ref 50].
The missing coupling contributions are evaluated from the
CCSD amplitudes. In fact, the major contribution to the
explicitly correlated part of the CCSD correlation energy
comes from MP2-F12.
It is also important to note that explicitly correlated MP2

and CCSD implementations intensively make use of the DF
approximation. In this approach, an auxiliary fitting basis is
used, whose elements will be labeled by indices P, Q, .... The
four-center integrals are approximated from two- and three-
center ones including the fitting functions. Four-center
Coulomb integrals, (pq|rs) in the (11|22) convention, can be
evaluated as

| | | =pq rs pq P V Q rs J J( ) ( ) ( )
P Q

P Q
P

pq P rs P
,

,
1

, ,
(13)

with

= |J pq Q L( )pq P
Q

Q P, ,
(14)

where VP,Q = (P|Q) and (pq|P) are two- and three-center
Coulomb integrals, respectively, and VP Q,

1 is a shorthand
notation for the corresponding element of the inverse of the
two-center integral matrix. Matrix L is obtained by an
appropriate decomposition of matrix V−1 as V−1 = LLT.
Most frequently, L is defined by V−1/2, but a better strategy is
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to use the Cholesky-decomposition of V−1. Unfortunately, for
the other types of integrals appearing in explicitly correlated
theories, that is, the integrals of operators f12, f12

2 , f12/r12, and

f( )1 12
2 with 1 as the del operator with respect to the

coordinates of the first electron, robust fitting formulas must be
used.37,79,80 For instance, the integrals of f12 are evaluated as

| | +pq f rs J K K J( ) ( )
P

pq P rs P pq P rs P12 , , , ,
(15)

where

= | |

| |

K pq f Q L

J L R f S L

( )

1
2

( )

pq P
Q

Q P

Q R S
pq Q R Q S P

, 12 ,

, ,
, , 12 ,

(16)

and similar equations hold for the three other operators.
2.2. Frozen Natural Orbitals. In conventional FNO-

CCSD(T) calculations, the virtual−virtual block of the MP2
one-particle density matrix,

=
<

[ ] [ ]D t tab
i j c

ij
ac

ij
bc

,

1 1

(17)

is constructed, where [ ]tij
ac 1 is an amplitude of the first-order

MP wave function. This matrix is diagonalized, and of the
resulting eigenvectors, i.e., the NOs, those are retained where
the corresponding eigenvalue, i.e., the occupation number, is
greater than a threshold. The selected NOs are canonicalized,
which is not mandatory for CCSD but is necessary for the
perturbative triples correction so that the HF-based
expressions can be used. The CCSD correlation energy lost
is usually approximated by the ΔMP2 correction, which is the
difference of MP2 energies in the full and the truncated basis.
Please note that the eigenvectors of the density matrix are
equivalent to the right singular vectors of [ ]tij

ab 1 if it is regarded
as a matrix with the composite row index aij and column index
b.81 Thus, the FNO approach is practically a singular value
decomposition (SVD) of the first-order wave function
generating a truncated basis in which the wave function is
best approximated. In other words, this procedure is a SVD-
based rank reduction for the amplitude matrix.
The adaptation of this approach to explicitly correlated CC

theory is not entirely trivial. In principle, one could construct a
one-particle density matrix for MP2-F12, but this would be
rather complicated and relatively costly. Thus, the most
plausible choice is to use the conventional MP2 NOs as
defined above. However, a number of further considerations
are warranted.
First, the FNO approximation can be applied not only at the

CC level but also in the initial MP2-F12 calculation. In this
way, the above FNOs could speed up the MP2-F12 calculation
at the expense of some loss in the correlation energy.
Considering that the evaluation of the MP2-F12 correlation
energy is relatively cheap with respect to the subsequent CC
calculation and a significant part of the explicitly correlated
contribution to the CC energy stems from MP2-F12, we
refrain from employing the FNO approach at the MP2-F12
level. A separate study will be dedicated to the cost-reduction
of standalone MP2-F12 using the techniques elaborated
herein.

Second, it is in question how the strong orthogonality
projector of eq 8 should be defined in the FNO-based
approach, that is, if operators V1 and V2 should project onto the
truncated or the original virtual HF MO space. Since the main
purpose of Q12 is to keep the explicitly correlated pair
functions orthogonal to all conventional configurations, if the
MO space and thereby the space of the latter configurations is
truncated, it is more consistent to also redefineQ12 and use the
truncated virtual space at the construction of the projectors.
Furthermore, the second option would result in a significantly
more complicated algorithm and the loss of the advantages of
the FNO approximation at the evaluation of the F12-
dependent intermediates. Consequently, we go with the first
option. This choice is also supported by the experience gained
for local correlation methods, where it was found that it is
more advantageous to define Q12 for an orbital pair in the
corresponding truncated domain of virtual MOs rather than in
the entire virtual space.82,83

Third, we should keep in mind that the complementary basis
is a virtual MO basis that is orthogonal to the original HF
MOs. Thus, if the NOs of small occupation number are
dropped, there will be a gap between the space of the
correlated virtual MOs and the complementary virtual space.
This may result in considerable errors since the basis used for
the RI approximations is not optimal. Therefore, we add the
dropped NOs to the complementary space. Note that the new
complementary virtual space does not need to be canonicalized
because it is only used at the computation of CC
intermediates, and these are invariant to the unitary trans-
formation within that space.
Fourth, the contribution of the dropped NOs to the CCSD

correlation energy is missing just as in the case of conventional
CCSD. It is compensated neither by the MP2-F12 correlation
energy contribution to the CCSD energy nor by that the
dropped NOs are added to the complementary basis. Thus, it
is justified to include the ΔMP2 correction even in the
explicitly correlated case.
Fifth, as pointed out in Section 2.1, the coupling terms of the

explicitly correlated and the conventional configurations occur
in the CCSD energy and residual equations. However, the
contributions of those conventional excitations where the
excitation takes place to a dropped virtual NO are lacking.
Since this may also cause significant error, we calculate the
missing contribution at the MP2 level. In practice, the whole
coupling contribution is evaluated first with the original MO
and CABS bases and then with the truncated and canonicalized
NO basis using the extended complementary basis. The
difference of the two is also added to the CCSD correlation
energy in addition to the ΔMP2 correction.
With the above modifications, the FNO approach can be

used for explicitly correlated CCSD calculations as for
conventional CCSD. We note that FNOs could also be used
to speed up standalone MP2-F12 calculations. Since the
primary focus of this study is the cost reduction of explicitly
correlated CC calculations, and otherwise the applicability of
MP2-F12 is limited, we do not discuss this aspect in detail in
the present study.
2.3. Natural Auxiliary Functions. In our NAF

approach,55 motivated by the SVD formulation of the FNO
approximation, the right singular vectors of matrix J defined by
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eq 14 are determined supposing that pq is a composite row
index. In practice, the symmetric matrix

