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Abstract

Enhancers are short non-coding DNA sequences outside of the target promoter regions that

can be bound by specific proteins to increase a gene’s transcriptional activity, which has a

crucial role in the spatiotemporal and quantitative regulation of gene expression. However,

enhancers do not have a specific sequence motifs or structures, and their scattered distribu-

tion in the genome makes the identification of enhancers from human cell lines particularly

challenging. Here we present a novel, stacked multivariate fusion framework called SMFM,

which enables a comprehensive identification and analysis of enhancers from regulatory

DNA sequences as well as their interpretation. Specifically, to characterize the hierarchical

relationships of enhancer sequences, multi-source biological information and dynamic

semantic information are fused to represent regulatory DNA enhancer sequences. Then,

we implement a deep learning–based sequence network to learn the feature representation

of the enhancer sequences comprehensively and to extract the implicit relationships in the

dynamic semantic information. Ultimately, an ensemble machine learning classifier is

trained based on the refined multi-source features and dynamic implicit relations obtained

from the deep learning-based sequence network. Benchmarking experiments demonstrated

that SMFM significantly outperforms other existing methods using several evaluation met-

rics. In addition, an independent test set was used to validate the generalization perfor-

mance of SMFM by comparing it to other state-of-the-art enhancer identification methods.

Moreover, we performed motif analysis based on the contribution scores of different bases

of enhancer sequences to the final identification results. Besides, we conducted interpret-

ability analysis of the identified enhancer sequences based on attention weights of Enhan-

cerBERT, a fine-tuned BERT model that provides new insights into exploring the gene

semantic information likely to underlie the discovered enhancers in an interpretable manner.

Finally, in a human placenta study with 4,562 active distal gene regulatory enhancers,

SMFM successfully exposed tissue-related placental development and the differential

mechanism, demonstrating the generalizability and stability of our proposed framework.
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Author summary

Numerous evidence suggest that genes regulated by enhancers located in non-coding

DNA regions are involved in a myriad of biological activities. To fully understand the reg-

ulatory role and mechanisms of enhancers on genes, the localization and identification of

enhancers is essential. Several experimental biological methods are capable of localizing

enhancers, however, these methods are resource intensive. To address this limitation, we

developed a stacked multivariate fusion framework, called SMFM to identify and analyze

enhancers with high accuracy and efficiency based on enhancer-specific dynamic seman-

tic information and multi-source biological properties. The performance of the model is

verified by experiments comparing different feature algorithms and classification algo-

rithms. The superiority of our method is demonstrated by comparing it with several state-

of-the-art algorithms. In addition, several analytical experiments demonstrate that SMFM

is capable of recognizing enhancers in different tissues and detecting motifs in enhancers.

To the best of our knowledge, this is the first computational approach that uses enhancer-

specific dynamic semantic information to identify enhancers from regulatory DNA

sequences and interpret them. It is expected that the SMFM model will effectively target

enhancers and provide valid candidates for further biological experiments.

This is a PLOS Computational Biology Methods paper.

Introduction

Enhancers are a series of DNA segments in the non-coding DNA sequences that can signifi-

cantly increase the transcription rate of their target genes after being bound by transcriptional

factors and other co-regulators that control the promoters of the associated genes [1]. Recent

studies have shown that different enhancers have distinct sets of subregions (or motifs) that

bind specific transcription factors, and exhibit diverse activities and regulatory roles on multi-

ple biological genes [2]. Enhancers are typically in the intergenic and intronic regions and

often include binding sites for multiple transcription factors. Intriguingly, active enhancers

undergo transcription by RNA polymerase II to generate enhancer RNAs (eRNAs) [3, 4].

Moreover, genetic variants in cell-type-specific enhancer sequences are associated with a risk

for common diseases in humans [5]. Therefore, it is of great interest to identify enhancers in

regulatory DNA sequences with the potential to provide new opportunities for understanding

physiological and pathological processes.

In the early days, researchers identified enhancers primarily by conducting biological

experiments with vitro and vivo functional assays, such as gel-shift assays in [6]. More

recent approaches use publicly available comparative sequence datasets for comparative

genomics [7], for example. However, the heavy cost and tedious processing times of high-

throughput experiments severely restrict their practical application [8]for effective enhancer

identification, due to the lack of sample diversity [7] and the difficulty in simulating differ-

ent cellular conditions [9]. Currently, a series of computational methods have been devel-

oped to address enhancer identification, which can be divided into three categories: 1)
Chromatin-based methods: these algorithms typically employ chromatin information to

characterize enhancer sequences, and then most identify enhancers using various machine

learning classifiers, including ChromaGenSVM [10], RFECS [11], EnhancerFinder [12],

GKM-SVM [13]. 2) Physicochemical-based methods: such algorithms are implemented using
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various physicochemical features that encode enhancer subsequences, including iEnhancer-

2L [14], EnhancerPred [15], iEnhancer-EL [16], iEnhancer-RF [17], iEnhancer-XG [18],

iEnhancer-ECNN [19], CSI-ANN [20] and Enhancer-IF [21], where iEnhancer-ECNN [19]

and CSI-ANN [20] utilize deep learning techniques to learn the implicit information in the

features, and the other methods use traditional machine learning classifiers to accomplish

the identification task. 3) Contextual-based methods:iEnhancer-EBLSTM [22], iEnhancer-

5Step [23] and BERT-2DCNNs [24] consider the contextual information in enhancer

sequences, and use different natural language processing technologies to form the embed-

ding matrix of enhancer sequences. However, most of these computational models use only

a single feature type to characterize enhancer sequences, making it difficult to describe dis-

tribution and the representations between nucleotides and their contexts, leaving adequate

room for improving performance.

In our study, we designed a novel stacked multivariate fusion model, called SMFM. In

SMFM, multi-source biological features and EnhancerBERT are proposed to represent the

enhancer sequences, where EnhancerBERT can maximize the characterization power of the

dynamic semantic information of enhancer sequences. Then, we designed a deep learning-

based sequence network to learn the dynamic implicit relations and long-distance dependen-

cies in the dynamic semantic information. Finally, we merged the two types of processed fea-

tures and feed them into an ensemble machine learning classifier to derive the final prediction

results. To validate the effectiveness and good performance of SMFM, we conducted several

experiments performing a rigorous 10-fold cross-validation on the training set. The experi-

mental results showed that SMFM significantly outperforms currently available methods. In

addition, to verify the stability and generalization ability of SMFM, we tested and compared

and compared the conduct of SMFM on a completely independent test set and results indi-

cated that SMFM generally outperforms existing methods. Furthermore, to explore the ability

of characterization of SMFM for tissue-specific enhancers, we designed a stepwise experiment

on 4,562 placental enhancers: identifying placental enhancers in the first step and distinguish-

ing placental enhancers from enhancers in other tissues in the second step. In order to validate

the effectiveness of placental enhancers identified by SMFM, we then performed gene ontology

(GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis based on

results of stepwise experiments. Finally, we carried out motif analysis and interpretability anal-

ysis of the identified enhancer sequences based on attention weights in EnhancerBERT and

provide here an online web server that can predict enhancers in DNA sequences online, which

is available at http://39.104.69.176:5010/.

Materials and methods

A. Data sources

We collected the dataset from nine different cell lines, including H1ES, K562, GM12878,

HepG2, HUVEC, HSMM, NHLF, NHEK and HMEC [14]. The samples in the dataset were

selected based on chromatin state information, which was annotated by ChromHMM [25],

and divided into 200bp fragments to match linker and nucleosome length DNA. A sample was

discarded if its length was less than 200bp. The CD-HIT tool was utilized for reducing the sim-

ilarity between fragments with a threshold value of 0.8. From this, we obtained the dataset

including three classes: strong enhancers (Sþstrong), weak enhancers (Sþweak) and non-enhancers

(S� ). In our work, we merged the Sþstrong and Sþweak as the positive samples (Sþ), while S� were

the negative samples following reference [14]. The structure of the dataset can be described as
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follows:

S ¼ Sþ [ S�

Sþ ¼ Sþstrong [ S
þ

weak

(

The dataset includes 2968 samples, of which 1484 are enhancers and the others non-

enhancers. We evaluated the performance using 10-fold cross-validation, which divides the

training set into 10 subsets, where one subset is the validation set, and the other 9 subsets con-

stitute the training set. Each subset needs to be performed once as a validation set. In addition,

we employed an independent test set including 200 enhancers and 200 non-enhancers to test

the stability and generalization ability of SMFM compared with other existing methods.

