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1  |  INTRODUC TION

Obesity is a growing health problem that has reached critical levels 
in recent decades. Epidemiologic studies from 2016 indicate that 
13% of adults and 18% of children and adolescents under 19 years 
are obese worldwide,1 and it is estimated that obesity can affect 
1.12 billion persons by 2030.2 This condition is primarily caused by 
nutritional imbalance associated with the high consumption of diets 

rich in fat and sugars and a sedentary lifestyle. Several studies have 
shown that HFD intake leads to elevated levels of saturated FAs in 
plasma and contributes to various health problems that reduce life 
expectancy and quality due to the development of chronic diseases 
such as insulin resistance, type II diabetes, metabolic syndrome and 
cardiovascular disease.3–8 The HFD is characterized by a high con-
tent of saturated FA from animal fat, including myristate (C14:0), 
palmitate (C16:0), stearate (C18:0) and laurate (C12:0).9–11 Currently, 
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Abstract
Introduction: Saturated fatty acids (FAs) are the main component of high-fat diets 
(HFDs), and high consumption has been associated with the development of insu-
lin resistance, endoplasmic reticulum stress and mitochondrial dysfunction in neu-
ronal cells. In particular, the reduction in neuronal insulin signaling seems to underlie 
the development of cognitive impairments and has been considered a risk factor for 
Alzheimer's disease (AD).
Methods: This review summarized and critically analyzed the research that has im-
pacted the field of saturated FA metabolism in neurons.
Results: We reviewed the mechanisms for free FA transport from the systemic cir-
culation to the brain and how they impact neuronal metabolism. Finally, we focused 
on the molecular and the physiopathological consequences of brain exposure to the 
most abundant FA in the HFD, palmitic acid (PA).
Conclusion: Understanding the mechanisms that lead to metabolic alterations in 
neurons induced by saturated FAs could help to develop several strategies for the 
prevention and treatment of cognitive impairment associated with insulin resistance, 
metabolic syndrome, or type II diabetes.
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it is recognized that high intake of saturated fat causes metabolic 
alterations not only in the peripheral organs, but also in the cen-
tral nervous system (CNS). Although the mechanisms and signalling 
pathways affected in the brain by exposure to different concentra-
tions of saturated FAs are not completely known, there is evidence 
of changes in energy metabolism,12,13 reduced insulin sensitivi-
ty,14–16 increased ceramide production,17,18 neuroinflammation19 and 
reduced neuronal viability.20–23 Therefore, the chronic consumption 
of a HFD is considered a significant risk factor for cognitive decline, 
pathological brain aging and even AD.24–31

Due to the complex nature of FA effects on the brain, in this 
review, we describe the current knowledge of the mechanisms in-
volved in their transport from the circulation to the brain as well as 
the main metabolic routes activated in neurons, including evidence 
for neuronal β-oxidation. Finally, we highlight the major mechanisms 
by which exposure to high levels of saturated FA can lead to neuro-
nal dysfunction.

2  |  FAT T Y ACID UPTAKE IN THE BR AIN

Fatty acids are made up of a hydrocarbon chain with a terminal car-
boxyl group. They are classified as saturated when composed of sin-
gle aliphatic chain bonds, monounsaturated with one double bond, 
and polyunsaturated with two or more double bonds. According to 
the chain length, FAs are divided into short-chain FAs (2–4 carbon 
atoms), medium-chain FAs (6–12 carbon atoms), and long-chain FAs 
(14–18 carbon atoms).32–34 The physiological role of FAs depends on 
their length: short-chain FAs are immediately available as an energy 
source, medium-chain FAs can act as growth factors, and long-chain 
FAs can act as structural components of cellular membranes and en-
ergy stores. The high levels of circulating long-chain FA have been 
largely associated with atherogenic and thrombogenic diseases.35–37 
In circulation, saturated FA concentrations are significantly increased 
in diabetic patients (350 μmol/L) compared with normal subjects 
(230 μmol/L).38 Additionally, PA is also increased in the cerebrospinal 
fluid in obese patients with poor cognitive performance.39

