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Abstract

Mixtures of filaments and molecular motors form active materials with diverse dynamical 

behaviors that vary based on their constituents’ molecular properties. To develop a multiscale of 

these materials, we map the nonequilibrium phase diagram of microtubules and tip-accumulating 

kinesin-4 molecular motors. We find that kinesin-4 can drive either global contractions or 

turbulentlike extensile dynamics, depending on the concentrations of both microtubules and a 

bundling agent. We also observe a range of spatially heterogeneous nonequilibrium phases, 

including finite-sized radial asters, 1D wormlike chains, extended 2D bilayers, and system-

spanning 3D active foams. Finally, we describe intricate kinetic pathways that yield microphase 

separated structures and arise from the inherent frustration between the orientational order of 

filamentous microtubules and the positional order of tip-accumulating molecular motors. Our 

work reveals a range of novel active states. It also shows that the form of active stresses is not 
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solely dictated by the properties of individual motors and filaments, but is also contingent on the 

constituent concentrations and spatial arrangement of motors on the filaments.
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I. INTRODUCTION

Active matter, the class of materials composed of motile energy-consuming units, exhibits 

various nonequilibrium dynamical phases [1–6]. For instance, active Brownian particles 

form dense clusters that share intriguing similarities with conventional gas-liquid phase 

coexistence, despite purely repulsive interactions [7–10]. Active matter also exhibits distinct 

dynamical phases with no equilibrium analogs, such as percolating networks that undergo 

global contractions and turbulentlike flows observed in extensile cytoskeletal filaments or 

microscopic swimmers [11–16]. Theoretical tools that predict such macroscopic dynamics 

from microscopic details are still under development [17–21]. Consequently, there is a lack 

of knowledge about the landscape of the possible dynamic phases that can arise in active 

matter systems, and our ability to engineer large-scale dynamics by controlling the behavior 

of microscopic constituents is in its infancy [22]. One way to address this critical knowledge 

gap is through experiments that measure detailed nonequilibrium phase diagrams of systems 

with varied microscopic dynamics.

Motivated by these considerations, we study the self-organization of microtubule filaments 

driven by tip-accumulating kinesin-4 molecular motors. We measure a nonequilibrium phase 

diagram, finding not only previously described contracting gels and extensile fluids, but also 

a range of novel structures, which include localized 1D micellelike asters, extended 2D flat 

bilayers, monolayer covered condensates, and 3D bilayer-based foamlike networks. These 

structures are different from previously studied forms of active matter due to the importance 

of both positional and orientational order. They are reminiscent of the diverse microphase-

separated equilibrium phases that self-assemble from chemically heterogeneous amphiphilic 

molecules [23,24]. However, unlike equilibrium amphiphilic self-assembly, which is driven 

by the chemical immiscibility of different segments [25], the formation and continuous 

rearrangement of kinesin-4 and microtubule structures are driven by energy-consuming 

molecular motors. We collectively name these phenomena active microphase separation.

The dimeric kinesin-4 molecular motors used in this study consume energy from ATP 

hydrolysis to step toward microtubule plus ends, where they accumulate [26–28]. Kinesin-4 

is associated with the regulation of the central spindle length during cytokinesis and has 

been observed at the center of microtubule bilayers formed from Xenopus egg extracts 

[29,30]. Kinesin localization results in the formation of segmented microtubules consisting 

of a motor-rich segment at the plus end and an adjoining motor-poor segment. Thus, 

the unique properties of kinesin-4 motors yield a reconfigurable building block in which 

the motor’s microscopic dynamics encodes the filament spatial heterogeneity, unlike 

the permanently encoded chemical structure of conventional amphiphiles. Microscopic 
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parameters such as the microtubule length and the kinesin-4 concentration determine the size 

of the motor-rich domain [28,31]. The plus-end segment can slide along other microtubules 

to their plus ends, but the mechanism of this motion is not well understood [28,31].

II. RESULTS

A. Active asters: Asters self-organize and reconfigure

We first study the organization of a low concentration of stabilized microtubules by 

kinesin-4 motors in a thin parallelepiped chamber (see the Appendix). Immediately after 

mixing, we observe microtubules joined by their ends [Fig. 1(a), 0 min]. Within the first 

approximately 10 min, collections of microtubules continue to merge with each other, while 

labeled kinesin-4 clusters become visible at locations where filaments join [Fig. 1(a), 6–12 

min]. Subsequently, the nascent kinesin clusters merge with each other, forming increasingly 

better-defined radial structures [Fig. 1(a), 18–24 min]. The intensity of the motor-rich 

clusters located at the aster core increases, indicating a continual accumulation of motors. 

Within 30 min, the majority of microtubules condense into radial star-shaped asters with 

well-defined kinesin-4 cores at their centers [Fig. 1(a), 30 min].