To visualize the enhancer dataset, we applied a series of dimensionality reduction methods

to project the sequence feature representation based on the one-hot encoding approach to the

two-dimensional space, as envisioned in Fig 1. Unfortunately, it can be observed that the

Fig 1. Dataset visualization for DNA Enhancers based on the one-hot encoding approach. All figures are drawn using dimensionality reduction methods including

ICA, PCA, FA and t-SNE with Python scikit-learn package as default setting. From the figures it can be concluded that linear classification cannot be utilized in

enhancer dataset.

https://doi.org/10.1371/journal.pcbi.1010779.g001
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enhancer dataset cannot be classified linearly. Therefore, the development of effective

sequence representation models and nonlinear-based modeling including deep neural net-

works is imperative to identify these sequences in human cell lines.

B. Feature representation schemes

To characterize enhancer sequences as efficiently as possible, two types of quantifiable features

including multi-source biological information and dynamic semantic information are usually

adopted in research to represent regulatory DNA enhancer sequences.

1) Positional gapped k-m-tuple pairs (PGKM): To capture interactions between non-adja-

cent residues, gapped k-mer feature generation method is often employed to represent the

enhancer sequence for the classification tasks [26]. However, such a method discards informa-

tion about the positions of the different functional subsequences (motifs), which have an

important role in recording the distinction between the particular functional sequences (e.g.

enhancers). To overcome this limitation, we introduce the positional gap k-m-tuple pair

(PGKM) as one of the feature descriptors. PGKM contains three parts: k-tuple ({Nu × k}), m-

tuple ({Nu ×m}), and gap (G). The feature generation procedure can be characterized as fol-

lows:

PGKM ¼ fNu� kg; ðGapÞ; fNu�mg;

where Nu 2 {A, C, G, T}, Gap represents the number of nucleotide intervals between tuples,

for Gap = n, PGKM will calculate the nucleotides between two tuples less than or equal to n,

with a lower bound of 1. k denotes the number of nucleotides in the first tuple, and m denotes

the number of nucleotides in the second tuple, respectively. Therefore, in general, when

Gap = n, PGKM can generate 4k × 4m × n features for an enhancer sequence.

Considering the sequence ‘ACCGTA’ as an example, PGKM counts the number of times

each tuple pair appears in the sequence and uses this number as the value of the corresponding

feature, when Gap = 3, k = 1, m = 1, 48 tuple-pairs (features) can be generated, including three

cases: 1) when Gap = 1, the following features are calculated: A_A, A_C, A_G, A_T, C_A,

C_C, C_G, C_T, G_A, G_C, G_G, G_T, T_A, T_C, T_G, T_T; 2) when Gap = 2, A_ _A, A_ _

C, A_ _G, A_ _T, C_ _A, C_ _C, C_ _G, C_ _T, G_ _A, G_ _C, G_ _G, G_ _T, T_ _A, T_ _C,

T_ _G, T_ _T are calculated; 3) when Gap = 3, there are 16 features as follows: A_ _ _A, A_ _ _C,

A_ _ _G, A_ _ _T, C_ _ _A, C_ _ _C, C_ _ _G, C_ _ _T, G_ _ _A, G_ _ _C, G_ _ _G, G_ _ _T,

T_ _ _A, T_ _ _C, T_ _ _G and T_ _ _T. On this basis, the given sequence has: ∑A_C = 1,

∑C_G = 1, ∑C_T = 1, ∑G_A = 1, ∑A_ _G = 1, ∑C_ _T = 1, ∑C_ _A = 1, ∑A_ _ _T = 1, ∑C_ _ _

A = 1. In addition, the value is set to 0 for the remaining features as they do not appear in the

sequence ‘ACCGTA’.

2) Pseudo K-tuple nucleotide composition (PseKNC): To extract local contextual features

from the enhancer sequences, PseKNC is employed to encode the nucleotide sequences, which

can embrace the adjacent information of each nucleotide in the sequences [27]. Specifically,

the regular k-tuple is a vector that represents a nucleotide sequence with size of 4k. The

PseKNC can be applied by aggregating the set of k-tuples that contains all tuples consisting of

less than or equal to k nucleotides. It can be defined as follows:

Vi ¼ ½f
i� tuple
1 ; f i� tuple2 ; f i� tuple3 ; ::: ; f i� tuplet ; ::: ; f i� tuple

4i
� ð1 � i � kÞ;

where Vi represents the vector generated by i-tuple and f it denotes the frequency of t-th i-tuple

in a sequence. We set k = 3, which yields vectors corresponding to mononucleotide tuples,

dinucleotide tuples and trinucleotide tuples. On this basis, each enhancer sequence would be

depicted as a one-dimensional vector with size V1 + V2 + V3.
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3) Nucleotide physicochemical properties (NPCP): Apart from the nucleotide distribution

representation, the physicochemical property is a fundamental property of a nucleotide that

provides a unique contribution to characterize the sequences. Here four different physico-

chemical properties including Zcurve [28], GC-content [29], (A+T)/(C+G) ratio [30], and

GC/AT skew [31], are employed to represent the enhancer sequence, which can generate 3-, 1-

, 1- and 2-dimensional vectors, respectively. Therefore, the NPCP for the tth sequence st can

be formulated as follows:

NPCPðstÞ ¼ concatenateðfiðstÞÞ ð1 � i � 4Þ;

where fi indicates the i-th property in NPCP.

4) Multi-source feature selection: Since multi-source biological information yields excessive

features, this leads to a very laborious training process of the model and also prevents the

model from capturing the most critical information that distinguishes the different enhancer

subsequences. To address these limitations, we propose employing an AdaBoost model to

identify the best subset of features from these high-dimensional features. Specifically, the selec-

tor in the AdaBoost model scores the different features by partitioning each feature into all

the trees trained on instances with different weight distributions, and calculating the average

impurity reduction for each feature. After obtaining the scores of all features, the 472 refined

features with an average impurity curtailment over zero are selected as the final streamlined

feature set.

5) Enhancer dynamic semantic information (EnhancerBERT): BERT (bidirectional encoder

representations from transformers) can learn powerful representations of language to encode

information about syntax and semantics, and which is typically pre-trained on a large corpus

in a self-supervised fashion [32]. In this context, it is natural to consider enhancer sequences as

texts and to explore the semantic information between them by considering nucleic acids as

words in a biological language, and structural and regulatory functions as syntactic and seman-

tic information in the enhancer sequence. Inspired by reference [33], we developed Enhancer-

BERT to maximize the characterization power of the dynamic semantic information of

enhancer sequences. In our EnhancerBERT model, we tokenize the enhancer sequences to

make them more syntactic, while the prediction task of the BERT-based model shifts to make

predictions on how many continuous tokens in an enhancer ‘sentence’ match the possible

realistic cases. Indeed, considering that the use of a single acid as a token is too rare, we use k-

mer (k is an integer greater than zero) to process the enhancer sequences. For the sequence

‘ATCGGGCTA’, when k = 3, the tokens {ATC, TCG, CGG, GGG, GGC, GCT, CTA} will be

generated after 3-mer processing. Note that we have added two special tokens: [CLS] to repre-

sent the beginning of the sequence and [SEP] to represent the end of the sequence following

reference [33]. Therefore, 4k + 2 tokens can be obtained in the vocabulary of kmer. After that,

the EnhancerBERT model is pre-trained on a set of masked enhancer sequences that are pro-

cessed as a series of k-mer tokens, each of which can be represented as a unique numerical vec-

tor. That is, each sequence can be represented as a matrix M. On this basis, EnhancerBERT

captures contextual information using a multi-headed self-focus mechanism on M, which is

described as follows:

MultiHeadðQ;K;VÞ ¼ Concatenateðhead1; head2; :::; headnÞW
O

headi ¼ AttentionðQ;K;VÞ
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AttentionðQ;K;VÞ ¼ softmax
QKT

ffiffiffiffiffi
dk

p

 !