FAs travel in circulation mostly bound to albumin (95%), ester-
ified into lipoproteins, and as unbound FAs (a very small propor-
tion).40 Several studies have shown that FAs are able to cross the 
blood–brain barrier (BBB) and enter the brain to be taken up by 
endothelial cells, glial cells and neurons.41 Some experiments have 
shown that radio-labelled FAs injected into the carotid artery of rats 
can be traced to neuronal cells,42 supporting the notion that plasma 
levels of FAs impact the type and concentration of lipid contents in 
the brain. How FAs cross the BBB and, in general, how they traverse 
the plasma membranes remains an open question that has generated 
two lines of evidence: one is that FAs can cross by simple diffusion, 
and the other proposes that they require a transport system me-
diated by specific proteins. It is recognized that both mechanisms 
can operate, but the protein-dependent mechanism seems to be the 
prominent one.43 A number of FA transporters have been identi-
fied, including the FA transporter protein, which is composed of six 

isoforms with high homology between species (FATPs 1–6),44–46 and 
the FA translocase CD36, which has a high affinity for long-chain 
FA transport and is also a receptor for lipoproteins.47,48 The main 
proteins of the FATP family are members 1–4, which are located at 
the membranes of endothelial cells at the BBB and in grey matter. 
The transport through these proteins is dependent on chain length 
and the presence of double bonds.46,47,49 Once in the brain, short- 
and medium-chain FAs enter the cell by a flip-flop mechanism, while 
long-chain FAs need FATPs to enter in a nonionized form. Similar to 
the BBB, neuronal FA uptake is specific and chain length-dependent 
transport. Once FAs are transported to the cells, they bind to mem-
brane or cytoplasmic FA binding proteins (FABPs) that help to orga-
nize them into specific intracellular domains for further utilization 
in different metabolic routes.50 For example, cytosolic fatty acid-
binding protein 3 (FABP3) is involved in arachidonic acid neuronal 
uptake but not in PA transport.51–53 CD36, now designated scaven-
ger receptor B2,54,55 has been found in endothelial, glial, and neu-
ronal cells not only at the cell membrane, but also in intracellular 
compartments. It is thought that CD36 participates in FA dissocia-
tion from albumin, and it has been placed in the context of various 
mechanisms related to physiological and pathological lipid metabo-
lism. In hypothalamic neurons, CD36 acts as part of a lipid-sensing 
mechanism for the control of food intake56 and participates in the 
neurovascular dysfunction associated with AD.57

3  |  ARE NEURONS ABLE TO METABOLIZE 
FAT T Y ACIDS TO PRODUCE ENERGY?

It is known that 20% of the total energy requirement in the adult brain 
is obtained from the oxidation of FA.58 It was also long believed that 
astrocytes are the only brain cells able to metabolize FA and produce 
14CO2 as an indicator of the β-oxidation process.59–64 However, it was 
reported that isolated neuronal mitochondria can oxidize palmitoyl 
carnitine in the presence of metabolic substrates.65 Neurons possess 
the necessary machinery for fatty acid β-oxidation, and they also ex-
press long-chain fatty acid acyl-CoA synthetase, carnitine palmitoyl-
transferase Ia and c (CPT1a and CPT1c), and mitochondrial uncoupling 
protein 2 (UCP2). In fact, the CPT1c form is highly expressed in neu-
rons.66,67 Although the function of CPT1c is not yet clear, metabolomic 
analysis has revealed that it could play an alternative role in neuronal 
oxidative metabolism.68–72 Interestingly, some studies have shown that 
neuronal deficiency of this enzyme is associated with neurodegenera-
tive diseases.68–72 Currently, it is proposed that neurons present low 
levels of β-oxidation due to the limited activity of their mitochondrial 
enzymes. Comparing neurons with other cells of the periphery, the 
subsequent β-oxidation enzymes have low activity. For example, the 
3-ketoacyl-coenzyme A thiolase has only 0.7% activity, acyl-CoA de-
hydrogenase 50%, and enoyl-CoA-dehydrogenase 19%. At the same 
time, the activity of the mitochondrial respiratory chain in neurons is 
lower than that in other brain cells, such as astrocytes. For this reason, 
ATP production from FAs is scarce in neurons, and when FAs must be 
oxidized in the mitochondria by a metabolic situation, this metabolic 
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route produces high ROS levels, making neurons susceptible to oxi-
dative damage.73–75 However, in some specific neurons, such as pho-
toreceptors in the retina, FA oxidation seems to be the major source 
of energy to satisfy high metabolic demands.76 It was also reported 
in cultured rat cortical neurons that the inhibition of fatty acid syn-
thase (FAS) leads to a decrease in the levels of ATP and activation of 
AMP-dependent kinase (AMPK) as well as CPT1; such effects result 
in increased fatty acid oxidation to restore ATP levels sufficient to 
sustain neuronal activity and survival.77 FAS catalyses the condensa-
tion of acetyl-CoA and malonyl-CoA to generate long-chain fatty acids 
and is highly expressed in neurons in different brain regions, including 
hypothalamic neurons that regulate feeding behaviour and systemic 
glucose levels.78 In a recent transcriptomic study, it was demonstrated 
that neurons can respond to high but not toxic concentrations of PA, 
increasing the expression of several genes involved in lipid and energy 
metabolism.79 Together, these data indicate that astrocytes are not 
only brain cells able to metabolize saturated FAs through β-oxidation 
but also neurons can metabolize them under certain conditions.