To understand the aster structure, we measure the density profile of radially symmetric asters 

from 3D confocal images [Fig. 1(b)]. The kinesin core has a radius of approximately 1 μm, 

while the microtubule profile spans approximately 10 μm radially outward. We hypothesize 

that microtubules are anchored to the aster core by their tips. To test this proposition, 

we model the aster structure by convolving the measured microtubule length distribution 

[Fig. 1(c)] with the intensity profile of the kinesin core (Supplemental Material [32]). 

This convolution yields a radially averaged microtubule profile that closely matches the 

experiments [Fig. 1(b), dashed line], which is consistent with our hypothesis.

After their formation, asters continue to evolve by merging with each other and undergoing 

internal rearrangements [Fig. 1(d)]. Over time, this yields elongated wormlike structures 

[Fig. 1(e), Video S1]. To characterize such dynamics, we measure the mean three-

dimensional moments of the kinesin-rich aster cores. The average ratio between the 

major and minor moments increases twofold, while the mean volume of asters remains 

approximately constant [Figs. 1(f) and 1(g)].

B. Contracting gel: Globally contracting networks generate bilayer structures

By increasing tubulin concentration above 1 μM, we observe the emergence of new 

dynamics. Instead of forming locally condensed asters, the system globally contracts into 

a single structure [Fig. 2(a), Video S2]. Material density is highest at the boundaries of 

the contracting network [Fig. 2(b)], similar to dynein-induced contractions studied in cell 

extracts and purified systems [16,38]. We track the contracting network width W(t) over 

time t. The normalized width W n(t) = W (t)/W (0) is described by an exponential function:

W n(t) ≈ W n
∞ + e − t − t0 /τ 1 − W n

∞ , (1)
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where t0 is a time offset, W n
∞ is the final normalized width, and τ is the contraction 

timescale [Fig. 2(c)]. τ increases with increasing kinesin concentration [Fig. 2(c)] and 

decreases with increasing initial tubulin concentration (Fig. S1).

Examination of the final contracted state reveals a well-defined bilayer structure in which 

the kinesin motors form an extended 2D sheet, with microtubules protruding from both sides 

of the sheet, pointing along the surface normal [Figs. 2(d) and 2(e)]. In analogy to asters, we 

hypothesize that microtubules are anchored to the 2D kinesin sheet by their tips. We model 

the bilayer structure by convolving the measured length distribution of microtubules with the 

kinesin intensity profile along the surface normal (Supplemental Material [32]). The model 

of the bilayer structure closely matches the experimentally measured density profile [Fig. 

2(f)]. Thus, our analysis suggests that microtubules are connected to the high-density kinesin 

layer by their plus ends, with their minus ends pointing outward. How an initially disordered 

contracting network transforms into a late-stage bilayer structure remains to be studied.

We show that increasing the microtubule concentration induces a transition from local 

asters to large-scale bilayers. To investigate the importance of initial conditions, we test if 

increasing the concentration of fully formed asters leads to a similar transition. We prepare 

a sample with a low filament concentration in a tall sample chamber (250 μm), which leads 

to the formation of asters throughout the volume. Once formed, large asters sediment into a 

dense, approximately 50-μm-thick layer, which has an average tubulin density above 1 μM 

[Figs. 3(b)–3(d)]. Uniformly dispersed samples prepared at such concentrations contract into 

bilayers. However, the sedimented asters do not contract into a single structure. Instead, they 

form a dense, continuously rearranging network [Fig. 3(e), Video S3]. The lack of global 

contraction demonstrates that the form of the long-term steady-state structures depends not 

only on the constituents local concentration, but also on the sample history. Intriguingly, in 

contrast to microtubules, a significant fraction of the kinesin does not incorporate into the 

asters.

C. Contracting gel: Contractions yield nematic alignment and surface roughening

Samples prepared with even higher tubulin concentrations (10 μM) also undergo global 

contractions but exhibit a distinct kinetic pathway and a different final structure from the 

above-described bilayers. The sample evolution proceeds in two stages: an initial global 

contraction followed by morphological surface roughening (Video S4). In the first stage, the 

initially isotropic network develops nematic order while contracting [Figs. 4(a), S2, and S3]. 

We define θ as the local orientation of microtubule bundles in the structure’s interior and θ
as the average bundle orientation [Fig. 4(b), Supplemental Material [32] ]. The scalar order 

parameter S = cos(2[θ − θ])  indicates the degree of nematic ordering, with 0 representing 

isotropic structure and 1 representing perfect alignment (Supplemental Material [32]). As 

the network contracts, its volume V decreases monotonically, while the order parameter S of 

the enclosed microtubules increases [Fig. 4(c)].