=W J JT (18)

is diagonalized. The eigenvectors with small eigenvalues, that
is, the singular vectors with small singular values, are dropped,
and the auxiliary index of J is transformed to the truncated
basis. In this way, J is represented in a new, molecule-specific
fitting basis of lower dimension, the NAF basis, which
guarantees that the compressed matrix is the best approx-
imation to the original one. The NAF technique significantly
lowers the costs of the transformation and processing of three-
center integrals and the assembly of the four-center integrals
(eq 13). As we have recently demonstrated, it is quite efficient
in speeding up both conventional18,21 and various local
approximation based correlated calculations,84−87 especially if
it is combined with the FNO approach.
If we intend to generalize the NAF technique to explicitly

correlated calculations, we should keep in mind that not only
Coulomb integrals enter the calculation but four other types
appear as well. Theoretically, one could define separate NAF
bases for each type of integrals using the corresponding three-
center integrals. However, it would require the transformation
of matrix J to five different fitting bases and the storage of the
resulting five lists since the assembly of all types of integrals
requires the Coulomb integral J [cf. eqs 15 and 16]. Thus, it
seems to be a much better strategy to still define the NAFs by
diagonalizing matrix W and to employ this fitting basis for each
integral type.
The NAF technique can potentially be deployed at three

points in an explicitly correlated CCSD calculation that uses
the DF approach. In principle, it can be used already at the
initial MP2-F12 run as well as at the construction of the F12-
dependent intermediates and in the CCSD iterations. The
application of NAFs would be particularly useful for MP2-F12
calculations because their expenses are dominated by the
assembly of the four-center integrals, which operation scales
with the size of the fitting basis. However, for the reasons
outlined in Section 2.2, we refrain from this here, and we will
investigate in a later work how much standalone MP2-F12
calculations can benefit from the use of NAFs.
Considering the other two possibilities, the F12-dependent

intermediates and the CCSD iterations, we should realize that
for the former, matrix J also carries one index of the
complementary space, whereas for the latter, J depends only
on the orbitals of the conventional MO basis. Since the major
advantage of the NAF technique is that it constructs a reduced
fitting basis optimal for the given MO basis, it is thus
recommended to use different NAF bases at the two places.
Consequently, for the CCSD iterations, we go with the NAFs
derived from Jpq,P-type integrals and use the infrastructure
elaborated for conventional CCSD as described in ref 18. For
the F12-dependent intermediates, the NAFs are constructed
from Jp′q,P-type matrix elements. In the latter case, after
diagonalizing W, both J and the K-type integrals are
transformed to the truncated NAF basis, but no further
modification is needed in the algorithm for the evaluation of
the F12-dependent intermediates. The construction of the
NAF basis and the transformation of the integrals to the new
fitting basis scale as the fourth power of the basis set size, thus
the overhead due to these operations is relatively low with
respect to the fifth-power scaling operations, eqs 13 and 15,
sped up by this approach.

The application of the NAF technique to open-shell systems
requires further considerations. As discussed in ref 55, here, we
have separate Jpq,P lists for the alpha and beta MOs in the case
of conventional CC methods. By default, separate W matrices
are computed for both, and their average is used to construct
the NAFs. Alternatively, the NAF basis can be derived
exclusively from the integrals of the alpha MOs, which
somewhat decreases the overhead of the NAF construction.
For explicitly correlated methods, the situation is even more
complicated. For the latter, due to the presence of the
operators Sij, we also need Jp′q,P lists where p′ is an alpha
orbital, and q is beta and vice versa. Here, we also have the
cheaper option of computing the NAFs using only the αα-type
list, but by default, the NAFs are determined by averaging the
matrices W evaluated from the various spin cases, αα, αβ, βα,
and ββ. The latter choice is preferred because it is expected to
generate a NAF basis that is balanced for all four types of lists
at the same time.
For the compensation of the error introduced by the use of

the NAF technique during the CCSD iteration, the same
corrections are useful as in the conventional case.18 That is, the
MP2 correlation energy is computed with and without the
NAF approximation, and the difference of the two is added to
the final CCSD correlation energy. Furthermore, at the
evaluation of the correlation energies the amplitudes are
contracted with integrals computed without the NAF
approximation. The processing of the required Jai,P-type lists
in the original fitting basis and the assembly of the (ai|bj)
integrals from these lists just negligibly increase the
computation time. Unfortunately, for the reduction of the
error brought in by the application of the NAF approximation
at the evaluation of F12-dependent intermediates, no such
inexpensive corrections can be calculated.
2.4. Natural Auxiliary Basis. In Sections 2.2 and 2.3, we

have demonstrated that both the MO and the fitting basis can
be reduced by SVDs applied to the appropriate quantities. In
explicitly correlated calculations, there is a third type of basis,
the CABS. Now the question arises if the dimension of the
latter can also be shrunk by similar data compression
techniques. Here, we seek the answer to this question.
As the complementary basis is employed for the second-

quantized representation of the explicitly correlated geminals
[cf. eq 10], from the theoretical point of view, a justifiable
solution would be to construct a reduced complementary basis
with constraining the coefficients wij in the new basis to be as

close to their original values as possible. In practice, only wij
a b

-type matrix elements are computed in an explicitly correlated
calculation, which, inserting projector Q12 given by eq 8,
reduce to integrals | |S a b f ijij 12 . One can also argue that the
primary purpose of the auxiliary basis is to approximate the
three- and four-electron integrals entering the explicitly
correlated theory; thus, the goodness of the basis can also be
measured by the accuracy of the arising two-electron integrals
appearing in the CC equations. In addition to the
aforementioned integrals of f12, these include the analogous
integrals of f12/r12. Thus, in both cases, a pragmatic procedure
would be to perform the SVD of the corresponding four-index
tensors supposing that they are two-index matrices with
composite bij row index and a′ column index. This is,
unfortunately, a fifth-power scaling operation with a relatively
large prefactor. For this reason, we opted for an even more
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pragmatic solution: instead of the four-center integrals, we
decompose the three-index quantities of which they are
constructed. One expects that, if the three-index integrals are
well represented in the new complementary basis, the four-
center integrals computed thereof will also be accurate. Here,
there are still two options: we can decompose either integrals
Ja′i,P or Ka′i,P. Although the latter choice seems to be more
satisfactory from the theoretical point of view because these are
the three-index integrals of the f12 correlation factor, it is more
tempting to take integrals Ja′i,P as these quantities are also
required for the evaluation of all other F12-dependent
intermediates. In addition, the computation of these
intermediates also needs the Ja′p,P-type integrals, thus we
finally use the latter for the definition of the truncated CABS
basis. The superiority of the integrals Ja′p,P for this purpose over
Ja′i,P or Ka′i,P was also verified by numerical experiments.
In practice, similar to the FNOs or NAFs, the SVD is carried

out by building and diagonalizing matrix W with elements

=W J Ja b
p P

a p P b p P
,

, ,
(19)

The eigenvectors of W define a new complementary basis with
the corresponding eigenvalues as the populations. The orbitals
of low population are dropped, and the resulting truncated
complementary basis, which we call the natural auxiliary basis
(NAB), is used thereafter. Integrals Ja′p,P, Ka′p,P, and the
analogous integrals of the other operators are transformed to
the NAB, and then the algorithms for the evaluation of the
F12-dependent intermediates are executed without any
modification.
Though the overhead of the construction of the NAB is

rather low, the evaluation of the intermediates requiring the
Ja′p,P or similar types of integrals takes a relatively small fraction
of the entire computation time as well. Consequently, only
moderate speedups can be expected for explicitly correlated
CCSD approaches that treat the F12-dependent intermediates
noniteratively. The NAB technique can be particularly effective
for the models that evaluate those terms iteratively. Moreover,
we expect considerable gain for MP2-F12 calculations, where
the operation count for most of the terms depends on the size
of the complementary basis. However, for the reasons
discussed above, we will consider the cost reduction of MP2-
F12 in a forthcoming study. We also mention that the NAB
approach is potentially well suited for explicitly correlated local
CC implementations, where the processing of three-center
integrals is one of the bottlenecks.
It is also pertinent to comment on the joint use of the FNO,