Similar to other cells, neurons have another option to metabo-
lize FAs. While short-, medium- and long-chain FAs are β-oxidized in 
mitochondria, very-long-chain FAs (26:0) are metabolized in peroxi-
somes.80 The transport of FAs toward peroxisomes is mediated by the 
ABC transporter family through cycles of ATP binding and hydrolysis.81 
There is also another mechanism of carnitine-dependent transport 
of FAs in peroxisomes with less participation.82 FA oxidation in per-
oxisomes produces acetyl-CoA or propionyl-CoA, which are further 
metabolized in the mitochondria. Peroxisome-mediated β-oxidation 
has been proposed to be part of a homeostatic mechanism for hyper-
active neurons to produce enough ATP to sustain neuronal functions. 
In summary, there is growing evidence that neurons can metabolize 
FAs by mitochondria or peroxisomes, depending on the chain length 
and energy requirements. In addition, if neurons increase their energy 
demands, neuron-astrocyte metabolic coupling results in the best op-
tion to maintain energy homeostasis. Interestingly, neuron-astrocyte 
coupling-dependent FA detoxification has been also reported to pre-
vent injury in the CNS. In cultured hippocampal neurons during ex-
citotoxic stimulation with N-methyl-D-aspartate (NMDA), saturated 
FAs are oxidized, and the resulting damaging oxidized FAs are released 
from neurons and taken up by astrocytes through a carrier protein. 
Then, these FAs are stored in lipid droplets and consumed for energy 
supply to neurons.83 However, the neuronal energy imbalance is some-
times not resolved by the astrocyte metabolic support, as has been 
recently demonstrated after CNS damage, wherein reactive astrocytes 
can release toxic FAs that may contribute to neuronal damage.84

4  |  ALTER ATIONS IN NEURONAL 
METABOLISM A SSOCIATED WITH INTAKE 
OF SATUR ATED FAT

There is a strong correlation between chronic intake of HFD and 
the development of neuroinflammation and brain insulin resistance. 
The last effect was reported to be dependent on the increased 