After approximately 120 min, the heretofore increasing nematic order parameter S starts 

decreasing sharply, signaling the onset of the second stage [Fig. 4(c)]. Simultaneously, the 

network surface area A, which had previously fallen by a factor of 2, begins to increase 
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[Fig. 4(d)]. This transition is concomitant with morphological changes, in which the smooth 

interface of the contracting network starts roughening. Surface roughening is accompanied 

by the formation of a dense monolayer consisting of a kinesin sheet with outwardly 

pointing microtubules, which envelopes the contracting network [Fig. 4(e)]. Over time, the 

roughening surface develops invaginations that rearrange into hemispherical cavities with 

radii of approximately 25–50 μm [Figs. 4(e) and 4(f)]. Microtubules protruding from the 

surfaces of the hemispherical cavities reach the cavities’ center, thus creating inverted asters 

with a sheet of kinesin half-enveloping radially splayed microtubules [Fig. 4(g)]. While 

forming hemispherical cavities, the active dynamics of these samples cease, possibly due to 

the exhaustion of PEP in the ATP regeneration system.

We reconstruct the network 3D structure using a morphological snake level set algorithm 

[Figs. 5(a) and 5(b), Supplemental Material [32]] [39–41]. The surface and cross-sectional 

views show an initial rounding of the network cross section, followed by a subsequent 

roughening [Figs. 5(c), S4, and S5]. Numerical representation of the contracting network 

allows us to quantify the distribution of the cytoskeletal material both on the surface and 

within the interior of the contracting network. During the second stage, while the density 

of the interior protein remains nearly constant [Fig. 5(d)], the density of kinesin-4 and 

microtubules within 5 μm of the surface increase threefold [Fig. 5(e)].

To understand whether the protein-dense shell arises simply from geometric deformation 

of the surface or by drawing material from the bulk, we quantify the kinematics of 

the partitioning between the dense network surface and its contracting interior. In the 

roughening stage, the surface area A increases [Fig. 4(d)]. In the absence of any material 

flux between the surface and the interior, the areal density of surface-bound microtubules 

ρS decreases proportionally to the surface area growth: A∂t ρS = − ρS ∂tA (Supplemental 

Material [32]). We find that these two terms are, in fact, far from equal and opposite [Fig. 

5(f)], suggesting that there is substantial flux from the interior to the surface. Meanwhile, 

the sum total of all microtubule fluorescence is constant. The implied mass conservation is 

described by

A∂t ρS + ρS ∂tA = ΦV S, (2)

where ΦV S is the flux of material from the interior to the surface. We then independently 

measure the flux of microtubules leaving the interior of the contracting network:

ΦV S = − V ∂t ρV − ρV ∂tV , (3)

Where ρV  is the average volumetric density of microtubules and V is the volume of 

the interior, and find that it quantitatively accounts for the increasing density of the surface-

bound microtubules A∂t ρS  [Fig.5(f)]. Our analysis reveals that the density change due to 

surface area increase ρS ∂tA is small compared to the mass transfer due to the flux from the 

interior to the surface ΦV S. The mechanism that drives the flux of microtubule transport 

from the interior to the surface remains unknown.
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To quantify the roughening transition, we measure the spatial correlations of the surface 

normals (Fig. S9). A normal vector n(r, t) describes the network at each surface point r at 

time t (Supplemental Material [32]). The averaged correlation between all normal vectors, 

separated by a geodesic of length Λ, is given by

C(Λ, t) = n(r, t) ⋅ n(r + Λ, t)
n(r, t) ⋅ n(r, t) , (4)

where angular brackets indicate a spatial average over all initial points and all geodesic paths 

of length Λ. At the beginning of the roughening stage, the network has an extended flat 

shape which reflects the chamber geometry. When restricted to either the top or bottom of 

the surface, pairs of normal vectors n point in similar directions even at large distances. 

Consequently, C(Λ, t) remains close to unity for all values of Λ. As the surface roughens 

with time, the correlation between surface normals n decreases. C(Λ, t) develops a plateau 

at large distances, where the plateau magnitude decreases with time [Fig. 5(g)]. At smaller 

length scales, ranging from 1 to 30 μm, C(Λ, t) exhibits exponential decay. The rate of 

the exponential increases sixfold from the beginning to the end of the roughening process. 

The long-range normal-normal correlation decays from C(40 μm;100 min) ≈0.85 to C(40 

μm;220 min) ≈0.2.

D. Active foam: Splaylike deformations, self-tearing, and roughening yields an active 
foam

At the highest tubulin concentrations studied (40 μM), we observe a multistage kinetic 

pathway which has both similarities and differences with the intermediate regime (Video 

S5). The microtubules have an initial orientational order even before the onset of 

contractions. Such a state exhibits subtle bend deformations, which are a signature of 

extensile stresses (Fig. S11) [42]. However, the buckling dynamics quickly transition into 

more dramatic splaylike deformations, the onset of which breaks up the continuous network 

by generating sharp density variations between filament-rich and filament-poor regions [Fig. 

6(a), 80 min]. These changes in orientational order and local density fluctuations yield 

finite-sized condensates that are well separated from a background fluid mostly devoid 

of protein [Fig. 6(a), 140 min]. A high-density monolayer of kinesin and microtubules 

envelopes the condensate surface, with microtubules aligned along the surface normal. 