NAF, and NAB approximations. In principle, any two of the
three or all three can be employed at the same time. If the
FNO and NAB approaches are applied together, it is
recommended to construct the FNOs before the NAB. In
this way, the complementary basis extended by the dropped
NOs enters the NAB construction algorithm, and a NAB
optimal for the final FNO basis is generated. If the NAFs are
also used, they can also be constructed at any point.
Nevertheless, it is most advantageous to calculate them at
the end, after constructing the FNOs and the NAB. As pointed
out in Section 2.3, the NAF basis is a fitting basis tailored to
the given MOs, hence, it is recommended to determine it when
the MO bases reached their final form.
Finally, to help the reader, the various approximations

considered in our study are summarized in Table 1. In the

second column of the table, the basis is given the dimension of
which is reduced by the approximation via the SVD of the
quantity specified in column 3. From the rightmost column, it
can be inferred whether the approximation functions at the
evaluation of F12-dependent terms or during the CC iterations
and computation of the perturbative triples correction. Notice
that, if the NAF and NAB approaches are employed together
with the FNO approximation, the p and q indices of integrals
Jp′q,P, Jpq,P, and Ja′p,P run over the truncated NO basis.
2.5. Perturbative Triples Correction. The treatment of

triple excitations in explicitly correlated CC methods is not
straightforward. The simplest solution is to calculate the (T)
correction with the converged explicitly correlated CCSD
amplitudes. If this route is followed, the FNO and NAF
approaches can also be used to speed up the evaluation of the
(T) correction as described in ref 18 for conventional
CCSD(T).
On the other hand, recently we have proposed a more

advanced perturbative triples correction, termed (T+), which
reduces the basis set error of (T).50 The basic idea was to split
up the MP2 and MP2-F12 correlation energies and the triples
correction into the contribution of occupied MOs, respectively,
as

=E E
i

i
MP2 MP2

(20)

=E E
i

i
MP2 F12 MP2 F12

(21)

and

=E E
i

i
(T) (T)

(22)

Explicit expressions for the Ei
MP2, Ei

MP2 F12, and Ei
(T)

increments can be found in ref 50. Supposing that the
contributions of a particular MO to the MP2 correlation
energy and the (T) correction scale similarly with the basis set
size, we can scale the contribution of each MO to the (T)
correction separately with the ratio of the corresponding

Ei
MP2 F12 and Ei

MP2 increments as

=+E
E

E
E

i

i

i
i

(T )
MP2 F12

MP2
(T)

(23)

If the E(T+) correction is evaluated with the FNO approach,
the important difference is that the Ei

(T) contributions are
computed in the reduced semicanonical NO space, while the

Ei
MP2 F12 increments are not affected. Consequently, it is

Table 1. Summary of the Various Approximations Used to
Speed up Explicitly Correlated CCSD(T) Calculations

Approximation Truncated basis SVDa Applicationb

FNO virtual HF MO (a) tijab[1] F12, CC
NAF DF auxiliary (P) Jp′q,P F12

Jpq,P CC
NAB complementary MO (a′) Ja′p,P F12

aThe quantity the SVD of which is used to construct the truncated
basis. bThe approximation is applied to reduce the corresponding
dimension of F12-dependent intermediates (F12) or integrals,
intermediates, and cluster amplitudes entering the CCSD(T)
equations (CC).
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recommended to evaluate the Ei
MP2 contributions in the

reduced space as well. Otherwise, the calculation of the E(T+)
correction can be carried out without any further modification.

3. BENCHMARK CALCULATIONS
3.1. Computational Details. The cost-reduction techni-

ques discussed herein have been implemented in the MRCC

quantum chemistry suite,88,89 which was also used in all the
calculations. Our explicitly correlated CCSD(T) implementa-
tion was described in ref 50, while the development of the
underlying hand-optimized, parallel, and (partially) integral-
direct conventional DF-CCSD(T) program was reported in
refs 57, 18, and 89.
For the explicitly correlated CCSD calculations, the

CCSD(F12*) model of Haẗtig and co-workers was employed47
in conjunction with our (T+) correction for the triple
excitations.50 Restricted open-shell HF references were used
for the open-shell systems. The frozen core approximation was
applied in all correlation calculations.
The correlation consistent X-tuple-ζ cc-pVXZ-F12 (X = D,

T, Q) AO basis sets developed for explicitly correlated
calculations90 and the corresponding cc-pVXZ-F12-OPTRI
CABS bases were employed.91,92 For the sake of brevity, the
cc-pVDZ-F12, cc-pVTZ-F12, and cc-pVQZ-F12 basis sets will
be referred to as DZ, TZ, and QZ, respectively. The DF
approximation was used throughout for both the HF and the
correlation calculations with the aug-cc-pV(X+1)Z-RI-JK93

and the aug-cc-pwCV(X+1)Z-RI94 fitting bases, respectively.
Slater-type f12 correlation factors with exponents of 0.9, 1.0,
and 1.1 were applied with the cc-pVDZ-F12, cc-pVTZ-F12,
and cc-pVQZ-F12 basis sets, respectively.90 To facilitate the
evaluation of the corresponding integrals, the correlation
factors were approximated by linear combinations of six
Gaussians.95

In our benchmark calculations, the test set of Knizia, Adler,
and Werner (KAW)44 was used. This set includes 49, 28, and
48 atomization energies and reaction energies of closed- and
open-shell systems, respectively, involving 66 species. The
reference CCSD(F12*)(T+) and complete basis set (CBS)
limit CCSD(T) energies were taken from ref 50. Here, we only
present the overall error measures for the 125 thermochemical
processes in terms of the corresponding mean absolute errors
(MAEs), root-mean-square (RMS) deviations, and maximum
errors (MAXs). The separate error statistics for the atom-
ization and closed- and open-shell reaction energies can be
found in the Supporting Information (SI), where the
computed correlation energies, thermochemical quantities,
errors of correlation energies, and the percentage of the
retained orbitals (auxiliary functions) are also presented. Since
the errors of the reduced-cost CCSD(F12*)(T+) approaches
with respect to the CBS CCSD(T) reference values will be
compared with the corresponding errors of the parent
CCSD(F12*)(T+) method, the latter are displayed in Table 2.
Further benchmark calculations were carried out for the test

set developed by Adler and Werner (AW),96 which
incorporates 52 reactions of 58 closed-shell molecules of up
to 18 atoms. Here, the reference CCSD(F12*)(T+)/cc-pVXZ-
F12 reaction energies computed in this study are employed.
The wall-clock time measurements for the AW set were carried
out on an 8-core Intel Xeon E5-2609 v4 processor running at
1.7 GHz. The larger computations of Section 3.7 were

performed with 28-core Intel Xeon Platinum 8180M CPUs
clocked at 1.7 GHz.
3.2. Performance of the FNO Approximation. First, we

discuss the performance of the FNO approach for energy
differences. The relevant error measures for the KAW test set
are compiled in Table 3. Here, just as in the following tables,
we present the errors with respect to both the parent
CCSD(F12*)(T+) energy differences evaluated with the
same basis set and the corresponding CBS-limit CCSD(T)
values. The former statistical measures directly quantify the
error introduced by the cost-reduction techniques, whereas the
latter characterize the overall error brought in by the finite
basis set used in the explicitly correlated approach and our
cost-reduction approximations. Since the main purpose of the
explicitly correlated methodology is to approach the CBS-limit
as close as possible, the latter error measures are more
informative concerning the applicability of the cost-reduction
techniques developed.
If the errors with respect to the parent CCSD(F12*)(T+)