phosphorylation of residue S307 of insulin receptor substrate-2 in the 
hypothalamus85 and a reduction in the activation of residue Y608 of 
insulin receptor substrate-1 in hippocampal neurons.25 According to 
positron emission tomography measurements using [11C]-palmitate 
and [18F]-fluoro-6-thia-heptadecanoic acid in obese patients with 
metabolic syndrome, increased uptake and accumulation of FAs 
in different brain regions was found in comparison with healthy 
subjects.86 The brain accumulation of FAs can be explained by the 
obesity-induced increase in the transporter FTP1, as was found in 
the prefrontal cortex in rats fed a HFD.87 Experiments in rats have 
shown that the increased levels of FAs in the brain result in meta-
bolic changes consisting of lower brain glucose uptake and glucose 
transporters and alterations in glycolytic and acetate metabolism 
and central insulin resistance.88,89 Insulin resistance could interfere 
with brain glucose utilization, resulting in a compensatory increase in 
saturated FA uptake and oxidation. The described metabolic abnor-
malities impact neuronal morphology and physiology, manifesting as 
decreased long-term potentiation and reduced markers of synaptic 
plasticity.25,89 To explain some of the brain alterations produced by 
the high intake of saturated fat, several mechanisms have been ana-
lysed and proposed as potential drivers of brain pathology. Among 
them, mitochondrial dysfunction, neuroinflammation and oxidative 
damage are prominent.90 In fact, HFD intake directly enhances ROS 
generation91 accompanied with elevated expression of NADPH oxi-
dase enzyme.92 It was reported that consumption of a HFD reduces 
the levels of the mitochondrial fusion protein mitofusin 2 (MFN2) 
in hypothalamic neurons, resulting in loss of mitochondrial-ER con-
tacts and leading to ER stress and the development of leptin resist-
ance.93 Mitochondrial-ER contacts regulate mitochondrial shape and 
motility; thus, the loss of these contacts produce mitochondrial dys-
function and alters energy metabolism and the cellular redox state, 
inducing autophagy and inflammasome signalling.94,95 These effects 
were corroborated in C57BL/6 mice fed a HFD, which presented a 
decrease in MFN2 expression in the arcuate nucleus.96 In addition, 
the mitochondrial dysfunction caused by the content of saturated 
FAs in the HFD also reduced the mitochondrial-dependent Ca2+ up-
take capacity that was accompanied by a decrease in hypothalamic 
neuronal excitability and consequent impaired function of energy 
control in the hypothalamus during obesity.97 Moreover, HFD alters 
the hypothalamus-dependent regulation of body weight, changing 
the brain expression of diverse neuromodulators, such as neuropep-
tide Y (NPY), orexins and proopiomelanocortin (POMC).98,99

5  |  PALMITIC ACID: THE MAIN 
SATUR ATED FAT T Y ACID UNDERLYING THE 
ADVERSE EFFEC TS OF HFD IN NEURONS

PA is a 16-carbon long-chain saturated FA that is the most abun-
dant saturated FA in the human body (65% of saturated FAs) and 
represents the main component of HFD. PA can be provided by 
the diet from vegetables (10%–40%) and animal fat (20–30%)100 or 
synthesized from amino acids, carbohydrates and other fatty acids 
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in peripheral cells.101–103 An increase in circulating levels of PA has 
been considered the responsible factor for the development of sev-
eral conditions, such as type II diabetes, cardiovascular diseases, 
pro-metastatic activity and cognitive decline.38,102,104–106 In the 
brain, PA follows different metabolic routes, some of which could be 
associated with neuronal dysfunction. Among these, ceramide syn-
thesis has been proven to have a causal role in insulin resistance and 
neuroinflammation.

5.1  |  Ceramide synthesis and neurotoxicity

Ceramides are signalling molecules involved in neuronal develop-
ment, neuronal death and cellular senescence. De novo ceramide 
synthesis is controlled by the availability of palmitoyl-CoA, which 
activates the rate-limiting enzyme serine-palmitoyl transferase.107 
Depending on chain length, different species of ceramides are pro-
duced and serve different roles in cellular homeostasis, with cera-
mide 16 (C16) being the most involved in apoptosis.108 Exposure to 
a high concentration of PA induced the intracellular accumulation of 
C16 accompanied by proinflammatory cytokine production in cul-
tured neurons.18 Similarly, PA activates the enzyme serine-palmitoyl 
transferase, which is involved in the accumulation of ceramides 
in astrocytes, enhancing the release of cytokines and activating a 
signalling cascade in neurons that upregulates the pro-amyloid en-
zyme BACE-1.109 In peripheral cells, C24 and C16 also participate 
in the development of insulin resistance through PP2A-dependent 
dephosphorylation and inactivation of Akt.110 Thus, the production 
of ceramides can be a critical mechanism linking the development of 
neuroinflammation and insulin resistance under high PA concentra-
tions in the CNS.

5.2  |  Neuronal insulin resistance

The role of insulin in neuronal function as a metabolic, growth, syn-
aptic and survival modulator has been extensively validated.111–113 
Although neuronal glucose uptake is not dependent on insulin, 