The monolayer-covered condensates are similar to those observed at lower filament 

concentrations. The main difference is that active stresses rupture the network, creating 

finite-sized structures. In contrast, lower microtubule concentrations generate only one 

contracting network, which does not break apart.

After their formation, condensates exhibit surface roughening. Using the previously 

described algorithm, we numerically generate surfaces describing the evolution of the 

condensate morphology [Fig. 6(b)]. The condensate’s volume decreases continuously, while 

its surface area A remains constant until approximately 160 min, after which A increases 

sharply [Figs. 6(c), S6, and S7]. As roughening continues, the mean curvature increases, and 

the normal-normal correlation C(r) decreases [Figs. 6(d) and S8]. High-resolution images 

reveal the macroscopic mechanism driving the roughening transition. Crumpling monolayers 
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encounter each other, generating a zippering transition of the kinesin decorated surfaces, 

which locally produces a well-defined bilayer [Fig. 6(e)].

On long times, the surface roughening transition generates an active foam, a distinct active 

state consisting of a 3D network of bilayers that connect through junctions [Figs. 7(a) and 

S11]. As in conventional foam, the interconnected bilayer surfaces form cells [Figs. 7(b) and 

S12]. Unlike conventional foams, cells in an active foam have elongated or even winding 

shapes, while the constituent bilayers have free-standing edges [Figs. 7(c) and S12(b)]. 

The borders of the active foam compartments consist of microtubule/kinesin-4 bilayers 

[Figs. 7(b) and 7(c)]. The active foam exhibits topological rearrangements. Individual cells 

deform, while bilayer walls move to change the local topology [Fig.7(d), Video S6]. Thus, 

the surface roughening transition is the first stage of a unique morphological transition in 

which a continuous and smooth space-filling condensate transforms into perforated foamlike 

structures. The development of an active foam and its rearrangements remains an important 

topic for future investigations.

E. Extensile fluid: A bundling-induced transition from contraction to extensile gels

So far, we described kinesin-4-driven microphase separation and associated local and 

global contractions which occur with increasing microtubule concentrations. In contrast, 

conventional kinesin-1 generates extensile stresses in the presence of a microtubule bundling 

agent [13,43]. To investigate the capability of kinesin-4 motors to generate extensile stresses, 

we add a nonadsorbing polymer, polyethylene glycol (PEG), which bundles microtubules 

while still allowing for their relative motor-driven sliding [44]. At low microtubule 

concentrations (4 μM), global contractions occur even in the presence of 0.5% w/w PEG 

[Fig. 8(a)]. Beyond a critical filament concentration (10 μM tubulin), the material exhibits 

initial self-generated bendlike patterns which are suggestive of extensile stresses (Video S7) 

[1,45]. On longer timescales, these materials do not contract but rather yield a continuously 

rearranging network, similar to those previously studied [Fig. 8(a)] [46,47].

The contractile to extensile transition is quantified by plotting the network width as a 

function of time W(t) [Fig. 8(b)]. At low filament concentrations, W(t) monotonically 

decreases and then plateaus, characteristic of contraction. Further increasing microtubule 

concentration results in a network that spans the entire chamber while continuously 

rearranging. Therefore, W(t) does not change over time. Using particle image velocimetry, 

we find that the mean microtubule network speed increases with increasing kinesin 

concentration. In contrast to kinesin-1 studies, increasing kinesin-4 concentration increases 

the velocity-velocity correlation length scale (Fig. S10) [47].

We also observe that extensile gels could transform into globally contracted bilayers [Fig. 

8(c), Video S8]. Upon preparation, an active mixture (0.1%−0.3% w/w PEG, 80–90 μM 

tubulin) exhibits a bend instability and fluidizes. However, on longer timescales, distinct 

segments of kinesin-4 appear. As these segments become prominent, the motor-driven 

dynamics slows down. This dynamical transition is concomitant with the appearance of local 

bilayerlike arrangements. In these bilayers, kinesin-4 forms a central line with microtubules 

pointing outward on both sides.
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F. A nonequilibrium phase diagram of kinesin-4 and microtubules

A one-dimensional sweep of tubulin concentration in the absence of PEG yields active 

microphase separated phases, while adding PEG produces an active extensile fluid. To 

further characterize the system, we map the nonequilibrium phase diagram by creating 

samples between 50 and 300 nM kinesin-4, 0.2–180 µm tubulin, and 0%–2% PEG [Figs. 

9(d) and 9(e)]. At the lowest microtubule concentrations, the active material contracts 

into localized asters over a wide range of PEG and kinesin-4 concentrations. Increasing 

microtubule concentration generates global contractions, again over a wide range of PEG 

and kinesin-4 concentrations. At the highest microtubule concentrations, with little or no 

PEG, we observe active foams. Adding PEG in this regime transforms active foams into 

extensile turbulentlike gels similar to those seen in kinesin-1-driven systems.