method are considered, the average errors are quite basis set
independent, while the scatter of maximum errors is more
arbitrary. The convergence with the truncation threshold is
monotonic from 5 × 10−5, excepting the MAX for the DZ
basis. If a MAE of 1 kJ/mol is tolerated, the threshold of 10−5

is sufficient with all basis sets in accordance with our
experience for conventional CCSD(T).18 If the MAX is
required to be lower than 1 kcal/mol, a threshold of 5 × 10−6

is needed for the two larger basis sets. If the various
thermochemical properties are considered separately (see
SI), as expected, the error of the atomization energies is larger
than that for the reaction energies. For the latter, the MAXs are
safely below 1 kcal/mol in any case. It is also instructive to
inspect the sources of the errors. If we look at the relative
errors of the correlation energies (see SI), we find that larger
inaccuracies can be observed for atoms and systems containing
second-row elements. Accordingly, for processes involving
such species, larger errors are expected, especially when the
number of free atoms is different on the two sides of the
chemical equation.
The picture is somewhat more nuanced when the errors of

the FNO-based CCSD(F12*)(T+) approach with respect to
the CBS-limit CCSD(T) references (numbers in parentheses
in Table 3) are compared to the intrinsic errors of
CCSD(F12*)(T+) (see Table 2). With the DZ basis set, the
errors hardly change with any truncation threshold considered.
In fact, the error measures are lower in most cases. This
primarily comes from the strong error cancellation for the
atomization energies, but the errors for the reactions energies
are still favorable (see SI). This means that all the thresholds
can be used, even the least rigorous one, 10−4. For the other
two bases, the results slowly deteriorate when loosening the
truncation parameter. With the TZ basis, 10−5 seems to be a
good choice since the MAE and RMS are practically not

Table 2. Errors (in kJ/mol) of CCSD(F12*)(T+) Energy
Differences with Respect to CBS CCSD(T) Reference
Values for the KAW Test Set

Basis set

Error measure cc-pVDZ-F12 cc-pVTZ-F12 cc-pVQZ-F12

MAE 3.5 1.1 0.5
RMS 4.5 1.4 0.6
MAX 19.0 3.9 2.0
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affected, only the MAX worsens by 0.9 kJ/mol. For the QZ
basis set, even with the tight threshold of 5 × 10−6, the error
measures, in particular MAX, are close to those obtained with
the TZ basis. Thus, to reserve the accuracy of the QZ basis,
10−6 should be chosen.
All in all, we recommend the thresholds of 10−4, 10−5, and

10−6 for the DZ, TZ, and QZ bases, respectively. With these
parameters, in average, 62, 77, and 86% of the virtual NOs are
retained, respectively (see SI). Taking into account that the
computation time of a CCSD(F12*)(T+) calculations scales
as the fourth power of nv, respective speedup factors of up to 7,
3, and 2 are anticipated.
3.3. Performance of the NAF Approximation. As

explained in Section 2.3, the NAF approximation can be used
at two points in an explicitly correlated CC calculation: at the
computation of the F12-dependent intermediates and in other

parts of the CC calculation where just the normal Coulomb
integrals are utilized. Since the NAF approach presumably
behaves differently in the two situations, they are discussed
separately.
In Table 4, the error statistics are presented for the case

when the NAF approach is only employed for F12-dependent
intermediates. Notice that these are constructed only once
prior to the CC iterations in the case of the CCSD(F12*)(T+)
model. Hence, the inaccuracy caused by the use of NAFs is
expected to be moderate, but in turn, less gain in the
computation time is foreseen compared to the FNO approach.
If the errors with respect to the parent CCSD(F12*)(T+)

method are considered, we realize that the convergence with
the truncation threshold is monotonic. The errors are only
moderately basis set dependent and practically disappear with
the threshold of 10−2 a.u. The average (maximum) errors are

Table 3. Errors (in kJ/mol) of Approximate CCSD(F12*)(T+) Energy Differences Using the FNO Approach with Various
Thresholds with Respect to CCSD(F12*)(T+) and CBS CCSD(T) (in Parentheses) Reference Values for the KAW Test Set

Threshold

Basis set Error 10−4 5 × 10−5 10−5 5 × 10−6 10−6

cc-pVDZ-F12 MAE 1.4 (3.3) 1.5 (3.0) 0.7 (3.3) 0.4 (3.4) 0.3 (3.6)
RMS 2.2 (4.2) 2.3 (4.1) 1.0 (4.4) 0.7 (4.5) 0.7 (4.6)
MAX 7.7(16.8) 7.8(19.2) 3.2(21.3) 2.2(21.2) 4.5(19.0)

cc-pVTZ-F12 MAE 1.3 (1.5) 1.5 (1.5) 1.0 (1.0) 0.6 (1.0) 0.3 (0.9)
RMS 1.9 (2.2) 2.2 (2.0) 1.4 (1.4) 1.0 (1.3) 0.5 (1.2)
MAX 10.1(12.7) 6.6 (6.0) 4.4 (4.8) 3.5 (4.0) 1.8 (3.9)

cc-pVQZ-F12 MAE 1.3 (1.4) 1.4 (1.4) 0.9 (1.0) 0.6 (0.7) 0.2 (0.4)
RMS 1.9 (2.0) 2.1 (2.0) 1.4 (1.3) 1.0 (1.0) 0.3 (0.6)
MAX 6.8 (7.5) 6.4 (6.5) 4.6 (4.6) 3.2 (3.9) 1.9 (2.0)

Table 4. Errors (in kJ/mol) of Approximate CCSD(F12*)(T+) Energy Differences Using the NAF Approach at the
Construction of F12-Dependent Intermediates with Various Thresholds (in a.u.) with Respect to CCSD(F12*)(T+) and CBS
CCSD(T) (in Parentheses) Reference Values for the KAW Test Set

Threshold

Basis set Error 2 × 10−1 10−1 7.5 × 10−2 5 × 10−2 10−2

cc-pVDZ-F12 MAE 0.9 (3.9) 0.2 (3.5) 0.1 (3.5) 0.1 (3.5) 0.0 (3.5)
RMS 1.1 (5.1) 0.3 (4.6) 0.2 (4.5) 0.1 (4.5) 0.0 (4.5)
MAX 2.9(18.5) 0.8(18.3) 0.6(18.6) 0.3(19.1) 0.0(19.0)

cc-pVTZ-F12 MAE 0.3 (1.3) 0.1 (1.1) 0.1 (1.1) 0.0 (1.1) 0.0 (1.1)
RMS 0.4 (1.6) 0.1 (1.4) 0.1 (1.4) 0.0 (1.4) 0.0 (1.4)
MAX 1.5 (5.2) 0.4 (4.1) 0.3 (4.1) 0.1 (3.9) 0.0 (3.9)

cc-pVQZ-F12 MAE 0.2 (0.6) 0.0 (0.5) 0.0 (0.5) 0.0 (0.5) 0.0 (0.5)
RMS 0.3 (0.8) 0.0 (0.7) 0.0 (0.7) 0.0 (0.6) 0.0 (0.6)
MAX 1.6 (3.1) 0.2 (1.8) 0.1 (1.9) 0.0 (2.0) 0.0 (2.0)

Table 5. Errors (in kJ/mol) of Approximate CCSD(F12*)(T+) Energy Differences Using the NAF Approach in the CC
Calculation with Various Thresholds (in a.u.) with Respect to CCSD(F12*)(T+) and CBS CCSD(T) (in Parentheses)
Reference Values for the KAW Test Set