the insulin/PI3K/Akt pathway regulates the expression of GLUT3 
transporter and the glycolytic enzyme phosphofructokinase-1 in 
neurons.114 After high neuronal firing rates, the activation of insulin 
signalling induces GLUT4 translocation to the membrane to increase 
glucose transport in hippocampal neurons. Thus, alterations in the in-
sulin/PI3K/Akt pathway can also be associated with dysregulation of 
the energy balance and glucose homeostasis.115 Similarly, as it occurs 
in the peripheral organs, PA also contributes to the development of 
insulin resistance in neurons.13,16,116–119 As previously stated, there 
is evidence that neurons can metabolize saturated FAs to produce 
energy, although it is still unknown under which conditions they can 
be used for this purpose. Recently, it has been reported for both, 
cultured rat cortical neurons and differentiated human neuroblas-
toma cells that there is a significant reduction in NAD+ contents and 
an increase in ATP levels after exposure to high but not toxic doses 
of PA, suggesting that neurons can utilize PA as an energy substrate 
when exposed to high concentrations of saturated FAs.13,16,120 The 
reduction in NAD+ was correlated with the blunted effects of PA on 
insulin-induced metabolic activation as well as with the inhibition of 
the insulin/PI3K/Akt pathway. The participation of ROS production 
in this effect was demonstrated by the inhibition of mitochondrial 
ROS with the mitochondria-targeted antioxidant mitoTEMPO, which 
prevented PA-dependent insulin resistance.16 PA-dependent insu-
lin resistance was also associated with the translocation of protein 
kinase C-θ (PKC-θ) toward the cell membrane, which leads to the 
phosphorylation of the insulin receptor in inhibitory residues in hy-
pothalamic neurons.14 Another mechanism involved in PA-induced 
insulin resistance in neurons is the activation of MyD88, an essential 
signalling adaptor for most toll-like receptors (TLRs) and members of 
the interleukin-1 (IL-1) receptor family. The activation of MyD88 by 
PA leads to a TLR-4-dependent inflammatory response that induces 
not only insulin resistance but also leptin resistance, which exacer-
bates the energy imbalance in neurons.121–123 The PA-induced loss 
of insulin sensitivity seems to also be associated with PA-dependent 
ATP production that mediates the opening of voltage-dependent 
Ca2+ channels. The resulting increase in intraneuronal Ca2+ concen-
trations activates Ca2+-dependent cPKC, which phosphorylates Akt 
in inhibitory residues, leading to its inactivation.13 The loss of insulin 

F I G U R E  1 Palmitic acid causes insulin 
resistance by several mechanisms that 
include ROS and ceramide production as 
well as activation of MyD88 through PKCθ 
translocation to the cell membrane, which 
leads to internalization of the insulin 
receptor. Insulin resistance contributes to 
the impairment of glycolysis by decreasing 
the synthesis and activity of phospho-
fructose-kinase and GLUT3 and impairing 
the translocation to the membrane of the 
glucose transporter, GLUT4.
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sensitivity induced by PA may explain the strong association be-
tween the intake of saturated fat and the increased risk of neuronal 
dysfunction (Figure 1).

5.3  |  Impairment of mitochondrial function 
in neurons

In addition to the above effects, PA exerts damaging consequences 
through enhances mitochondrial oxidative stress. PA treatment 
increased the production of superoxide dismutase after 8 h of ex-
posure and decreased the production of ATP at 24 h, suggesting 
mitochondrial damage that correlates with the development of in-
sulin resistance in neuroblastoma Neuro-2a cells.15 A similar effect 
was observed in differentiated human neuroblastoma cells, in which 
treatment with PA for 1 h generated sustained ROS production that 
inhibited insulin signalling and insulin-dependent mitochondrial acti-
vation.16 On the contrary, the exposure of hypothalamic cells to PA 
decreased the levels of the mitochondrial protein MFN2, ER stress 
and insulin resistance.96 Furthermore, in dorsal root ganglion (DRG) 
neuronal cultures exposed to PA for 24 h, a marked reduction in 
mitochondrial membrane potential and changes in ATP production 
were observed and accompanied by altered mitochondrial morphol-
ogy and impaired mitochondrial trafficking.124–126 Overall, PA expo-
sure affects neuronal metabolism, impairs mitochondrial function 
by loss of membrane potential and induces changes in mitochon-
drial morphology that result in inhibition of mitochondrial dynamics 
(Figure 2).

How might lipid-overloaded mitochondria induce mitochon-
drial stress and insulin resistance? Although this question has not 
been fully resolved, it has been proposed that chronic elevation of 
fatty acids leads to persistent pressure on the electron transport 
chain, resulting in disruption of redox balance and ROS-signalling.127 
Since most studies have been conducted in peripheral cells, further 

research is necessary to understand the connection between mi-
tochondrial overload, redox imbalance and insulin resistance in neu-
rons chronically exposed to saturated fatty acids.