Presumably, introducing PEG suppresses the formation of asters and bilayer foams while 

promoting the formation of bundles that generate extensile dynamics [Fig. 9(d)]. Kinesin-4 

concentration determines the speed of the autonomous dynamics but does not substantially 

affect the boundaries between the extensile and contracting phases [Fig. 9(e), Supplemental 

Material [32]]. The long-term nonequilibrium phase behavior described here depends on the 

initial and boundary conditions and the sample history (Fig. S13).

III. DISCUSSION

In cytoskeletal active matter, extensile active stresses drive continuous turbulentlike flows, 

while isotropic contracting active stresses generate local or global collapse [13,16,22,38,48–

52]. We study the self-organization of microtubules and kinesin-4, a tip-accumulating 

molecular motor. High filament concentrations and bundling agents generate extensile 

turbulent flows. Reducing either the microtubule or PEG concentrations results in 

contraction. These observations demonstrate that the form of the active stress is not solely 

dictated by the molecular properties of cytoskeletal components but is also dependent on 

their concentration. This insight is valuable for relating the mesoscopic active stresses to 

the structure, interactions, and dynamics of the microscopic constituents [20,53–57]. In the 

contracting regime, we observe a myriad of active microphase separated structures. The 

lowest filament concentration sample yields isolated asters (Fig. 1). With increasing filament 

concentrations, asters transform into 1D wormlike structures, extended 2D bilayers, and 

foamlike 3D material (Figs. 2 and 7). Taken together, our findings have several implications 

for our understanding of cytoskeletal active matter.

Asterlike structures are observed in mixtures of microtubules and various molecular 

motors [2,16,58–61]. Theoretical models of such asters are sometimes couched in the 

language of topological defects in liquid crystals. However, the asters studied here 

are well-isolated structures in a filament-free background fluid; thus, they are more 

reminiscent of equilibrium amphiphile-based micelles. Instead of hydrophobic interactions, 

their condensation is driven by tip-accumulating molecular motors. With increasing 

concentration, amphiphilic systems form 1D wormlike micelles, 2D membranes, and space-

filling 3D lamellar, hexagonal, or disordered gyroid phases [25]. We observe active analogs 

of these higher-order phases. Once the microphase separation is complete, motors continue 

to reconfigure the material, as we observe for both wormlike structures and active foams 
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(Videos S1, S3, and S6). Kinesin-4 drives these large-scale events by generating active 

stresses that are likely distinct from those postulated for a suspension of aligned active 

filaments.

Molecular motors can mediate different filament interactions. For example, they can drive 

inter-filament sliding within an aligned bundle, or they can cluster tips of isotropically 

arranged filaments [16,28,55]. Clusters of kinesin-1 motors are thought to primarily induce 

filament sliding [55]. However, observation of asters in such systems suggests that they 

retain a small degree of end binding [59]. In comparison, kinesin-4 has an enhanced 

end-binding property, which has been characterized on the single-filament level [28,31]. 

We develop a model of aster structure that predicts the microtubule profile from a given 

kinesin profile, but it does not explain the size of the kinesin core. The latter is likely related 

to the size of the kinesin-4 cap. More experimentation is needed to elucidate this point, 

as single-filament experiments suggest that the cap size depends on protein concentrations 

and microtubule length [31]. The motility of the kinesin themselves might also determine 

the kinesin-4 cap length. Notably, theoretical models accounting for asymmetric motor 

distributions or tip-anchoring predict structures that are qualitatively similar to the active 

asters and foams [62,63]. In general, the balance of spatial filament decoration and 

interfilament sliding by molecular motors might determine the range of possible phases 

of an active cytoskeletal material and is a promising avenue for further investigation.

Active microphase separation has relevance to biological systems. The self-organization 

of microtubules and molecular motors has been studied in Xenopus egg extracts [64,65]. 

Dynein drives aster assembly in Xenopus egg extracts, which globally contract at higher 

filament concentrations [38,66,67]. Such asters are used as models for spindle pole assembly 

[67]. Under other conditions, stabilized microtubules in Xenopus egg extracts assemble 

into structures reminiscent of the bilayers observed in the present work [30]. In these 

experiments, extended bilayers of taxol stabilized microtubules form, with their minus ends 

pointing away from the midplane. These bilayer structures serve as models for the spindle 

midzone, the array of microtubules that assembles between segregating chromosomes and 

drives the spindle elongation and chromosome separation [68–70]. Much prior work on 

spindle midzones focuses on factors that determine the extent of antiparallel overlap of 

the microtubule ends [28,71]. However, the reason why this narrow region of antiparallel 

overlap stays well aligned across the entire spindle width remains poorly understood. The 

similarity between the bilayers observed in the present work, those formed in Xenopus egg 

extracts, and the spindle midzone itself suggests that similar principles might govern the 

self-organization of all of these structures.