Threshold

Basis set Error 10−1 7.5 × 10−2 5 × 10−2 10−2 5 × 10−3

cc-pVDZ-F12 MAE 5.3 (7.3) 2.8 (5.5) 0.9 (4.1) 0.1 (3.5) 0.0 (3.5)
RMS 6.7 (9.6) 4.9 (7.7) 1.2 (5.3) 0.1 (4.5) 0.0 (4.5)
MAX 20.9(34.3) 22.5(27.3) 5.1(18.7) 0.3(18.8) 0.1(18.9)

cc-pVTZ-F12 MAE 1.3 (1.7) 0.2 (1.0) 0.1 (1.1) 0.0 (1.1) 0.0 (1.1)
RMS 2.2 (2.7) 0.3 (1.3) 0.2 (1.4) 0.0 (1.4) 0.0 (1.4)
MAX 10.2(13.5) 1.1 (4.0) 0.9 (3.2) 0.2 (3.9) 0.0 (3.9)

cc-pVQZ-F12 MAE 0.4 (0.7) 0.1 (0.4) 0.1 (0.5) 0.0 (0.5) 0.0 (0.5)
RMS 0.6 (1.0) 0.2 (0.6) 0.1 (0.6) 0.0 (0.6) 0.0 (0.6)
MAX 2.8 (3.4) 0.7 (1.9) 0.4 (1.9) 0.0 (1.9) 0.0 (2.0)
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not larger than 1 kJ/mol (1 kcal/mol) using 2 × 10−1 a.u. and
tighter thresholds with any basis set. Again, the inaccuracy is
considerably larger for the atomization energies than that for
the reaction energies (see SI), and it is also true that the
performance of the approximation is weaker for species
containing second-row elements. If the errors relative to the
CBS-limit are scrutinized (parenthesized numbers in Table 4),
we can conclude that the errors are practically not affected with
thresholds of 10−1 a.u. and smaller. On the whole, we propose
a default threshold of 10−1 a.u. for all three basis sets. With this
parameter, on the average, 56, 61, and 68% of the NAFs are
retained, respectively, with the DZ, TZ, and QZ basis sets (see
SI).
If the NAF approach is employed for the construction of

Coulomb integrals in the CC calculation (see Table 5), the
inaccuracy of the computed energy differences is higher as the
iterations amplify the errors, and this approximation directly
affects the total correlation energy, not only the F12
contribution. The basis set dependence of the errors is also
more pronounced. The errors with respect to the original
CCSD(F12*)(T+) energies converge monotonically and
vanish for thresholds of lower than 5 × 10−3 a.u. The MAEs
are lower than 1 kJ/mol with the truncation parameter 5 ×
10−2 a.u., and the MAX is only greater than 1 kcal/mol with
the DZ basis. The inaccuracy of the atomization energies is still
2- to 3-times larger than that of the reaction energies, and the
largest errors can again be observed for the second-row
elements (see SI). Turning to the absolute errors relative to the
CBS limit, we can state that the 5 × 10−2 a.u. threshold still
seems to be adequate because with this parameter, the error
measures are slightly better due to error cancellation with the
TZ and QZ basis sets and just moderately grow with DZ.
Consequently, we chose this threshold as default but also note
that for the QZ basis, even looser parameters are acceptable.
With the default threshold, 28, 35, and, 46% of the NAFs are
retained with the DZ, TZ, and QZ bases, respectively. As
expected, the Coulomb integrals during the CC calculation can
be fitted with a lower number of fitting functions than the F12-
dependent intermediates since for the latter, both Coulomb
and F12-dependent integrals must be fitted with the same
auxiliary basis, and the relevant integrals also include functions
in the complementary virtual basis.
3.4. Performance of the NAB Approximation. The

error metrics for the KAW test set using the NAB
approximation are displayed in Table 6. As we can see, the
errors are rather basis set dependent. They converge
monotonically with the cutoff parameters, apart from small

fluctuations on the 0.1 kJ/mol scale. Except for the DZ basis
with the loosest threshold, the average (maximum) errors
relative to the parent CCSD(F12*)(T+) method do not
exceed 1 kJ/mol (1 kcal/mol). Surprisingly, there is no
remarkable difference in the error measures for the atomization
and reaction energies, but it is again true that the accuracy is
weaker for second-row systems (see SI). Examining the errors
with respect to CBS-limit CCSD(T), the results suggest that
the NAB approach less benefits from error cancellation than
the previous approximations. Nevertheless, the 0.3 a.u.
threshold seems to be sufficient for the DZ and TZ bases,
whereas for QZ, even 0.5 a.u. is adequate. Using these
parameters, 55, 66, and 59% of the NAB is retained,
respectively, with the DZ, TZ, and QZ basis sets (see SI).
Taking into consideration these percentages and that the NAB
approximation can only be used for the noniterative F12-
dependent terms, moderate gain can be expected for the
CCSD(F12*)(T+) model.
3.5. Performance of the Combined FNO, NAF, and

NAB Approximation. In Sections 3.2−3.4, we studied the
various approximations and recommended thresholds for the
case when only one of them is switched on. Here, we monitor
the performance of the approximations considered if they are
applied together and also propose default cutoff thresholds. At
the determination of the latter, our idea was to maximize the
expected gain in speed. To that end, we set out of the
approximation from which the largest speedup is expected and
then, we switched on the other approximations one by one in
decreasing order of the expected efficiency selecting thresholds
that retain the accuracy. That is, we started with the FNO
approximation with the default thresholds determined in
Section 3.2, 10−4, 10−5, and 10−6 for the DZ, TZ, and QZ
bases, respectively. Then, we also deployed the NAF
approximation during the CC iterations and at the evaluation
of the perturbative triples correction using the thresholds given
in Table 5 and selected the one with which the error measures
calculated against the CBS-limit results worsen at most on the
0.1 kJ/mol scale. In the next step, the NAF approach was also
turned on at the computation of the F12-dependent
intermediates in a similar way, and finally, the same procedure
was carried out for the NAB approximation. In this manner,
default thresholds of 5 × 10−2, 5 × 10−2, and 10−1 a.u. were
determined for the two types of NAF and the NAB
approximations, respectively, independently of the basis set.
For the sake of simplicity, our reduced-cost approach where all
four approximations are employed simultaneously with the

Table 6. Errors (in kJ/mol) of Approximate CCSD(F12*)(T+) Energy Differences Using the NAB Approach with Various
Thresholds (in a.u.) with Respect to CCSD(F12*)(T+) and CBS CCSD(T) (in Parentheses) Reference Values for the KAW
Test Set