5.4  |  Endoplasmic reticulum stress

It has been demonstrated that HFDs trigger excessive endoplasmic 
reticulum (ER) stress and exert opposite influences on the expres-
sion of plasticity-related proteins such as BDNF, synaptophysin and 
NMDA receptors in the rat prefrontal cortex.87 It is possible that 
many deleterious effects of HFD are exerted through its PA con-
tent, in view of the fact that in vivo and in vitro models have demon-
strated that PA elicits the unfolded protein response and ER stress, 
is involved in the downregulation of leptin and insulin-like growth 
factor receptor 1 expression in neurons128 and activates autophagy 
and apoptotic pathways. Accordingly, in cultured hypothalamic neu-
rons, lipotoxicity induced by high doses of PA (0.7–1 mM) was ac-
companied by the activation of the ER stress pathway leading to the 
phosphorylation of the initiator of translation, eIF2α, and activation 
of the cleaved enzyme caspase-3, an apoptotic effector molecule.114 
Interestingly, some of the toxic effects of PA are prevented by the 
coadministration of the monounsaturated FA oleate.15 The protec-
tive role of oleate against PA-induced apoptosis is probably medi-
ated by conducting PA to incorporate into triglycerides and in this 
way to form a storage pool of lipid droplets, as shown in CHO cells 
and embryonic fibroblasts.129

6  |  ROLE OF GPR40 SIGNALLING 
AC TIVATION BY FAT T Y ACIDS

In addition to the consequences of the metabolic oxidation of PA on 
neurons, other effects can also be carried out through the activation 

F I G U R E  2 The possible route for 
β-oxidation of palmitic acid in neurons 
is associated with the reduction of the 
mitochondrial fusion protein MFN2, 
decreased membrane potential, and ATP 
production as well as an increment in ROS 
levels. These conditions lead to decreased 
mitochondrial dynamics and bioenergetic 
capacity.
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of free fatty acid metabotropic receptors (FFARs). FFARs are G-
protein coupled receptors (GPCRs) located in the cell membrane that 
are mainly involved in metabolic regulation. FFARs are a family of 
four members: FFAR2 (also called GPR43) and FFAR3 (GPR41) are 
activated by short-chain FFAs, whereas FFAR1 (GPR40) and FFAR4 
(GPR120) are activated by medium- and long-chain FFAs.130–134 
Interestingly, GPR40 is highly expressed in neurons and is activated 
by docosahexaenoic acid (DHA) and selective agonists, but few stud-
ies have shown that PA activates these receptors in neurons.13,135,136

Activation of GPR40 regulates insulin secretion in pancreatic 
β-cells, but its role in the CNS is not yet clear.137–141 It has been 
found that GPR40 activation by DHA protects against the adverse 
effects of neuroinflammation and insulin resistance in the brain.142 
Additionally, signalling through GPR40 was found to be decreased 
in mice fed a HFD that developed cognitive deficits, but when 
GPR40 was activated by DHA or by its synthetic agonist, GW9508, 
improvements in cognitive functions resulted.143 Conversely, in hy-
pothalamic neurons, the activation of GPR40 by PA contributes to 
the development of insulin resistance.136 In one study, in a human 
neuroblastoma model (SK-N-MC), it was found that PA-mediated 
GPR40 signalling increased the expression of amyloid precursor pro-
tein (APP) and the catalytic enzyme BACE1, producing Aβ peptide 
through mTOR/p70S6K1-mediated HIF-1α expression and NF-κB 
activation.144

In general, polyunsaturated FAs prevent and/or reverse the 
metabolic alterations induced by saturated FAs and manifest bene-
ficial effects in neurodegenerative diseases.145–148 Unlike PA, DHA 
is considered a positive modulator of the insulin pathway and pro-
motes neuronal protection and survival.149 Due to its widely recog-
nized influence on neuronal protection, DHA presents a compelling 

opportunity for the use of this nutritional therapy to counter the 
deleterious effects of saturated fat (Figure 3).