Besides revealing a range of active microphase states, our work also demonstrates rich 

kinetic pathways that lead to the formation of these phases. These pathways are influenced 

by the interplay between the tendency of rodlike filaments to align due to excluded 

volume interactions and the propensity of tip-adhering kinesin motors to drive microphase 

separation. We observe filament alignment at high microtubule concentrations, which 

either occurs initially during sample loading or develops over time in a contracting 

network (Figs. 4 and S11). Theory dictates that aligned active filaments are inherently 

unstable [42]. Specifically, extensile active stresses drive the bend instability as we 
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observe for the kinesin-4 system in the presence of bundling interactions (Fig. 8) [46,72]. 

Analogously, contractile systems exhibit splay instabilities, but these have not been studied 

experimentally.

At high microtubule concentrations, samples exhibit both aligned filaments and network 

contraction (Figs. 4 and 6). Thus, they are a good candidate for observing splay instability. 

Indeed, we observe splaylike deformations, but these are associated with self-tearing. This 

might be a consequence of the extended nature of microtubule filaments. In polymeric liquid 

crystals, such as microtubule-based nematics, splay deformations generate local variations 

in the filament concentration [73]. Thus, splay instabilities lead to sharp density gradients, 

which, in turn, could lead to self-tearing, which yields finite-sized condensates. Beyond this 

point, the system starts exhibiting structural rearrangements that are likely driven by the tip 

accumulation of molecular motors. In particular, the rapidly formed condensates become 

enveloped by a monolayer of aligned microtubules, which are anchored to a 2D sheet of 

kinesin motors. The subsequent surface roughening transition is related to the zippering 

of monolayers into bilayers (Fig. 6). It generates dramatic topological rearrangements 

that transform simple compact condensates into a perforated active foam. Active foams 

are composed of bilayers, which have both locally aligned filaments and tip-accumulated 

motors. Thus, they resolve the above-described constraints that govern the dynamics of 

kinesin-4 and microtubule systems.

In summary, we demonstrate that kinesin-4 motors self-organize microtubules into a 

myriad of hierarchical structures. At a single-filament level, kinesin-4 motors accumulate 

at microtubule tips to define a spatially heterogeneous elemental unit capable of higher-

order self-organization. This segmented structure results from a dynamical process, in 

contrast to amphiphilic systems, where the spatial heterogeneity of the basic building 

blocks is permanently programmed in the amphiphile molecular structure. Tip-decorated 

microtubules locally condense to generate higher-order radial asters. In turn, asters can 

merge to form extended bilayer sheets. At higher filament concentrations, the bilayer sheets 

form a tissuelike active foam that undergoes intriguing active dynamics and motor-driven 

topological rearrangements. Taken together, these results demonstrate a distinct category of 

active microphase separation. Relating these diverse large-scale behaviors to the molecular 

properties of the constituent kinesin motors and microtubules poses a significant theoretical 

challenge.
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Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: METHODS

1. Sample preparation

We study kinesin-4-driven dynamics by combining GFP-labeled kinesin with Alexa-647 

labeled stabilized microtubules in a buffered solution with an ATP regeneration system. The 

solution consisted of de-ionized (DI) water with 80 mM PIPES (piperazine-N, N′-bis), 5 

mM magnesium chloride, 1 mM egtazic acid, and 1.4 mM ATP (adenosine triphosphate, 

Sigma A2383). To prevent the ATP concentration from changing, we include an ATP 

regeneration system of 52 mM PEP (phosphoenolpyruvate, Alfa Aesar B20358) and 0.034% 

pyruvate kinase (PK/LDH, Sigma P-0294). To prevent photobleaching, we add 4.2 mM DTT 

(dithiothreitol, ACROS Organics 16568), 2.5 mg/mL glucose (Sigma G7528), 0.03 mg/mL 

catalase (Sigma C40), and 0.17 mg/mL glucose oxidase (Sigma G2133). This solution is 

adjusted to a pH of 6.8 with potassium hydroxide. When noted, experiments include 35 kDa 

PEG (polyethylene glycol).

The full-length human kinesin-4 clone Kif4A or fluorescent Kif4A-GFP are expressed in 

sf9 cells as described previously [27]. We purify tubulin from bovine brains according 

to a previously published protocol [74]. This tubulin is polymerized and stabilized into 

microtubules by mixing 60 uM tubulin with 3 mM of the nonhydrolyzable GTP analog 

GMPcPP (guanosine-5-[(α,β)-methyleno]triphosphate, Jena Biosciences NU-405), and a 

solution of 1 mM DTT, 80 mM PIPES, 2 mM magnesium chloride, and 1 mM egtazic acid 

in DI water adjusted to a pH of 6.8 with potassium hydroxide. 3% of tubulin monomers are 

labeled with a fluorescent dye, Alexa-Fluor 647 (Invitrogen, A-20006), by a succinimidyl 

ester linker according to a previously published protocol [75]. The solution is incubated 

in a water bath at 310 K for one hour and then left to cool to room temperature for 

6 h. Polymerized microtubules are flash-frozen in liquid and subsequently thawed before 

creating a sample.