Threshold

Basis set Error 5 × 10−1 4 × 10−1 3 × 10−1 2 × 10−1 10−1

cc-pVDZ-F12 MAE 1.5 (4.1) 0.6 (3.6) 0.6 (3.7) 0.4 (3.5) 0.1 (3.4)
RMS 2.1 (5.6) 0.8 (4.8) 0.8 (4.8) 0.5 (4.5) 0.2 (4.4)
MAX 10.2(25.5) 3.2(20.6) 2.4(20.1) 2.8(18.5) 0.9(19.0)

cc-pVTZ-F12 MAE 0.2 (1.2) 0.2 (1.2) 0.1 (1.1) 0.1 (1.1) 0.0 (1.1)
RMS 0.3 (1.5) 0.3 (1.5) 0.2 (1.4) 0.1 (1.3) 0.0 (1.4)
MAX 1.4 (5.3) 1.5 (5.4) 0.6 (4.5) 0.3 (4.2) 0.0 (3.9)

cc-pVQZ-F12 MAE 0.1 (0.5) 0.0 (0.5) 0.0 (0.5) 0.0 (0.5) 0.0 (0.5)
RMS 0.1 (0.6) 0.0 (0.6) 0.1 (0.6) 0.0 (0.7) 0.0 (0.6)
MAX 0.5 (2.1) 0.2 (2.2) 0.2 (2.0) 0.2 (2.0) 0.0 (2.0)
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above thresholds will be referred to as the FNO-CCSD-
(F12*)(T+) method.
The results obtained with the combined approximations are

presented in Table 7. In column “FNO”, the error statistics
corresponding to the pure FNO approximation are given. In
column “+NAF(CC)”, the errors are compiled for the case
when in addition to the FNO approach, the NAF
approximation is also used in the CC calculation. At the
calculation of the results displayed in column “+NAF(F12)”,
the NAF approximation was employed for the F12-dependent
intermediates as well, while in the case of the rightmost
column, all four approximations were switched on. If the errors
relative to the same-basis CCSD(F12*)(T+) results are
inspected, the error measures somewhat grow with the DZ
basis when switching on the various approximations, but the
increase is considerably lower than the intrinsic error of the
method with this basis set. Using the two larger bases, the error
measures hardly change excepting perhaps the MAX with the
QZ basis. Considering the errors with respect to the CBS-limit,
they do again practically not change, only the MAX value
decreases noticeably for the DZ basis set thanks to fortuitous
error cancellation. In the end, our combined approximation
preserves the accuracy of the parent CCSD(F12*)(T+) model
(cf. parenthesized numbers in the last column of Table 7 and
Table 2).
For the cross-validation of our results, further benchmark

calculations were performed for an independent test set, the
AW set. This test set includes larger molecules, thus the CBS-
limit CCSD(T) references are not available, and we can only
compare the canonical and reduced-cost CCSD(F12*)(T+)
results computed with the same basis set. The error statistics
are presented in Table 8. As we can see, the error measures are
considerably lower than the corresponding ones for the KAW
test set (see numbers without parentheses in the last column of
Table 7). Of course, we should realize that the KAW set

includes atomization energies and reaction energies involving
open-shell species, while the AW compilation is just based on
reactions of closed-shell molecules. If the error measures of the
closed-shell reaction energy subset of the KAW test set (see
SI) are compared to those for AW, one finds that the errors are
still significantly lower for the AW set with the DZ basis, while
they are comparable for the two other basis sets. Thus, we have
a good reason to believe that our FNO-CCSD(F12*)(T+)
approach preserves its accuracy for other systems as well.
Concerning the reduction in the number of orbitals (see SI),

the percentage of the dropped orbitals decreases with growing
basis sets size, that is, the gain will be higher with smaller bases.
Depending on the basis set, 60−90% of the NOs are retained,
thus, up to 8-fold speedups are expected in the CC calculations
just due to the FNO approximation. Remarkable is the large
fraction of the dropped NAFs, 60−80%, which further reduces
the computation time considerably if the required four-center
integrals are reconstructed on-the-fly in the CC iterations. The
number of the retained NAFs is significantly smaller than that
for conventional CCSD(T) calculations,18 but of course, this is
the consequence of the fact that larger fitting bases are
employed for explicitly correlated CC. The FNO approx-
imation also reduces the costs of the evaluation of the F12-
dependent intermediates, but there, the NAF approximation is
less efficient, and the percentage of the retained NAB functions
is also relatively high. Hence, more moderate speedups are
foreseen for the latter operation. The factual speedups will be
presented in Section 3.6.
We note that the default truncation thresholds have been

determined for the combinations of AO and auxiliary basis sets
employed in our study (see Section 3.1). These are the basis
set combinations that are recommended by the developers of
explicitly correlated methods, but, of course, other bases are
also applied in explicitly correlated CC calculations. It is very
likely that our thresholds can safely be used with similar bases,
for instance, if the aug-cc-pVXZ basis sets are chosen instead of
cc-pVXZ-F12. In the case of less similar bases, it is
recommended to run test calculations or use tighter thresholds,
e.g., 10−6, for the FNOs. Similar holds for the choice of the
explicitly correlated CC approximation. Here, we have
considered the CCSD(F12*) model, but it is probable that
our approximations with the cutoff parameters determined are
also applicable to similar methods, such as CCSD-F12a,
CCSD-F12b, orCCSD(2)F12. For the approaches that treat the

Table 7. Errors (in kJ/mol) of Approximate CCSD(F12*)(T+) Energy Differences Using the Cost-Reduction Techniques
Developed with the Default Thresholds with Respect to CCSD(F12*)(T+) and CBS CCSD(T) (in Parentheses) Reference
Values for the KAW Test Seta

Approximation

Basis set Error FNO +NAF(CC) +NAF(F12) +NAB

cc-pVDZ-F12 MAE 1.4 (3.3) 2.3 (3.3) 2.3 (3.3) 2.6 (3.5)
RMS 2.2 (4.2) 3.1 (4.4) 3.1 (4.4) 3.4 (4.6)
MAX 7.7(16.8) 9.2(17.3) 9.4(17.2) 11.1(18.1)

cc-pVTZ-F12 MAE 1.0 (1.0) 1.1 (1.0) 1.0 (1.0) 1.0 (1.0)
RMS 1.4 (1.4) 1.6 (1.3) 1.5 (1.3) 1.5 (1.3)
MAX 4.4 (4.8) 4.6 (4.3) 4.5 (4.2) 4.5 (3.8)

cc-pVQZ-F12 MAE 0.2 (0.4) 0.2 (0.4) 0.2 (0.4) 0.2 (0.4)
RMS 0.3 (0.6) 0.3 (0.6) 0.3 (0.6) 0.3 (0.6)
MAX 1.9 (2.0) 2.4 (2.1) 2.3 (2.1) 2.3 (2.0)

aSee text for explanation.

Table 8. Errors (in kJ/mol) of FNO-CCSD(F12*)(T+)
Reaction Energies with Respect to Canonical
CCSD(F12*)(T+) Reference Values for the AW Test Set

Basis set

Error measure cc-pVDZ-F12 cc-pVTZ-F12 cc-pVQZ-F12

MAE 0.8 0.2 0.1
RMS 1.1 0.2 0.1
MAX 3.8 0.8 0.3
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F12-dependent terms iteratively, a careful reconsideration of
the thresholds is recommended.
3.6. Timings. To demonstrate the efficiency of our

approximations, first, we measured the wall-clock times
required for the evaluation of the F12-dependent intermediates
and the CC calculations for the molecules of the AW test set
and calculated the speedups. Only those 16 systems were
considered that consist of at least 10 atoms because these are
large enough with all three basis sets that the uncertainty of the
wall time measurement does not influence our conclusions.
The resulting minimal, maximal, and average speedup factors
are collected in Table 9.