� V;

where

Q ¼ M �WQ
i

K ¼ M �WK
i

V ¼ M �WV
i ;

8
><

>:

Q, K, V represents query, key and value respectively, which are projected by n diverse linear

conversions. fWQ
i ;WK

i ;W
V
i g

n
i¼0

are the learnable parameter matrices of the linear projection,

respectively. Each headi is utilized to compute the next hidden state of the matrix M, first cal-

culating the attention fraction between every two tokens and then appending rows in MWV
i

using them as weights. After that, MultiHead concatenates head1�n with a distinct set of

fWQ
i ; WK

i ; W
V
i g. The whole process is conducted T times and T is the number of layers.

In the process of fine-tuning the model, we remove the head of the pre-trained model and

replace it with a random initialization. Regarding the hyperparameters used for fine-tuning,

we fine-tune EnhancerBERT for five epochs on the enhancer training set and apply an early

stopping mechanism with a patience of two to prevent overfitting phenomena. A roll back

mechanism of the model parameters is utilized after an early stop mechanism and the Adam,

without weight decay, is chosen as the optimizer. Remarkably, the aforementioned hyperpara-

meters are consistent for all EnhancerBERT (including 4 models, from 3 to 6mers, respec-

tively), which also use 12 Transformer encoder layers, each consisting of 12 self-attentive

heads, to extract semantic information using a multi-headed self-attentive mechanism. More-

over, in our study, to capture sufficient multilayer fusion enhancer information, we simply

extract the hidden states from the last layer of the model and drop the vector representation

obtained from the special tokens [CLS] and [SEP] added before and after each enhancer

sequence to generate the (200-k+1, 768) matrix, where k is the value of kmer used to process

the enhancer sequences, and 768 is the dimension of the vector generated by EnhancerBERT

for each token.

C. Stacked multivariate fusion model (SMFM)

To capture efficiently the information contained in multiple feature scenarios that are critical

for enhancer characterization, we designed a novel stacked multivariate fusion model, called

SMFM including three important components, as shown in Fig 2. As depicted in this figure,

rather than traditional machine learning or deep learning approaches, SMFM synergizes the

two in a stacked fashion. First, the dynamic semantic information obtained by EnahncerBERT

is directly fed into the deep learning-based sequence network to learn the implicit semantic

information and long-range dependencies. Then, refined features are obtained by scoring

multi-source biological information using a multi-source feature selection model. Afterwards,

based on the integration of the both features mentioned above, we propose an ensemble

machine learning classifier to predict enhancers in human cell lines, where SVM [34], Deep

Forest [35] and Random Forest [36] are adopted as the individual classifiers of the ensemble

model.

1) Deep learning-based sequence network: In this section, SMFM first feeds the dynamic

semantic vectors into the one dimensional convolutional neural network (1D CNN) to learn

the implicit relationships in the enhancer sequences as it has previously shown potential and
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significance in relation to the local feature extraction and sequence data prediction [37]. Then,

each layer of SMFM performs a linear transformation of the output of the previous layer by

multiplying by a weight matrix. Indeed, each filter in a kernel has different weight parameter

matrices, M, as well as bias vectors b. For each convolution kernel, it scans the original seman-

tic vectors Rk with stride size and does matrix multiplication on the scanned area of features

according to the perceptual field, then it superimposes the results of the above operations to

obtain the bias vector. Mathematically, a convolutional layer is computed as follows:

vectorðx; yÞ ¼ ReLU
Xn

k¼1

ðRk �MkÞ � ðx; yÞ þ b

 !

;

where n is the number of matrices obtained from the convolution kernel, each vector calcu-

lated by the above equation characterizes the value of the element at the corresponding posi-

tion in the matrix M. In addition, ReLU is an activation function that enables the network to

Fig 2. (a) The overall framework of SMFM. First, enhancer sequences are generated as multi-source biological features and dynamic semantic information utilizing multi-

source feature generation and EnhancerBERT, which are then fed into a multi-source feature selector and deep learning-based sequence network, respectively. Finally,

the streamlined information is combined as input for the ensemble machine learning classifier to produce the final prediction results. (b) The motif analysis for

EnhancerBERT and corresponding interpretation. We extract the attention heads of EnhancerBERT to calculate attention scores of each token, and motifs are found

by using filter conditions of attention scores. Corresponding interpretations are performed to analyse attention process of EnhancerBERT and the regions that

EnhancerBERT concentrated on. (c) The workflow and function display of the SMFM web server. The web server has three functions: predicting enhancer sequences,

motif analysis pipeline and downloading EnhancerBERT models and source codes of SMFM.

https://doi.org/10.1371/journal.pcbi.1010779.g002
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learn complex forms in input data, which can be defined as follows:

ReLUðxÞ ¼
x; if x � 0

0; if x < 0:

(

From these, the output of the two layers of the deep convolution network is enriched with

implicit semantic relations, which are significant for the representation of the enhancers.

Simultaneously, to address the long-distance dependencies available in the enhancer

sequences, SMFM uses a Bidirectional long-short-term memory network that includes a con-

ditional random field layer in conjunction with attention-based feature modeling to identify

DNA enhancers in human cell lines. Compared to traditional recurrent neural networks

(RNNs), our model is advantageous in resolving gradient disappearance or explosion, while

allowing capturing long-term dependencies. Intuitively, the implicit semantic vectors are pre-

sented forwards and backwards in two separate networks available for the enhancer sequences

and then connected to the same output layer. The forward LSTM reads an input implicit

semantic vector from beginning to end and the backward LSTM reads the same input vector

from back to front. Specifically, for the t-th time step, the current forgetting factor (ft) can be

calculated using the hidden state of the last time step Ht−1 and the implicit semantic vector

learned from the enhancer sequences of the current time step It:

ft ¼ sðWf � ½Ht� 1; It� þ bf Þ ;

where σ is the logistic sigmoid function, and Wf is a trainable weight of the forget gate in

BiLSTM. After that, the model regulates the percentage of the implicit semantic vector It flow-

ing into the memory cell by using two functional modules. One module controls the inflow

percentage by generating a control signal st, and the other module calculates the candidate

memory cell M0
t based on the tanh layer and st.

st ¼ sðWi � ½Ht� 1; It� þ bsÞ

M0

t ¼ tanhðWM � ½Ht� 1; It� þ bMÞ :

where the Wi and WM represent the trainable weight of the input gate and Mt of the model,

respectively. Then the new memory cell of the current time step, Mt can be obtained, which

retains a portion of the dependent information from the previous time step:

Mt ¼ ft �Mt� 1 þ st �M0

t ;

Finally, SMFM can filters the Mt by generating a control factor ot to obtain the new output out-
putt of BiLSTM:

ot ¼ sðWo � ½Ht� 1; It� þ boÞ

outputt ¼ ot � tanhðMtÞ :

The loop is repeated and the long-range dependencies of the original semantic features can be

learned and aggregated by our SMFM model, resulting in extra significant features and repre-

sentations of the enhancers.

2) Ensemble machine learning classifier: To further boost the performance of enhancer pre-

diction, we established a feature-based ensemble learning classifier to identify DNA enhancers

in human cell lines by using fully the interplay between different machine learning algorithms

and feature spaces. To demonstrate why we chose these classifiers, we applied different
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machine learning algorithms to identify DNA enhancers in human cell lines. In a preliminary

experiment, we selected the base classifiers from a number of machine learning classifiers

including Deep Forest [35], XGBoost [38], LightGBM [39], SVM [34], Random Forest [36],

Logistic Regression [40], KNN [41] and GBDT [42]. In particular, we trained the different base

classifiers to predict DNA enhancers, and the performance results of the base classifiers are

summarized in Table 1. From the results, SVM, Random Forest, and Deep Forest were the top

three classifiers in terms of performance, and there is a performance gap between each two

classifiers with diversity, which is more suitable for forming the ensemble. Therefore, we

finally chose Deep Forest, Random Forest and SVM as the base classifiers of the ensemble clas-

sifier. Then, the hard voting scheme is employed to reach the final decision, and it outputs the

category with the highest majority of votes in the base classifier:

vote ¼
Xn

i¼1

BMLiðvtÞ
n

;

where BMLi represents the label generated by the i-th base classifier in the ensemble classifier,

and then “1” in each generated label indicates that the sample is an enhancer and a 0 indicates

that it is not. vt is the vector that characterizes the t-th sequences in dataset. n denotes the num-

ber of base classifiers in the ensemble model. The classification of the tth sequence is judged by

the value of vote. The tth sequence is classified as an enhancer with a vote> 0.5, otherwise it is

classified as a non-enhancer.

