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Abstract

A major challenge of genetic improvement and selection is to accurately predict individuals with the highest fitness in a population without
direct measurement. Over the last decade, genomic predictions (GP) based on genome-wide markers have become reliable and routine.
Now phenotyping technologies, including unoccupied aerial systems (UAS also known as drones), can characterize individuals with a data
depth comparable to genomics when used throughout growth. This study, for the first time, demonstrated that the prediction power of
temporal UAS phenomic data can achieve or exceed that of genomic data. UAS data containing red–green–blue (RGB) bands over 15
growth time points and multispectral (RGB, red-edge and near infrared) bands over 12 time points were compared across 280 unique
maize hybrids. Through cross-validation of untested genotypes in tested environments (CV2), temporal phenomic prediction (TPP), outper-
formed GP (0.80 vs 0.71); TPP and GP performed similarly in 3 other cross-validation scenarios. Genome-wide association mapping using
area under temporal curves of vegetation indices (VIs) revealed 24.5% of a total of 241 discovered loci (59 loci) had associations with multi-
ple VIs, explaining up to 51% of grain yield variation, less than GP and TPP predicted. This suggests TPP, like GP, integrates small effect
loci well improving plant fitness predictions. More importantly, TPP appeared to work successfully on unrelated individuals unlike GP.
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Introduction
To improve genetic gain, plant breeders must phenotype more

plants repeatedly during growth allowing higher selection inten-

sity, accuracy, and increased statistical power (Shi et al. 2016;

Araus et al. 2018; Lane and Murray 2021). High quality and quan-

tity phenomic data are essential to develop widely applicable pre-

diction models (e.g. phenomic predictions) to predict yield across

growing environments and conditions in the near future

(Bernardo 2021). To date, few phenomic data sets, approaches

and applications have been reported, especially those applied in

a breeding context.
Organismal fitness, such as terminal grain yield in crops, is a

cumulative response of genetics (G), the environment (E), man-

agement (M), and integrated GxExM interactions temporally

throughout growth. To predict cumulative fitness of an individ-

ual organism without direct measurement of that individual’s

fitness, proxies such as genetic markers are used, to link meas-

urements of relatives and predict fitness with breeding values.

Traditional best linear unbiased prediction (BLUP) derived breed-

ing values (Henderson 1975) were modified by Bernardo (1994)

where genotypic marker data of parental inbreds was combined

with the yield data of the related single cross hybrids to predict

yield performance of the single cross hybrids, known as genomic

BLUP (GBLUP). However, prediction accuracies dropped dramati-

cally when yield of unknown (previously untested) parental

lines-derived hybrids was predicted (Bernardo 1996a,b). Various
genomic-based statistical models have been developed after the
traditional GBLUP approach with advent of genomic technology
(Whittaker et al. 2000; Meuwissen et al. 2001; Endelman 2011).
These methods have been applied extensively as genome-wide
marker facilitated selection also known as genomic selection in
plants (Bernardo and Yu 2007). Predicting the performance of pre-
viously untested genotypes in both tested and untested environ-
ments remains the central problem in plant breeding selections,
and new approaches to address this challenge are needed.
Genomic selection to estimate genotype fitness, as measured by
terminal grain yield, relies on manually collected phenotype data
which is resource intensive to collect. Phenotypic characteristics
of cumulative complex traits are often not accurately predicted
in genomic selection (GS) because of (1) the different interplays of
genes on phenotype throughout different growth stages, (2) dif-
ferent effect sizes of the same genetic markers on phenotype of
complex traits at different growth stages, and (3) different sour-
ces of phenotypic variation of the complex traits at different
growth stages (Wu et al. 2004; Bac-Molenaar et al. 2015; Campbell
et al. 2017; Feldman et al. 2017; Anderson et al. 2019; Ward et al.
2019; Adak, Conrad et al. 2021; Adak, Murray, Anderson et al 2021;
Adak, Murray, Bo�zinovi�c et al. 2021). Tools that can inexpensively
evaluate individuals throughout growth, as they interact with
their environment, would therefore be a valuable addition to pre-
dicting an organism’s fitness. Unoccupied aerial systems (UAS)
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are now able to provide these insights, frequently evaluating indi-
viduals temporally throughout growth. However, to date, fitness
predictions from UAS alone have not been compared to the stan-
dard method of genomic prediction (GP). In applied breeding pro-
grams, GP and temporal phenomic prediction (TPP) both have
benefits but are not interchangeable. Both genomic and phe-
nomic prediction can decrease labor, time and resources, per
new elite variety developed. In the training of prediction models,
both require measurements (DNA for genomics, remote sensing
for phenomics) and a dependent variable, such as yield, mea-
sured across relevant germplasm and environments. After a pre-
diction model has been built, application differed. GP is most
valuable when seed is genotyped before planting, reducing plot
number and cost to maintain and harvest the crop. Genotyping
on each non-segregating inbred or hybrid entry only needs to be
done once. Genotyping before planting works in industry breed-
ing programs where dedicated seed DNA extraction and genotyp-
ing pipeline resources exist but is challenging in the public sector
where such infrastructure is rare. If GP results are obtained after
the seed is planted, it is still beneficial for breeder selection, but
does not substantially decrease costs. Also, in general, the mea-
sured dependent trait (e.g. yield data by combine) is likely more
reliable for the genotypes behavior in that environment
(Bernardo 2021). GP can estimate the G component well but
largely cannot predict GxE or E in untested environments without
additional information such as weather data or known similarity
between environments, as well as crop modeling (Jarqu�ın et al.
2014; Jarquin et al. 2021; Rogers and Holland 2021). Undertaking
GP is valuable also for the ancillary genomic data useful for de-
termining relatedness, genetic architecture of traits or making
genetic associations and mapping, all publishable topics, but
may not be helpful in breeding.