As can be seen, significant speedups can be achieved in all
three basis sets for the CC calculations. The speedups decrease
with growing basis set size, which is a consequence of the
tightening FNO truncation threshold, but the gain is still
remarkable even with the QZ basis. The scatter of the speedup
factors is relatively low, which suggests that the approach is
quite robust, and considerable savings in the computation time
can be expected for any system. The tendencies are similar for
the F12-dependent constant terms, but the speedup factors are
roughly the half of those obtained for the CC runs. This is not
surprising because, as noted above, the evaluation of the F12-
dependent intermediates also scales as the size of the
complementary basis, which is less efficiently reduced than
that of the virtual MO basis. Moreover, significantly more
NAFs are retained for the F12-dependent terms than for the
Coulomb integrals used in the CC calculations. Taking into
account that the CC calculations are typically 5- to 7-times
more costly than the computation of the F12-dependent terms,
overall speedups of 7, 5, and 3 can be expected for the DZ, TZ,
and QZ bases, respectively.
3.7. Large-Scale Applications. Finally, we illustrate the

capabilities of the presented FNO-CCSD(F12*)(T+) ap-
proach on three chemical reactions, which would otherwise be
out of the reach of conventional explicitly correlated CCSD(T)

codes, at least with TZ-level basis sets. The required
computational resources were kept in a widely accessible
range, i.e., mostly 28 CPU cores and compute times of a few
days were sufficient. Thus, the presented applications should
be routinely accessible for a broad audience as more and more
computer clusters contain even single compute nodes with
dozens of cores, while multinode parallelization is also available
for the CCSD iteration and (T) parts.57

The three applications include a palladium catalyzed C−H
activation reaction,97 an organocatalytic Michael-addition
reaction,98 and a halocyclization reaction99,100 as shown in
Figures 1−3, respectively. In the first reaction, the Pd
compound catalyzes the cross-dehydrogenative coupling
between anilides and aromatic aldehydes forming 2-acetami-
nobenzophenon (ABP), as shown in Figure 1. Here, our
CCSD(T)/def2-QZVPPD results for the 31-atom ABP
product57 represents the largest molecule in the literature
with QZ-level basis set in a conventional CCSD(T)
computation, so we also have a def2-(T,Q)ZVPPD level
extrapolated estimate for the CBS limit of the reaction energy
up to this system size.
The second example is a model for an organocatalytic

Michael-addition reaction98 with propanal and β-nitrostyrene
reactants. The investigated step is the formation of a
dihydrooxazine N-oxide (OO) intermediate from β-nitro-
styrene and an enamine intermediate through a transition state
(TS) denoted as TS1 (see Figure 2).98 The overall
stereochemistry and the reaction rate of these reactions are
governed by delicate interactions between the reactants and
the catalyst, while the addition of the two 20-atom molecules
forming the 40-atom TS1 and the OO intermediate is
particularly sensitive to the basis set superposition error
(BSSE). Thus, almost complete basis set convergence is
required for the reliable characterization of the reaction
mechanism. However, conventional CCSD(T)/QZ would be
out of reach, even with our highly optimized code, just
CCSD(T)/def2-TZVPPD results are available.57

The third example (see Figure 3) pushes the system size up
to 53 atoms. Here, a halolactonization reaction similar to the
model reaction of ref 99 is considered (a phenyl group is
removed compared to the case of ref 99). The barrier height is
computed for the TS formed from the 1,3-dichloro-5,5-
dimethylhydantoin (DCDMH) halogen source, the pentenoic
acid reactant, and the quinuclidine model catalyst. Due to the
incorporation of the catalyst, a commonly occurring,
complicated scenario is covered where the accurate modeling
of the noncovalent TS terner is hindered by considerable BSSE
and the simultaneous formation or breaking of six covalent
bonds.
The largest systems of the three reactions, respectively,

include 657, 780, and 1041 AOs in the cc-pVDZ-F12 basis set
(see SI for all basis set dimensions), which would reach the

Table 9. Speedups for FNO-CCSD(F12*)(T+) Calculations
against Canonical CCSD(F12*)(T+) for 16 Molecules of
the AW Test Set

Basis set

cc-pVDZ-F12 cc-pVTZ-F12 cc-pVQZ-F12

F12-dependent intermediates
Minimum 3.1 2.4 1.8
Average 3.6 2.6 2.1
Maximum 4.5 2.9 2.3
CC iterations + perturbative triples
Minimum 7.3 5.2 2.6
Average 9.1 6.0 3.6
Maximum 11.4 7.3 4.1

Figure 1. Palladium catalyzed C−H bond activation leading to the 2-acetaminobenzophenon product of 31 atoms.97
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bottlenecks of frequently employed CCSD(T) programs
storing the four-center integral list of multiple terabytes.
Using our integral-direct code, we can still compute the
CCSD(F12*)(T+)/cc-pVDZ-F12 references without approx-
imations. Going one step further to the cc-pVTZ-F12 basis set,
the 31-, 40-, and 53-atom species involve 1188, 1420, and 1882
AOs, respectively. At this scale, the largest reference
computation would require extreme computational cost, so
here, only the FNO-CCSD(F12*)(T+)/cc-pVTZ-F12 calcu-
lations are routinely affordable.
Considering the efficiency gain from our approximations

first, the compression rates for the various MO and auxiliary
basis sets are found quite homogeneous for the ABP, OO, TS1,
and the halocyclization TS structures (see SI). Namely, the
FNO, NAF(F12), NAF(CC), and NAB compressions are
about 61%, 66%, 20%, and 79% with cc-pVDZ-F12, and 75%,
76%, 30%, and 88% with cc-pVTZ-F12, respectively. The
corresponding combined FNO-NAF-NAB error in the CCSD-
(F12*)(T+)/cc-pVDZ-F12 correlation energies are only
0.03%−0.07% (see SI). The corresponding reaction energies
and barrier heights are collected in Table 10. First, the
accuracy of the cc-pVDZ-F12 energy differences is out-
standing, the FNO error is 0.1 kcal/mol or lower for the
ABP and OO reactions and the TS1 barrier. Additionally, the
0.6 kcal/mol (2.5 kJ/mol) deviation for the largest
halocyclization barrier is well within both chemical accuracy
and the MAX error of 3.8 kJ/mol reported for the AW set
above in Table 8.

Regarding the level of basis set convergence, our CCSD(T)/
def2-(T,Q)ZVPPD ABP reaction energy of −73.50 kcal/mol
compares excellently to the −73.65 and −73.25 kcal/mol
results obtained with FNO-CCSD(F12*)(T+) and the cc-
pVDZ-F12 and cc-pVTZ-F12 basis sets, respectively. As noted
above, the CCSD(T)/def2-TZVPPD results for the OO and
TS1 reaction energy and barrier are still affected by a notable
BSSE, namely, more than 2 kcal/mol deviation is found when
the CCSD(T)/def2-TZVPPD results are compared to those
obtained with CCSD(F12*)(T+). On the other hand, the
0.02−0.04 kcal/mol FNO error with the cc-pVDZ-F12 basis
set and the sub-0.2 kcal/mol deviation of the cc-pVDZ-F12
and cc-pVTZ-F12 results for OO and TS1 indicate excellent
convergence in terms of both the FNO approximation and the
basis set size used for CCSD(F12*)(T+). Finally, a somewhat
higher difference of 0.5 kcal/mol found for the halocyclization
barrier between the cc-pVDZ-F12 and cc-pVTZ-F12 level
FNO-CCSD(F12*)(T+), which is still satisfactory considering
the size and complexity of the system.
For these cases, our approximations do not affect the

accuracy of FNO-CCSD(F12*)(T+) compared to the level of
the basis set convergence, and probably in such cases, it is
worthwhile experimenting with the relaxation of the tight FNO
and other thresholds used here depending on the target
accuracy. Additionally, at least for these three cases, even the
FNO-CCSD(F12*)(T+)/cc-pVDZ-F12 results are found
within 0.2−0.5 kcal/mol of the best available, presumably