D. Parameter settings

The details of the parameter settings for SMFM and the other machine learning algorithms are

described below.

1) Parameters of SMFM:SMFM contains a number of tunable hyperparameters, which can

be specifically divided into the hyperparameters of deep learning-based sequence network and

ensemble machine learning classifier. During the optimization of these parameters, we assign

the search space for each parameter and explore their optimal combination using 10-fold

cross-validation and grid search. After that, the average MCC values (see below) from ten

rounds of cross-validation are calculated as the criterion for selecting the parameter combina-

tions. The hyperparameters of SMFM contain mainly the size of the convolution kernel, the

number of filters in the convolution layer and the units of BiLSTM. We assign their search

spaces as {{1,3}, {3,3}, {3,5}, {5,5}}, {16, 32, 64, 128} and {16, 32, 64, 128}. After optimization,

we eventually choose the parameter combinations of 3, 3, 32, 16 and 16, representing the ker-

nel sizes of the first and second convolutional layers, the number of filters in the first and sec-

ond convolutional layers and the untis of the BiLSTM network, respectively. Indeed, the deep

Table 1. Results for each base classifier on the training set assessed by four metrics.

Classifier ACC (%) MCC SN (%) SP (%)

Deep Forest 82 0.651 83.25 81.5

SVM 66.91 0.348 78.56 55.27

Random Forest 69.89 0.408 68.75 70.92

GDBT 66.72 0.338 74.16 59.28

Logistic Regression 65.93 0.327 72.41 59.47

KNN 62.14 0.243 64.65 59.64

LightGBM 66.76 0.339 74.19 59.37

XGBoost 65.46 0.311 70.96 59.97

https://doi.org/10.1371/journal.pcbi.1010779.t001
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learning-based sequence network is trained using the tensorflow version 2.5.1, and the param-

eter distribution of each hidden layer in the model adopts the default version of tensorflow. To

prevent overfitting, we apply the early stopping method in the training. The hyperparameters

of the ensemble machine learning classifier are divided into three components: the first are the

hyperparameters of Deep Forest(DF) [35], where we mainly tune the number of estimators in

each cascade layer, the number of trees in each estimator, the maximum depth of the cascade

forest, decide whether to connect additional predictors at the end, and the type of predictors.

Second, we optimize the kernel function in the SVM [34] as well as the values of gamma and

C. Third, there are the hyperparameters of random forest [36], which consists of a function

measuring the quality of the split and the number of estimators in each tree. Table 2 summa-

rizes the search space of the ensemble learning classifier and the optimal combination for each

hyperparameter.

2) Deep learning algorithms: To elucidate the effectiveness of our proposed model, we com-

pare SMFM with several deep learning models including CNN, RNN and ResNet-1D, a resid-

ual network with 1D convolution layers. For CNN, we mainly adjust the number of hidden

layers, the number of filters in each layer, the size of the convolution kernel and the learning

rate. For RNN, the learning rate and the number of units in hidden layers are selected to opti-

mize RNN. For ResNet-1D, the number of convolution blocks and the activation function are

tuned to achieve the best performance. Hyperparameters tuning of these models is performed

by grid search.

3) Machine learning algorithms: In terms of machine learning algorithms, XGBoost [38],

LightGBM [39], SVM [34], Random Forest [36], Logistic Regression [40], KNN [41] and

GBDT [42] are employed to compare performance to SMFM. The version of XGBoost [38] is

1.5.1, the version of LightGBM [39] is 3.3.1, and the rest of the model is implemented under

the scikit-learn package [43]. In our experiments, we utilize the grid search method to find the

optimal parameters for each model.

E. Evaluation metrics

We use accuracy (ACC), Matthews correlation coefficient (MCC), sensitivity (SN), and speci-

ficity (SP) to evaluate the enhancer identification performance of our models.

For DNA enhancer identification, the prediction results can be divided into four categories:

true positive (TP), false positive (FP), true negative (TN) and false negative (FN). ACC is the

ratio of the number of correctly classified samples to the number of all samples, which most

Table 2. Best combination of hyperparameters for each classifier.

Base classifier Search space Best combination

Deep Forest ‘n_estimators’: {50, 55, 60, 65}; {65, ‘True’, ‘lightgbm’, 30, 25}

‘use_predictor’: {‘True’, ‘False’};

‘predictor’: {‘xgboost’, ‘lightgbm’, ‘forest’};

‘max_layers’: {10, 20, 30, 40};

‘n_trees’: {20, 25, 30}

SVM ‘C’: {5, 10, 15, 20}; {5, 1e-3, ‘poly’}

‘gamma’: {1e-3, 5e-3, 1e-4};

‘kernel’: {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’};

Random Forest ‘n_estimators’: {60, 65, 70, 75}; {75, ‘gini’}

‘criterion’: {‘gini’, ‘entropy’}

https://doi.org/10.1371/journal.pcbi.1010779.t002
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intuitively represents how well a model performs in correctly classifying samples as follows:

ACC ¼
TP þ TN

TP þ FPþ TN þ FN
:

SN is the proportion of true positive samples classified as positive, which characterizes the sen-

sitivity of the model to positive samples.

SN ¼
TP

TPþ FN
:

As opposed to SN, SP represents the sensitivity of the model to negative samples, i.e., the pro-

portion of true negative samples among those classified as negative.

SP ¼
TN

TN þ FP
:

MCC is a metric applied to measure the balanced performance of a binary classification model

that considers simultaneously TP, TN, FP and FN to obtain a fair result when an imbalance

exists in the dataset:

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

p :

Indeed, MCC characterizes the correlation coefficient between the actual and the predicted

classifications, with a value of 1 indicating that the model achieves a perfect performance of

the problem, and a value of -1, indicating that the classifier performs even worse than a ran-

dom prediction.

Results and discussion

We carried out several experiments to elaborate the effectiveness of our proposed algorithm.

At first, we performed ablation experiments on a variety of biological features using the train-

ing set to demonstrate the superiority of the features we use. On this basis, we also compared

SMFM with some classic deep learning networks and machine learning models. In addition,

to elucidate the importance of the dynamic semantic information in the model, we compared

the performance of EnhancerBERT models based on different k-mers used to tokenize the

enhancer sequences. Moreover, we used an independent test set to compare the performance

of SMFM to already existing enhancer prediction models to further investigate the superior

performance of SMFM. Finally, we performed motif and interpretability analysis based on the

EnhancerBERT attention in SMFM.

A. Multi-source feature descriptors importance analysis

To begin with, we compared the performance of different types of features including multi-

source biological feature-encoding and EnhancerBERT on SMFM, and the results are pre-

sented in Fig 3A, where we see that the fusion of the two feature types is better than the indi-

vidual feature alone. The values of the evaluation metrics of the model after the fusion of

the two features were 84.93% ± 0.017, 0.698 ± 0.034, 84.35% ± 0.027, and 85.62% ± 0.026,

respectively.

To further verify the effectiveness of the components including Positional gapped k-m-

tuple pairs (PGKM), Pseudo K-tuple nucleotide composition (PseKNC), Nucleotide physico-

chemical properties (NPCP), and their combinations in the multi-source biological feature

encoding methods, we performed ablation experiments on them. Specifically, four different
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experiments were conducted to compare the result of removing each of the four encoding

methods from the feature set. The experimental results are shown in Fig 3B. Each individual

feature in the figure represents the performance obtained after removing the particular feature.

Having all features gets the highest metric values for all four metrics. It is worth mentioning

that the stability of the ablated model (with ACC standard deviation value of 0.041) is lower

than that of the complete model (with ACC standard deviation value of 0.017) in the cross-val-

idation, indicating that using multi-source biological features, SMFM is able to capture diver-

gent aspects of sequences to support prediction.

In addition, to demonstrate the effectiveness of our proposed multi-source feature selec-

tion, we compared our model with different feature selection methods that replace the multi-

source feature selection of SMFM to conduct a fair gcomparison. The experimental results are

presented in Fig 3C, and confirm that the refined features generated by our method brings a

Fig 3. (a) shows the experimental results of ablation of two groups of feature encodings on SMFM, where the fusion of the two feature types achieves best performance;

(b) Ablation experiment of multi-source biological features in SMFM, showing percentage of variance of each ablation experiment; (c) illustrates performance of different

feature selection methods, where multi-source feature selection can select feature set better than other feature selection methods; (d) compares the specific effects of gap

values of PGKM features on the final performance; as the gap value increases, the performance increases.

https://doi.org/10.1371/journal.pcbi.1010779.g003
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significantly better performance than the other feature selection methods. After training, the

features encoded by our method reached an ACC of 84.93% ± 0.017 and MCC of 0.698 ±
0.034, which is about 4.37% and 6.79% higher, respectively than the best performance of any of

the other feature selection methods.