7  |  A SSOCIATION BET WEEN FAT T Y ACID 
METABOLISM AND AL ZHEIMER' S DISE A SE

Comorbidities associated with a high intake of saturated fat, such as 
obesity and type II diabetes, are risk factors for the development of 
cognitive impairments and even AD.150–155

In fact, new evidence supports the relationship between obe-
sity and dementia from a review of 19 longitudinal studies including 
people aged 35–65 years.156 AD is a neurodegenerative condition 
characterized by two hallmarks: the formation of amyloid plaques 
and the intraneuronal accumulation of neurofibrillary tangles 
by hyperphosphorylation of the cytoskeletal associated protein 
tau.157–161 Amyloid-β protein (Aβ) originates from APP by the se-
quential enzymatic actions of β-secretase and γ-secretase.162–165 
The presence of high levels of saturated FAs and cholesterol in 
membrane lipid rafts was observed to contribute to the amyloi-
dogenic processing of APP in APP/PSEN1 transgenic mice166,167 and 
in astrocytes.168 Similarly, rats fed a HFD also showed increased 
APP and Aβ contents in the rat cerebral cortex,169 increased APP 
and BACE-1 expression in the mouse brain144 and induced tau hy-
perphosphorylation in the rat hippocampus25 through the forma-
tion of an enzymatic complex that activates the enzyme GSK3β.170 
Studies with 3xTg-AD model have demonstrated that HFD treat-
ment induces cognitive decline with or without increased Aβ lev-
els.171,172 In other AD model, the knock-in mouse AppNL−F/NL−F, 
long-term HFD intake was associated with insulin resistance, poor 

F I G U R E  3 Fatty acids enter the brain 
and cells through FATPs. Within the 
cells, fatty acids (FAs) can be β-oxidized 
by mitochondria (for FAs 2-18 carbon 
atoms in length) or by peroxisomes (for 
28-carbon FAs). Palmitic acid metabolism 
can impact the hypothalamic energy 
sensing neurons, resulting in a loss of 
energy homeostasis. FAs can also activate 
GPR40 signalling associated with insulin 
resistance, but docosahexaenoic acid-
dependent activation of GPR40 improves 
insulin signalling.
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cognitive performance, increased deposition of Aβ and the pres-
ence of neuroinflammation and oxidative stress markers.173 Current 
research has shown an upregulation of BACE-1 after PA exposure 
in cultured hippocampal neurons by a mechanism depending on 
the reduced activity of the deacetylase sirtuin 1120 and through 
PA-mediated transcriptional activation of BACE-1 in neurons after 
exposure to astrocyte-conditioned media.109 Interestingly, a cor-
relation between differential FA metabolism in specific brain areas 
and the development of some biochemical markers of AD has been 
shown. For example, cortical neurons exposed to conditioned me-
dium obtained from PA-treated cortical astrocytes expressed tau 
phosphorylation and BACE1, but not when neurons were exposed 
to cerebellar astrocyte media.174

These data demonstrate the effects of brain exposure to high 
levels of saturated FAs and point to the connection between lipid 
dyshomeostasis and the risk for AD.

8  |  CONCLUSIONS

The consumption of saturated FAs is strongly associated with mor-
phological and functional changes in neurons. Accumulating evi-
dence describes consistent dysregulation of neuronal metabolism 
induced by PA that leads to insulin resistance, decreased glycolysis, 
altered mitochondrial function and ER stress. These effects seem 
to contribute to cognitive decline. Recent interesting evidence sup-
ports the notion that in certain conditions, neurons can metabolize 
saturated long-chain FAs through a metabolic energy pathway that 
sustains part of their deleterious effect. Understanding the mech-
anisms that lead to metabolic alterations in neurons could help to 
develop several strategies for the prevention, early detection and 
treatment of cognitive impairment associated with high consump-
tion of saturated FAs or associated with insulin resistance, metabolic 
syndrome or diabetes. Although a variety of potential mechanisms 
have been explored, the underlying molecular cascade responsi-
ble for dietary fat-induced neuronal dysfunction and behavioural 
changes remain elusive, and more research is needed to understand 
the signalling pathways that are activated in a specific metabolic 
context. An interesting avenue of studies to clarify the mechanisms 
downstream of the activation of GPR40 in neurons by polyunsatu-
rated and saturated fatty acids is now open, as well as interrogation 
of the conditions that determine the metabolic routes that FAs fol-
low into the brain to induce or avoid lipotoxicity.
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