Figure 2. Transition state (TS1) and an intermediate (OO) of 40 atoms formed in a model organocatalytic Michael-addition reaction.98

Figure 3. Transition state of a halocyclization reaction containing 53 atoms.99,100

Table 10. Comparison of Reaction Energies and Barrier Heights (in kcal/mol) with and without FNO Approximations as well
as with and without Explicit Correlation

CCSD(T) CCSD(F12*)(T+)

Reaction Approximation def2-XZVPPDa cc-pVDZ-F12 cc-pVTZ-F12

ABP none −73.82b −73.76
FNOc −73.82 −73.65 −73.25

OO none −23.75 −21.35
FNOc −23.66 −21.33 −21.52

TS1 none 4.89 7.38
FNOc 5.01 7.42 7.59

Haloc. TS none 9.15
FNO 9.78 9.30

adef2-QZVPPD for ABP and def2-TZVPPD for OO and TS1. bThe def2-(T,Q)ZVPPD CBS extrapolated value is −73.50 kcal/mol. cTighter FNO
threshold of 10−5 is used for FNO-CCSD(T).18
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converged results, which could be a satisfactory level of
accuracy for most chemical applications.
Finally, let us analyze the wall times corresponding to the

above conventional and FNO-accelerated CCSD(F12*)(T+)
computations (see Table 11). Remarkably, the about 0.6-, 1.6-,
and 8.6-day long CCSD(F12*)(T+)/cc-pVDZ-F12 computa-
tions can be sped up by a consistent factor of about 5.
Consequently, the FNO-CCSD(F12*)(T+)/cc-pVDZ-F12
jobs were completed only within 2.5, 7.5, and 44 h on 28
cores. Considering the excellent accuracy found above, the
FNO-CCSD(F12*)(T+)/cc-pVDZ-F12 combination running
only a few days on a few dozen cores provides a routinely
affordable reference method on most computer hardware up to
at least 50 atoms. Compared to the 68-h (224 cores)
performance of DF-CCSD(T)/def2-QZVPPD for the ABP
molecule, the 2.5-h runtime (28 cores) of FNO-CCSD(F12*)-
(T+)/cc-pVDZ-F12 represents a drastic improvement of 2
orders of magnitude at practically the same level of basis set
convergence. Similarly, the considerably less converged DF-
CCSD(T)/def2-TZVPPD results took 32 h (112 cores) for
the OO and TS1 systems, which is an order of magnitude
more expensive than the present FNO-CCSD(F12*)(T+)/cc-
pVDZ-F12 jobs taking only 7.5 h (28 cores). Compared to
their cc-pVDZ-F12 counterparts, the 31-, 40-, and 53-atom
FNO-CCSD(F12*)(T+)/cc-pVTZ-F12 computations are
about a factor of 10−16 times more demanding, taking
about 1.6, 3.8, and 19.8 days of wall time (with 28, 56, and 84
cores, respectively). Thus, the combined FNO-NAF-NAB
methodology also brings down the costs of CCSD(F12*)(T
+)/cc-pVTZ-F12 level computations to a routinely affordable,
few-day compute time for at least up to 40 atoms. Somewhat
larger 50+ atom computations are still feasible using more
cores with larger CPU time investments.
The minimal memory and disk space requirements for the

most demanding steps of the CCSD(F12*)(T+) calculations
are collected in the SI for the largest computations. These
expressions are evaluated according to the storage requirement
of our codes detailed in ref 57, while in practice, at least about
twice as much memory was allocated to decrease the amount
of repeated integral evaluations in our integral-direct
algorithms. Compared to the molecule sizes of 31−53 atoms,
we find the about 5−25 GB and 44−203 GB minimal memory
requirements with the cc-pVDZ-F12 and cc-pVTZ-F12 basis
sets, respectively, highly accessible. The approximately 4−7
times as much disk requirement needed mostly for the storage
of the cluster amplitudes and error vectors is similarly
accessible.

4. CONCLUSIONS
Several possibilities have been explored for the reduction of the
computational expenses of explicitly correlated CCSD(T)
methods. The FNO and NAF techniques, which were
previously employed for conventional CCSD(T), have been
adapted to explicitly correlated CCSD(T) to decrease the size
of the virtual MO and density fitting bases, respectively. In
addition, a new approximation, termed the NAB approach, has
been proposed to reduce the size of the complementary
auxiliary basis. Our results show that the FNO approach is as
efficient as for conventional CCSD(T) and contributes to the
largest extent to the speedups observed. The NAF approx-
imation is extremely advantageous for reducing the size of the
auxiliary basis required for the fitting of Coulomb integrals
during the CC calculations. It is less efficient for the calculation
of the F12-dependent constant terms, where other types of
integrals are also approximated by DF. The NAB scheme only
moderately reduces the complementary basis, but it is
anticipated that this approximation will be rather useful for
explicitly correlated local correlation models, where the
treatment of the corresponding three-center integrals is a
bottleneck. The efficiency of the combined FNO-NAF-NAB
approach decreases with increasing basis set size, but 3-fold
speedups can be expected even with quadruple-ζ bases. At the
same time, the errors of energy differences with respect to the
corresponding CBS-limit values are virtually not changed. Our
results also demonstrate that the combined cost-reduction
approach considerably extends the reach of explicitly correlated
CCSD(T). Namely, the basis set limit of CCSD(T) can now
be routinely approached well within sub-kcal/mol accuracy for
molecules of up to 50 atoms with widely affordable, moderate
computational resources and few-day computation times.
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Table 11. Wall Times (in Minutes) Separately for the Construction of the F12-Dependent Intermediates and the Combined
CCSD(F12*) Iterations and (T+) Correction Steps with and without FNO Approximationsa

CCSD(F12*)(T+) FNO-CCSD(F12*)(T+)

Species Atoms Basis set AOs F12 CC F12 CC Speedup

ABP 31 cc-pVDZ-F12b 657 66 728 25 123 5.4
cc-pVTZ-F12b 1188 - - 194 2177 -

OO and TS1 40 cc-pVDZ-F12b 780 125 2110 55 395 5.0
cc-pVTZ-F12c 1420 - - 541 4864 -

Haloc. TS 53 cc-pVDZ-F12b 1041 435 11879 199 2485 4.6
cc-pVTZ-F12d 1882 - - 1381 27173 -

aThe last column reports the overall speedups gained via the FNO approximations. b28 cores. c56 cores. d28 cores for the F12 intermediates, 84
cores for CCSD(T).
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Hungary; MTA-BME Lendület Quantum Chemistry
Research Group, H-1111 Budapest, Hungary

Péter R. Nagy − Department of Physical Chemistry and
Materials Science, Faculty of Chemical Technology and
Biotechnology, Budapest University of Technology and
Economics, H-1111 Budapest, Hungary; ELKH-BME
Quantum Chemistry Research Group, H-1111 Budapest,
Hungary; MTA-BME Lendület Quantum Chemistry
Research Group, H-1111 Budapest, Hungary; orcid.org/
0000-0001-6692-0879

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.2c01031

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors are grateful for the financial support from the
National Research, Development, and Innovation Office
(NKFIH, Grant No. KKP126451 and FK142489). The
research reported in this paper is part of project BME-EGA-
02, implemented with the support provided by the Ministry of
Innovation and Technology of Hungary from the National
Research, Development and Innovation Fund, financed under
the TKP2021 funding scheme. R.A.H. acknowledges the
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