In addition, we analysed the effect of different gap values in the positional gapped k-m-

tuple pairs (PGKM), by testing the performance of the PGKM features with gap values of

1,2,3,4 and 5, respectively. The results generated for each gap value are illustrated in Fig 3D

that indicates that the performance obtained for gap = 5 is optimal since the features with

higher gap values encapsulate features with lower gap values, i.e., features generated for

gap< 5 are a subset of gap = 5, which assists in retaining a portion of the short-distance depen-

dencies in enhancer sequences.

B. The impact of different natural language processing techniques

To evaluate the effect of k values on the identification performance of our model, we tokenized

sequences into 3mers, 4mers, 5mers and 6mers to fine-tune different EnhancerBERT models,

and separately tested the performance of the dynamic semantic information generated by

these different EnhancerBERT models for comparison. The results are summarized in Fig 4A.

Through cross validation, we observe that the performance of the EnhancerBERT models are

75.75% ± 0.023, 75.00% ± 0.027, 73.50% ± 0.028, and 74.50% ± 0.021, respectively. To further

explore the reason why the 3mer-model achieves the best performance, we calculated the Pear-

son correlation coefficient between every two features in the k-mer EnhancerBERT and clus-

tered the features based on this to obtain the corresponding correlation heat map. Fig 4C

shows the correlation heatmaps with different dynamic semantic information, where it can be

observed that 3mers provides the best correlation compared to the other groups, both in terms

of degree of correlation and aggregation. From the point of view of performance and correla-

tions, we choose 3mers for the fine-tuning and performed dynamic semantic information

extraction of the enhancer sequences.

To investigate the advantage of applying a dynamic semantic information to SMFM, we

conducted an experiment comparing EnhancerBERT to existing several static NLP methods,

including Word2Vec, FastText, GloVe and Doc2Vec. The results are summarized in Fig 4B.

Dynamic semantic information from EnhancerBERT obtains the highest values for all four

metrics (ACC of 84.93% ± 0.017 and MCC of 0.698 ± 0.034), well above the metric values of

Word2Vec (78.11% ± 0.025 and 0.566 ± 0.046), GloVe (78.37% ± 0.025 and 0.571 ± 0.049),

Doc2Vec (78.23% ± 0.026 and 0.568 ± 0.047) and FastText (77.96% ± 0.021 and 0.562 ± 0.056).

Further, we compared the performance results of EnhancerBERT with other static NLP meth-

ods using the t-test, with p-values of 1.9e-2 (Word2Vec), 2.1e-2 (Doc2Vec), 2.2e-2 (GloVe)

and 1.8e-2 (Fasttext), respectively, indicating that improvements were significant with Enhan-

cerBERT. We can observe that there is some difference in the sensitivity of the static NLP fea-

tures to positive and negative samples, and dynamic semantic information can eliminate the

difference. Benefit from fine-tune process and multi-head self-attention mechanism, dynamic

semantic information contain more relationships about the token position and the dependen-

cies between each nucleotide and its context, resulting in better performance than static NLP

technologies. Based on the results, EnhancerBERT model can fully capture the general global

contextual characteristics of enhancer sequences.

C. The Ablation Analysis of the SMFM Model

To illustrate the necessity of each module in the SMFM, we performed an ablation analysis for

each of its modules. Specifically, we ablated each component of SMFM, including the deep
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Fig 4. (a) ACC performance of different k-mer EnhancerBERT models, where the 3mer-model achieves the best performance over all

models; (b) values of four metrics for assessing performance of EnhancerBERT versus the different NLP technologies, showing that

dynamic semantic information in EnhancerBERT has the best characterization capability; (c) compares degree of correlation of different

k-mer dynamic semantic information using Pearson correlation coefficient, 3mer-model has the clearest correlationship between features,

which support SMFM in identifying enhancers.

https://doi.org/10.1371/journal.pcbi.1010779.g004

PLOS COMPUTATIONAL BIOLOGY SMFM

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010779 December 15, 2022 15 / 33

https://doi.org/10.1371/journal.pcbi.1010779.g004
https://doi.org/10.1371/journal.pcbi.1010779


learning-based sequence network fusing CNN and RNN, the stack-based ensemble learning

classifier, and each base classifier inside its stack, resulting in the following six scenarios: 1)

Remove multi-source feature selection from SMFM and the original multi-source biological

features are fed directly into the model, called SMFMNFS; 2) Remove the ensemble machine

learning classifier from SMFM and directly use the deep learning-based sequence network for

prediction, called SMFMNensemble; 3) Remove the deep learning-based sequence network from

SMFM, called SMFMNDL; 4) Remove SVM from the ensemble machine learning classifier,

called SMFMNSVM; 5) Remove deep forest from the ensemble machine learning classifier,

called SMFMNDF; 6) Remove random forest from ensemble machine learning classifier, called

SMFMNRF. The experimental results are summarized in Fig 5 of assessment by four evaluation

metrics. We can observe in Fig 5, that SMFM outperforms all the altered cases (highest ACC

value of 84.93% ± 0.017, MCC value of 0.698 ± 0.034, SN value of 84.35% ± 0.027 and SP value

of 85.62% ± 0.026). By comparing SMFMNFS to SMFM, we see that the feature selection mod-

ule in SMFM not only improves the prediction performance of the model, but also reduces the

number of features of multi-source biological information from 14,891 to 472, thereby signifi-

cantly reducing the computational time of the model. Comparing SMFMNDL to SMFM, we see

SMFM shows better performance, also indicating that the deep learning-based sequence net-

work can learn potential features more effectively and capture the implicit relationships and

long-distance dependencies, which has a positive impact on the overall performance of the

algorithm. Moreover, from the results of SMFMNensemble, SMFMNSVM, SMFMNDL and

SMFMNDF, it can be seen that the ensemble of these three machine learning classifiers has

a significant impact on the final identification results. In addition, the sensitivity (SN) and

specificity (SP) performance analyses in Fig 5 demonstrates that SMFMNRF and SMFMNDF are

comparable; nevertheless, the bias for positive and negative samples is notably different. This

phenomenon can be removed when RF, DF and SVM are combined for identification, justify-

ing the combining of these three classifiers. In summary, each module of SMFM is reasonable

and valid.

D. SMFM is superior to other deep learning architectures

To demonstrate the effectiveness of our proposed SMFM, we compared our proposed model

with several deep learning architectures including CNN architectures, BiLSTM networks with

attention mechanism and ResNet-1D, on the same dataset. Fig 6A displays the results of the

different architectures, showing SMFM obtains ACC and MCC values of 84.93% ± 0.017 and

0.698 ± 0.034, respectively, which is the best performance of all four models. For the other

models, CNN, BiLSTM and ResNet-1D obtained ACCs of 80.93% ± 0.028, 80.15% ± 0.021 and

81.87% ± 0.016 and MCCs of 0.61 ± 0.056, 0.60 ± 0.044 and 0.64 ± 0.031, respectively, indicat-

ing that the learning capability of SMFM is much stronger than a single deep learning model

as it synergizes deep learning and machine learning. Moreover, we also note that the results of

SMFM are 84.35% ± 0.027 and 85.62% ± 0.026 for SN and SP, respectively, while the results of

the other three deep learning models are 80.51% ± 0.075, 77.88% ± 0.024, and 82.82% ± 0.027

for SN and 79.41% ± 0.054, 82.43% ± 0.030, and 80.93% ± 0.042 for SP, revealing that SMFM

better addresses the large variability between sequences compared to the other three single

deep learning models.