While all active materials consist of GMPcPP polymerized microtubules, the concentrations 

refer to tubulin concentrations. A microtubule consists of a repeating lattice of 

approximately 13 tubulin monomers, and each ring of the lattice is 4 nm [76]. Thus, if 

the mean microtubule length is approximately 4.9 μm, each microtubule has roughly 16 000 

tubulin monomers.

2. Chamber preparation

Each experiment occurs in a chamber with dimensions of 1.5 mm × 0.1 mm × 18 mm unless 

noted otherwise. The chamber consists of a glass top and bottom, with parafilm spacers 

sealed with NOA 81 UV adhesive (Norland Products, 8101) at both ends. The glass is coated 

with a polyacrylamide brush to suppress protein adsorption onto the glass [77]. To bond 

parafilm to the glass, we warm the parafilm to 338 K and press it onto the glass with the 

rounded end of a microcentrifuge tube. This process leads to chambers that are 80–100 μm 

in height.
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3. Microtubule length distribution measurements

To measure microtubule length distributions, we flow dilute microtubules into an untreated 

glass chamber. Microtubules adsorbed onto the glass are imaged with a 100× objective with 

a 1.2 NA (numerical aperture) and an automated stage. The resulting dataset is segmented 

based on a simple threshold. Each segmented object is then fit to an ellipse. If the ellipse has 

a thin minor axis compared to its principal axis, then it is recorded as a microtubule with the 

principal axis as the length. This process discards overlapping or out-of-focus microtubules.

4. Microscopy

Fluorescence images are captured using a Nikon Ti2 base attached to an Andor Zyla using 

a 4× Nikon Plan Apo Lambda (NA 0.2) objective or a 10× Nikon Plan Fluor objective (NA 

0.3).

Confocal microscopy images are captured with a Crest X-Light V2 spinning disk system 

attached to a Nikon Ti2 base and a Hamamatsu ORCA-Flash4.0 V3. The objective used for 

the aster sedimentation data is a 40× Plan Fluor objective (NA 0.75). The objective used 

for all other data is a 40× Apo long working distance water immersion objective (NA 1.15). 

Zeiss Immersol W, an NA matched oil substitute, prevents imaging deterioration due to 

water evaporation during long acquisitions.
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FIG. 1. 
Active asters: Asters self-organize and reconfigure. (a) Kinesin-4 induces rapid assembly of 

asters. (b) The density profile of microtubules (gray) radially averaged from the z projection 

of an aster. Predicted structures Iideal (dotted black line) based on end-bound kinesin-4 

motors, given the measured density profile of kinesin-4 (blue). Bars are the standard error 

averaged over three similar radial asters. Inset: aster with approximate radial symmetry. (c) 

Microtubule polydispersity (gray bars) is described by a log-normal distribution (dashed 

black line, M = 1.4, S = 0.6, mean 4.9 μm, mode 2.8 μm). (d) Temporal rearrangement of an 

aster. (e) A large field of view shows fully formed asters. The dashed purple line highlights 

a wormlike structure. (f) The mean aster volume as a function of time. Open shapes indicate 

the aster formation regime. (g) The mean major/minor moment ratio of asters over time. 

Bars represent standard deviation. All images are z projections over 6.5 μm; the sample 

contains 200 nM kinesin-4 (blue) and 400 nM tubulin (black).
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FIG. 2. 
Contracting gel: Globally contracting networks generate bilayer structures. (a) Kinesin-4-

driven global contraction of labeled microtubules. (b) Microtubule and kinesin concentration 

as a function of the position along the chamber short axis reveals nonuniform density 

growth, with peaks at the sample edges. (c) The normalized width Wn(t) of a contracting 

network decays over time. Dashed lines are fits of Eq. (1). Inset: Contraction timescale 

τ decreases with kinesin concentration. Error bars indicate the standard error (n = 3). (d) 

The final structure of the contracted bilayer consists of a kinesin 2D sheet (blue) with 

microtubules (black) anchored to the surface and pointing along its normal. (e) x-z resliced 

at the shaded line. (f) Fluorescence intensity profile along the surface normal. The predicted 

microtubule fluorescence Iideal (dotted black line) agrees with the measured fluorescence. 

Bars indicate the standard error over 20 sections of 3 μm width.
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FIG. 3. 
Active asters: Initial conditions determine steady-state dynamics. (a) x-z plane images show 

the aster assembly and sedimentation. The arrow indicates gravity; x-y is the imaging plane. 

(b) Aster images in the x-y at two different heights at 500 min. (c),(d) Temporal evolution of 

the density z profiles of microtubules ρMT and kinesin ρK4 illustrate material sedimentation. 

(e) The average microtubule density (purple open circles) below the sedimentation height 

(black circles) as a function of time. The effective microtubule concentration is higher than 

what is used in Fig. 2, yet no global contraction occurs.