E. SMFM can provide better performance than several machine learning

models

To verify further the effectiveness of SMFM in enhancer identification, we compared our

proposed model to seven machine learning models, including XGBoost, LightGBM, SVM,
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Random Forest (RF), Logistic Regression (LR), KNN, and GBDT. We performed a grid search

for each algorithm to achieve the best performance on the dataset, and the detailed informa-

tion on the tuning parameters of each algorithm can be found in Table 3. As can be seen in Fig

6B, SMFM achieved the best results in all four metrics. SMFM achieved 4.41%, 8.69%, 5.73%,

Fig 5. Performance of the different SMFM ablated architectures of SMFM, with ACC, SN and SP values as percent units.

https://doi.org/10.1371/journal.pcbi.1010779.g005
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and 2.27% higher values respectively than the other machine learning models for the four met-

rics. The significant improvement in MCC demonstrates the higher stability of SMFM com-

pared to general machine learning models. Notably, after SMFM, the GDBT classifier obtained

better results than the rest of the models, further revealing the effectiveness of ensemble learn-

ing in enhancer classification.

F. Comparison with existing enhancer identification methods

To further demonstrate the generalization performance and stability of SMFM, we compared

SMFM with a number of existing enhancer identification models including iEnhancer-2L

[14], EnhancerPred [15], iEnhancer-EL [16], iEnhancer-XG [18], iEnhancer-EBLSTM [22],

iEnhancer-ECNN [19], BERT-2DCNNs [24], and Enhancer-IF [21] on an independent test

set. iEnhancer-2L [14] is a two-layer classifier built on an SVM model, where the first layer is

used to identify whether the sequence is an enhancer and the second layer classifies the

strength of the enhancer sequence. EnhancerPred [15] also uses an SVM model to build the

corresponding prediction model. iEnhancer-EL [16] applies the ensemble learning idea to

obtain a two-layer ensemble classifier. iEnhancer-XG [18] is a two-layer enhancer identifica-

tion model built using XGBoost [38] and five classical physicochemical features. iEnhancer-

EBLSTM [22] and iEnhancer-ECNN [19] bring deep learning to the enhancer identification

Fig 6. (a) exhibits performance of different deep learning architectures in comparison with SMFM, each box represents four metric values of different architectures; (b)

shows performance of different machine learning algorithms in contrast to SMFM, red line shows average value of four metric values of each method; (c) indicating

performance of SMFM compared to current state-of-the-art models of enhancer identification on an independent test set, each sub-figure represents comparison result of

one of four metrics used in experiments.

https://doi.org/10.1371/journal.pcbi.1010779.g006
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problem by building ensemble deep learning networks. BERT-2DCNNs [24] construct a 2D

CNN network using sequence features extracted from the pre-trained BERT models.

Enhancer-IF [21] is an approach for investigating the cell specificity of enhancers using five

base classifiers to construct the enhancer identification model on eight different cell lines. The

results of the comparative analysis are shown in Fig 6C and Table 4. The performance results

of each method on the training set are shown in S1 Table.

SMFM achieved the highest performance in all four metrics with values of 82% (ACC),

0.651 (MCC), 83.25% (SN) and 81.5% (SP) on the test set, which proves that SMFM has a supe-

rior ability to identify DNA enhancers. Compared to BERT-2DCNNs [24], EnhancerBERT in

Table 3. Reference parameters for each of the machine learning algorithms.

ML algorithm Search space Best combination

XGBoost ‘max_depth’: {4, 6, 8, 10}; {6, 0.9, 0.5, 0.1}

‘subsample’: {0.5, 0.7, 0.9, 1.0};

‘colsample_bytree’: {0.5, 0.7, 0.9, 1.0};

‘learning_rate’: {0.05, 0.1, 0.15, 0.2};

SVM ‘C’: {5, 10, 15, 20}; {5, 1e-3, ‘poly’}

‘gamma’: {1e-3, 5e-3, 1e-4};

‘kernel’: {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’};

LR ‘penalty’: {‘l1’, ‘l2’, ‘elasticnet’, ‘none’}; {‘l2’, ‘liblinear’, 100}

‘solver’: {‘liblinear’, ‘lbfgs’, ‘sag’, ‘newton-cg’};

‘max_iter’: {50, 100, 150, 200};

KNN ‘weights’: {‘uniform’, ‘distance’}; {‘distance’, 35, ‘euclidean’}

‘leaf_size’: {25, 30, 35, 40};

‘metric’: {‘euclidean’, ‘manhattan’, ‘chebyshev’};

GDBT ‘n_estimators’: {50, 75, 100, 125} 100, 0.8, 0.6

‘learning_rate’: {0.2, 0.4, 0.6, 0.8}

‘subsample’: {0.5, 0.6, 0.7, 0.8}

RF ‘n_estimators’: {60, 65, 70, 75} {60, ‘gini’}

‘criterion’: {‘gini’, ‘entropy’}

LightGBM ‘learning_rate’: {0.05, 0.07, 0.09, 0.1} {0.1, 100, 4, 0.9}

‘n_estimators’: {50, 75, 100, 125}

‘max_depth’: {3, 4, 5, 6}

‘subsample’: {0.8, 0.9, 1.0}

https://doi.org/10.1371/journal.pcbi.1010779.t003

Table 4. Results of each model on the independent test set using four metrics.

Methods ACC (%) MCC SN (%) SP (%)

SMFM 82 0.651 83.25 81.5

iEnhancer-2L 73 0.460 71 75

EnhancerPred 74 0.480 73.5 74.5

iEnhancer-EL 74.75 0.496 71 78.5

iEnhancer-XG 75.75 0.515 74 77.5

BERT-2DCNNs 75.6 0.514 80 71.2

iEnhancer-EBLSTM 77.2 0.534 75.5 79.5

iEnhancer-ECNN 76.9 0.537 78.5 75.2

Enhancer-IF 79.3 0.585 80.5 78.7

https://doi.org/10.1371/journal.pcbi.1010779.t004
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SMFM exhibits a better representation capability. In contrast to several machine learning-

based algorithms, SMFM can extract implicit relationships and long-distance dependencies

from the original features, which makes the effective information more aggregated. As

opposed to the various deep learning-based algorithms, SMFM makes predictions based on

ensemble machine learning, which incorporates the diverse perspectives of features. Moreover,

it is worth mentioning that the performance results of SMFM on the training and test sets are

the closest, while the other methods have a larger gap [14–16, 18], which proves that SMFM is

able to maintain some stability between datasets containing different information. Based on all

the above, SMFM is better tailored to enhancer identification than the existing methods, and

has great potential for exploration of enhancer sequences.

G. Motif Analysis learned from SMFM

To elucidate the ability of SMFM to extract enhancer motifs, we compared our proposed

SMFM with BPNet [44] on this enhancer dataset. Indeed, BPNet is a general and interpretable

deep learning model for learning transcription factor (TF) binding motifs in DNA sequences,

and then the learned parameters of BPNet are fed into DeepLIFT and TF-MoDISco to detect

the motifs. To conduct a fair comparison, similar to BPNet, we also first input the learned

parameters of SMFM to DeepLIFT [45] to backtrack signals from the last layer of the two mod-

els to calculate the contribution scores of different bases in a sequence to the final identifica-

tion result, respectively, thus identifying DNA fragments with high contribution scores from

the complete sequence. After that, the TF-MoDISco tool [46] was used to scan and cluster the

obtained fragments and highlight the significant regions within the sequences by the feature

importance scores, and motifs are then aggregated by aligning fragments from each cluster.

On this basis, we finally identified 56 motifs with widths ranging from 15 to 62 for SMFM

while 47 motifs with widths ranging 11 to 69 for BPNet.

To further verify the validity of the motifs captured by the two algorithms, we extracted the

corresponding position weight matrices (PWM) from fragments clusters identified by SMFM

and BPNet, respectively and visualized the motifs according to the sequence background of

enhancer dataset (0.284 for A and T and 0.216 for C and G). Then, we input the PWMs of the

two sets of motifs obtained by SMFM and BPNet into the TOMTOM algorithm [47] separately

for comparison with experimentally verified motifs in the transcription factor motif database,

JASPAR CORE [48] with a significant E-value threshold of 0.05. S2 Table. summarized the

comparison of the meaningful motifs detected by SMFM and BPNet, SMFM finally obtained

45 sets of comparison results corresponding to 28 motifs with different IDs in the database,

while BPNet obtained 28 sets corresponding to 17 motifs with different IDs. From the table,

we observe that the meaningful motifs obtained by SMFM captured the majority of the motifs

obtained by BPNet. Moreover, SMFM is able to detect more normal and reverse complemen-

tary motifs compared to BPNet (e.g., MA1274.1, MA1403.1, MA0528.1, MA0538.1, etc.). In

summary, BPNet is a motif detection tool for a wide range of gene sequences, while SMFM

integrates dynamic semantic information for enhancer sequences and multi-source biological

properties, thus providing a more comprehensive performance for detecting motifs in enhanc-

ers than BPNet.

For easy reference, we put the results of the comparison of the motifs obtained from SMFM

and BPNet with those from the JASPAR database in S3 and S4 Tables, respectively, which are

also available in the SMFM web server http://39.104.69.176:5010/. In addition, the codes of dif-

ferent computational algorithms for detecting motifs are available at https://github.com/no-

banana/SMFM-master.
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H. Interpretability analysis of SMFM

To verify the effectiveness of extracting dynamic semantic information from EnhancerBERT,

as shown in Figs 7 and 8, we explored different aspects of attention weights in EnhancerBERT.

In the top half of Fig 7, we provide all the attention heads corresponding to a given sequence

Fig 7. Top half shows a bird’s eye view of the attention distribution of the different attention heads in two different layers of EnhancerBERT, the

columns represent attention heads of each EnhancerBERT layer, and rows represent layers of EnhancerBERT. With iterating of the

EnhancerBERT layer, the attention scores of each attention head gradually concentrate in some key regions of input enhancer sequence; Bottom half

visualizes the process of attention score calculation, where first and second columns represent Query vector and Key vector, respectively. The framed

up vectors show the two most relevant tokens in the enhancer sequence.

https://doi.org/10.1371/journal.pcbi.1010779.g007
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Fig 8. (a) shows the t-SNE results of deep learning-based sequence network for different hidden layers of the dynamic implicit relation and long-

distance dependency process in dynamic contextual features; (b) The top 20 features of dynamic semantic information, the higher the SHAP value,

the greater the influence of the feature in the classification; (c) Correlations among the top 20 features of dynamic semantic information; (d) The

top 20 features of the multi-source biological features having the highest impact on classification; (e) Feature rankings for enhancer identification,

where the two sub-figures above are ranked based on F1 and ACC metrics, both rankings are measured based on random forest classifier building

under scikit-learn package. The two sub-figures at the bottom are ranked using RFE and UFS feature selection methods.

https://doi.org/10.1371/journal.pcbi.1010779.g008
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in the first attention layer (shown in blue) and the fourth attention layer (shown in red) of

EnhancerBERT. It can be seen that after two iterations of the layers, the attention scores of the

attention heads in each layer gradually accumulate in some key regions of the sequence that

have a large influence on the identification decision.

The bottom half of Fig 7 demonstrates how the attention head of each layer of Enhancer-

BERT generated the corresponding attention scores for a given sequence; where Query q and

Key k represent the Query vector and Key vector in the model. Based on these, the attention

scores between different tokens can be calculated according to the formula described in the

EnhancerBERT section. In this figure, the positive values are displayed in blue, with higher val-

ues becoming darker, while negative values are displayed in orange, with lower values becom-

ing darker. Here, we choose the attention scores of the sequence token ‘ATG’ calculated by the

first attention head of the last layer of EnhancerBERT as an example, and observe that the

attention values between token ‘ATG’ and other tokens in the selected attention head do not

decay noticeably with increasing distance, indicating that EnhancerBERT preserves the long-

distance dependence information and short-distance information in the sequence successfully.

In addition, we explored the contribution of refined multi-source biological features and

implicit dynamic semantic information to enhancer identification. The analysis results are

shown in Fig 8. To better explain the learning process of dynamic semantic information in

SMFM, we extracted the output of each hidden layer in the deep learning-based sequence net-

work during the training process and projected each hidden vector onto a two-dimensional

view using t-SNE. As shown in Fig 8A, the first subplot represents the t-SNE results of the orig-

inal dynamic semantic information that can be understood as the entire sample points not

showing any representative clusters. The second subplot displays the t-SNE result after two lay-

ers of CNN processing in the deep learning-based sequence network, where the hidden vectors

have a regular distribution. The third subplot reveals the t-SNE results after processing by

BiLSTM, where we observed a more obvious clustering distribution, indicating that the

implicit relationships and information between features have been adequately captured.

Finally, we feed the implicit vector into a softmax classifier and yielded the fourth t-SNE sub-

plot with clear classification results. Fig 8B reflects the impact of each feature of the top 20 fea-

tures of the implicit dynamic semantic information on identification of different DNA

enhancer sequences, where higher SHAP values indicate that the particular feature plays a

more positive role in the final prediction decision. Fig 8C shows relationships between the top

20 features, where red indicates positive correlation between the features of the row and col-

umn, while purple indicates negative correlation. It can be seen that after learning of deep

learning-based sequence network in SMFM, the correlation between features is further ampli-

fied; for instance, feature 6 has significant positive correlation with features 29, 26 and 10,

which indicates these features are synergistic. Similar conclusions can be drawn between fea-

tures 29, 26 and 31. Fig 8D reflects the influence of each feature of the top refined biological

features, where red color indicates a positive effect: the higher the feature value of the feature,

the more likely the sequence is predicted to be an enhancer, and the blue color indicates a neg-

ative effect: where the higher the feature value, the more likely the sequence is predicted to be a

non-enhancer. We see that different features may have various contributions to final output.

Therefore, for the best characterization of enhancer sequences it is better to fuse features

together. In the next step, we performed single feature ranking analysis on the top 20 features

of the refined multi-source biological features by using the random forest model. Fig 8E sum-

marizes the results, where the two histograms at the top show features of the top 20 SHAP

value ranking based on ACC and F1 metrics, respectively. Besides, to obtain the ranking of fea-

ture importance for different views, we ranked the feature importance of the refined multi-

source biological features using recursive feature elimination [49] and univariate feature
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selection [50] (as shown in the two histograms at the bottom of Fig 8E). It can be seen that the

feature ranking based on SHAP values is totally different from feature ranking based on met-

rics and feature importance, indicating that there is a large differential expression when char-

acterizing enhancer sequences using only the physicochemical and sequential features. This,

on the other hand, reflects the necessity and validity of extracting dynamic semantic informa-

tion from EnhancerBERT to alleviate this differential expression.

I. SMFM enables efficient characterization of placental-specific enhancers

The placenta is an essential organ for a successful pregnancy and has a variety of basic func-

tions, including the delivery of nutrients to the developing fetus and the protection of the fetus

from infectious diseases [51]. Research also indicates that placenta dysfunction is related to

pregnancy complications—preeclampsia and preterm birth (PTB), etc [52–55]. Precise control

of gene expression is critical for fetal development during pregnancy, and gene regulatory

enhancers play a mediating role in controlling gene expression and contribute significantly to

development and disease [56–58]. Therefore, the identification of active enhancers in placental

tissue is extremely crucial. Here we designed an experiment for 4,562 placental enhancers [59]

and then compared the experimental results of SMFM with other existing enhancer methods.

To conduct a fair experiment in the placental enhancers task, we did not perform targeted

parameter tuning for all methods used for comparison. We directly used the best hyperpara-

meters of each method obtained from the previous experimental analysis, which can better

illustrate the robustness of our algorithm. In our study, we first use 4,562 non-enhancers as

negative samples, and utilized different methods to identify placental enhancers. In a second

step, we replaced negative samples with the same number of enhancers from the human

embryonic kidney cell line (HEK293) to test the ability of different methods to distinguish

enhancers in placental tissue. We tested the performance of SMFM, iEnhancer-XG [18], iEn-

hancer-ECNN [19], and BERT-2DCNNs [24] in this experiment, and the experimental results

are summarized in Fig 9. In the first experiment, SMFM identified enhancers very well and

achieves the highest values for the five metrics, which are 0.985 of AUC, 0.962 of ACC, 0.923

of MCC, 0.97 of SN and 0.953 of SP. In the second experiment, SMFM also showed strong per-

formance in distinguishing enhancers from different tissues with 0.903 of AUC, 0.827 of ACC,

0.655 of MCC, 0.846 of SN and 0.808 of SP. Although the performance of each method

decreased in the task of distinguishing placental enhancers from those in other tissues, SMFM

remained the most stable and highest performing method.

After obtaining results of SMFM in the first experiment, we visualized the samples classified

as placental enhancer by SMFM on 22 human autosomes and compared them with the distri-

bution of known placental enhancers on these chromosomes from the FANTOM5 atlas

[60]. The visualization and comparison results are demonstrated in Fig 10. It can be observed

that the distribution of positive samples obtained by SMFM (shown in black) is generally con-

sistent with the distribution of placental enhancers on chromosomes in the FANTOM5 atlas

(shown in red), indicating SMFM brings accurate and efficient characterization of placental

enhancers.