Lemma et al. Page 18

Phys Rev X. Author manuscript; available in PMC 2023 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 4. 
Contracting gel: Contractions yield nematic alignment and surface roughening. (a) z-

projected images demonstrate that decreasing network volume leads to increasing nematic 

alignment. (b) z projection of the microtubule nematic order. Hue indicates the nematic 

director indicated by the color wheel, while intensity indicates coherency (Supplemental 

Material [32]). (c) The microtubule nematic order parameter increases during contraction 

and then decreases during roughening. (d) The contracting network’s volume (solid purple 

line) decreases continuously. Its surface area (dashed black line) initially decreases but 

then increases. (e) A 10 μm z projection of the material after surface roughening generates 

spherical cavities. (f) A cropped 3D projection highlights the invaginated structure of the 

microtubule network. (g) x-y and z-y show a hemispherical cavity. The sample is composed 

of 10 μM tubulin (black) and 200 nM kinesin (blue).
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FIG. 5. 
Contracting gel: Surface roughening is accompanied by the formation of a surface-bound 

monolayer. (a) Time series of a surface of a contracting network. (b) x-y slices of data 

corresponding to cuts shown in the previous panel reveal the formation of a monolayer 

and invaginations at late times. (c) x-z slices show a contracting cross section until 

the roughening commences. (d) Tubulin and kinesin density within the interior of the 

contracting network is constant during the roughening phase. (e) Tubulin and kinesin 

density within 5 μm of the surface increases during the roughening phase. (f) The flux 

of microtubules from the interior to the surface ΦV S (black solid line), the microtubule 

surface density A∂tρs (blue dashed line), and the change in surface area ρs∂tA (purple short-

dashed line) as a function of time. The red long-dashed line indicates the sum of all three 

terms. (g) Normal-normal spatial correlations show faster decay as the material roughens. 

These correlations are calculated only on a bisected surface, to reduce the influence of the 

overall surface curvature. Inset: Exponential fits to the normal-normal correlation decay 

between 10 and 20 μm show correlation length decreases by 200 μm over 50 min. The 

sample consists of 10 μM tubulin (black) and 200 nM kinesin (blue).
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FIG. 6. 
Active foam: splaylike deformations, self-tearing, and roughening at the highest microtubule 

concentrations. (a) Maximum intensity z projections over 3 μm show a splaylike instability 

that generates density variation and self-tearing that yields condensates. (b) Evolution of 

a contracting condensate surface (left) x-y and x-z image cross sections (right). (c) The 

volume (solid blue curve) and surface area (black dashed curve) of a contracting condensate 

as a function of time. (d) The spatial correlation between surface normal vectors decay over 

time. Inset: Exponential fits to the normal-normal correlation decay between 5 and 20 μm 
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show correlation length decreases by 50 μm over 80 min. (e) Two surface-bound monolayers 

zippering into a bilayer. The sample contains 200 nM kinesin (blue) and 40 μM tubulin 

(black).
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FIG. 7. 
Active foam: Surface roughening yields an active foam. (a) Morphological change from 

monolayer envelopes to a percolated foam. (b) Ortho-slices show the complex 3D structure 

of the active foam. (c) Maximum intensity z projection over 10 μm illustrates distinct 

foam cells which can have free ends or open faces. (d) A foam cell undergoes topological 

rearrangements in an active foam. Samples are constituted from 200 nM kinesin (blue) and 

40 μM tubulin (black).
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FIG. 8. 
Extensile fluid: a bundling-induced transition from contraction to extensile gels. (a) The 

evolution of the shear-aligned microtubule network depends on filament concentrations. 

Samples have 0.5% PEG, 200 nM kinesin. (b) The average microtubule network width W(t), 
normalized by the initial width W(0), decreases over time, with lower microtubule densities 

contracting faster. The shaded region indicates the standard deviation from data taken at five 

nonoverlapping positions over the long axis of the chamber. (c) Extensile instability leads 

to the formation of a bilayer structure. This sample chamber is 30 μm thick; this sample 

contains 100 nM kinesin (blue), 80 μM tubulin (black), and 0.1% PEG.
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FIG. 9. 
A nonequilibrium phase diagram of kinesin-4 and microtubules. (a) Microscopic building 

blocks: Kinesin-4 (blue) attaches to a microtubule (gray), walks to the microtubule plus 

end, and accumulates at the plus end, creating a heterogeneous filament that can interact 

with other filaments by directed transport or via steric alignment induced by PEG. 

(b) Mesoscale organizational motifs include asters, layers, or bundles. (c) Hierarchically 

organized mesoscale building blocks yield macroscopic phases including dynamic asters, 

globally contracting gels, active bilayer foams, and fluidized extensile bundles. (d) Phase 

diagram at 200 nM kinesin as a function of tubulin and PEG concentration. (e) Phase 

diagram at 0.5% PEG (w/w) as a function of protein concentrations.
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