We then carried out several experiments to validate the relevance of the placental enhancers

identified by SMFM from a gene regulation perspective. We first conducted the enrichment

analysis including gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG)

enrichments for genes that are regulated by the placental enhancers identified by SMFM.

Fig 11A shows the top 20 types of GO enrichment ordered by p-values. It is worth noting

that the top five enriched biological processes of GO are gland development (GO:0048732),

wnt signaling pathway (GO:0016055), cell-cell signaling by wnt (GO:0198738), wound healing
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(GO:0042060) and muscle tissue development (GO:0060537). It can be seen that the majority

of enriched biological processes are associated with various tissue development pathways,

therefore highly related to development of placenta, successful pregnancy and embryonic

development [61–64]. In addition, the top five enriched cellular components are cell-cell junc-

tion (GO:0005911), cell leading edge (GO:0031252), cell-substrate junction (GO:0030055),

focal adhesion (GO:0005925) and transcription regulator complex (GO:0005667). The top five

enriched molecular functions are GTPase regulator activity (GO:0030695), nucleoside-triphos-

phatase regulator activity (GO:0060589), GTPase activator activity (GO:0005096), DNA-bind-

ing transcription activator activity (GO:0001228) and RNA polymerase II-specific DNA-

binding transcription factor binding (GO:0061629). In addition, the result of the KEGG

Fig 9. (a) Performance of first step of different enhancer identifying methods compared to SMFM, where the left sub-figure illustrates the AUC performance of SMFM,

iEnhancer-XG, iEnhancerECNN and BERT-2DCNNs; (b) shows performance of the second step experiment using different methods.

https://doi.org/10.1371/journal.pcbi.1010779.g009
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enrichment analysis is summarized in Fig 11B. The left sub-figure displays the top 20 of KEGG

enrichments ordered by p-values. The pathways can also be annotated and classified as func-

tional categories of KEGG at three different levels, as shown in the right sub-figure, where we

learn that the pathways can be divided into four categories for level one, including cellular pro-

cesses, environmental information processing, human diseases and organismal systems, and

different functional categories for level two. Among the pathways, most are critical for early

embryonic development. For example, Rap1 signaling pathway, which controls important pro-

cesses such as cell adhesion, cell-cell junction formation and cell polarity. In addition, the

Fig 10. Visualization of placental enhancers identified by SMFM and FANTOM5 placental enhancers on hg19 autosomes, where red lines

indicates placental enhancers from FANTOM5 atlas, the identified placental enhancers are shown using black lines. The red regions in autosomes

are centromeres, and white regions and regions colored from gray to black represents Giemsa negative and positive regions, respectively. The highly

variable and tightly constricted regions on the p-arms of 13, 14, 15, 21, 22 chromosomes that cannot be predicted are shown as blue and gray.

https://doi.org/10.1371/journal.pcbi.1010779.g010
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regulation of actin cytoskeleton is responsible for regulating the formation of new individuals

from embryonic cells [64, 65]. Based on the above analysis, we can conclude that the genes reg-

ulated by the placental enhancers identified by SMFM are highly associated with embryonic

development and successful pregnancy, which further validates the effectiveness of SMFM for

discerning placental enhancers.

J. SMFM outperforms existing methods on a large-scale dataset

To further validate the predictive ability of SMFM, we investigated its ability on a large-scale

dataset from the candidate cis-Regulatory elements (cCREs) in BENGI [66]. To construct this

dataset, we collected 30,000 enhancer-like sequences from human cCREs that were longer

than 400 bp but shorter than 600 bp and truncated them to 400 bp. Then, we excluded the

homologous sequences using the CD-HIT tool with a sequence similarity threshold of 60%.

Finally, we obtained 26160 sequences as positive samples in our dataset. Of note, due to the

shortage of publicly available high-confidence datasets of non-enhancer sequences, inspired

by Dao et al [67], we sampled each pair of human cCREs more than 400 bp apart as negative

samples. Then, we removed homologous sequences that shared>60% of their bases with other

Fig 11. Genomic enrichment analysis of placental enhancers identified by SMFM. (a) The top 20 categories of gene ontology (GO) analysis ordered by p-values,

including biological process, cellular component, molecular function. (b) shows the top 20 KEGG enrichment pathways ordered by p-values and KEGG classified by

different functional category levels of KEGG.

https://doi.org/10.1371/journal.pcbi.1010779.g011
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non-redundant negative and positive samples. Finally, the dataset contained 26160 positive

samples and 26160 negative samples with a sample length of 400bp.

For comparison on this large dataset, we compared the SMFM algorithm with other base-

line methods, including iEnhancer-XG, iEnhancer-ECNN, BERT-2DCNNs, several deep

learning and machine learning methods on this dataset. Note that we did not tune the hyper-

parameters of each method for this dataset in order to better validate the robustness of each

method. The experimental results are summarized in Fig 12. It can be seen that SMFM

achieved the best performance of all the methods on this large-scale dataset (0.808 for AUC,

0.822 for ACC, 0.655 for MCC, 0.834 for SN, and 0.810 for SP), indicating that SMFM has

stronger generalization ability compared with other comparative methods. Moreover, in terms

of sensitivity and specificity, SMFM is more balanced for identifying positive and negative

samples in the dataset, while the rest of the methods are biased towards the classification of

positive samples. In addition, we observed that the method ranking second was iEnhancer-

ECNN [19], a method that also uses ensemble learning, indicating that ensemble machine

learning classifiers are more accurate at predicting regulatory DNA enhancer sequences. In

summary, the experiment also validates the powerful predictive ability of our model.

K. The SMFM web server

To facilitate use by researchers, we developed a web server for SMFM that allows identifying

whether a sequence is an enhancer or not, and this prediction webserver link is available at

http://39.104.69.176:5010/. The web server guides users in generating dynamic semantic infor-

mation and multi-source biological features corresponding to their dataset, and then the user

Fig 12. Performance of other enhancer identification methods compared to SMFM on a large-scale dataset, where the left panel illustrates the AUC performance

of SMFM, baseline methods, classical deep learning networks, and multiple machine learning classifiers. The right panel shows the four performance measure metrics

(ACC, MCC, SN and SP) for each methods.

https://doi.org/10.1371/journal.pcbi.1010779.g012
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receives the user-generated files to make predictions on the dataset. In addition, the success-

fully submitted jobs and prediction results are sent to the contact address of the users, includ-

ing the results of each base classifier and the final results using SMFM. Furthermore, we

provide the datasets used in this study, including the training set and independent test set,

which can be downloaded directly from the web server. Finally, if users are interested, they can

also download the corresponding original EnhancerBERT models from the web server.

Discussion

In this study, we propose SMFM, a novel method for identifying and characterizing DNA

enhancers using a stacked multivariate fusion model. To gather all the useful information

from enhancer sequences, the multi-source biological features and dynamic semantic informa-

tion are extracted and fused to construct feature schemes with excellent representation. After

that, a deep learning-based sequence network synergized by CNN and BiLSTM networks is

proposed to retrieve the implicit relations and long-distance dependencies. Then, an ensemble

machine learning classifier was developed for training based on the refined multi-source fea-

tures and dynamic implicit relations obtained from the deep learning-based sequence network

to predict DNA enhancers in human cell lines. We evaluated SMFM on a benchmark set

including 1484 enhancers and 1484 non-enhancers, and then demonstrated the advantages of

SMFM over existing methods on an independent test set. In addition, by conducting motif

and interpretable analyses, we explain what SMFM has learned to achieve better performance,

while revealing how SMFM focus to key functional fragments of the enhancer sequences.

Meanwhile, we also designed an experiment to explore characterization ability of SMFM for

tissue-specific enhancers, and the analysis indicated that placental enhancers identified by

SMFM are effectively associated with embryo development and normal placental functions

such as nutrient transport.

However, there is still much room to improve. For example, the current graph neural net-

work achieved remarkable results in multiple fields, and we will attempt to model the DNA

sequence structure based on the obtained graph data. On the other hand, it will be interesting

to define the notions between language model and enhancer sequences to provide more bio-

logical interpretability, subject to data availability in the future.
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