Phenomic prediction will play a different role in breeding pro-
grams. It does not immediately decrease the number of plots
planted or plots maintained for most of the season, but these
plots need not be harvested. Harvesting can be the most expen-
sive, labor intensive and dangerous procedure in yield trials, es-
pecially moving harvest equipment to different locations.
Because of this streamlining and miniscule marginal costs of ad-
ditional plots, phenomic prediction may result in breeders in-
creasing the number of plots or locations, if they need not be
harvested, which will increase genetic gain. Phenomic prediction
may also make it possible to decrease plot size since remote sens-
ing prediction can likely be done on a fewer plants. TPP is most
valuable for identifying superior plots early and throughout the
growing season; so far, evidence suggests the most predictive
time for grain yield may be before flowering (Adak, Murray,
Bo�zinovi�c et al. 2021). This early indication of superior perfor-
mance allows faster cycling to off-season nurseries for recombin-
ing and advancement, or at least more preparation time for an
off-season nurseries seed. Uniquely, phenomic prediction gets at
not only G, but GxE and E in measurements—as a simple exam-
ple, if healthy and vigorous plants with good fitness across the
entire location can indicate E. Then both G and the repeatable
component of GxE can be observed as the differences between in-
dividual genotypes deviating from location mean. Because of the
integration of G, E, and some GxE, there is already indication
from near-infrared spectroscopy (NIRS) grain phenomic predic-
tions that models are predictive across diverse germplasm and
environments (Lane et al. 2020), which is uncommon for GS.
There are ancillary benefits of TPP data as well. Temporal data
can help understand how different varieties interact with the en-
vironment in real time to discover important growth stages and

conditions, along with genetic interactions that impact yield.
This could allow deliberate pyramiding of genetics showing elite
performance at different growth stages—unlike yield and GS
alone which are cumulative measures. Additionally, temporal
data can predict stress before loss occurs which can increase the
quality of yield data (DeSalvio et al. 2022). Ultimately, identifying
major causal loci underlying phenomic predictions success for
complex traits can be useful to understand the underlying biol-
ogy of organismal fitness over growth. Finally, because temporal
phenomic data are relatively new, when compared with over
30 years of genomic data, it is likely unanticipated advantages
and disadvantages will continue to be discovered.

To evaluate fitness prediction of UAS-based phenomics tools,
the genotypic value of each hybrid must be produced, these can
be estimated from vegetative indices (VIs) and structural meas-
urements (canopy height) collected temporally throughout
growth. VIs at a single or few time points have been shown to be
highly predictive of plant health, phenology and yield (Araus and
Cairns 2014; Rutkoski et al. 2016; Adak, Murray, Bo�zinovi�c et al.
2021). With temporal flights, these are now being collected over a
fourth dimension, time, where interactions with the environment
can be observed as they occur. Correlations between temporal
VIs with yield and flowering times, as well as machine learning
models can be used to investigate predictive abilities for fitness
traits (yield and flowering times). Phenomic predictions made
from temporal VIs and canopy height can be compared with tra-
ditional GPs. Ultimately, identifying major causal loci underlying
phenomic predictions success for complex traits can be useful to
understand the underlying biology of organismal fitness over
growth. Here we report phenomic data-driven selection for com-
plex traits in maize breeding. We conducted UAS surveys with
multispectral and red–green–blue (RGB) sensors to collect image-
based temporal predictors throughout maize growth stages. We
compared phenomic-based prediction accuracy to that of GP, ex-
plored temporal shifts in image-based phenotypic variation
explained by genome-wide markers, and conducted association
mapping utilizing temporal image-based phenotypes to identify
biologically important loci.

Materials and methods
Using the Genome to Fields initiative’s 2017 germplasm, 280
unique maize hybrids were grown under optimal management
(OM) and 230 were grown under stressed management (SM, no ir-
rigation, low fertilizer) near College Station, Texas. Two replica-
tions were used in a randomized complete block design with each
hybrid grown as 2 consecutive row plots. The hybrids were pri-
marily Stiff Stalk inbred lines crossed with Non Stiff Stalk inbred
lines, mostly derived from expired plant variety protected lines,
although hybrids derived from elite exotic germplasm and re-
combinant inbred lines as well as commercial checks were also
included (https://doi.org/10.25739/w560-2114; accessed 2022
November 11, McFarland et al. 2020). The goal of this germplasm
was to provide breadth as well as depth for some more targeted
questions. While many other hybrids were created to be included,
sufficient seed supply was a primary consideration for determin-
ing the specific hybrids planted.

UAS surveys and image processing
A Phantom 3 Professional rotary-wing UAS, equipped with a 12-
megapixel RGB DJI FC300X camera, flown 25 m above the ground
(TPP_RGB) for 16 flights. Additionally, a Tuffwing UAS equipped
with a MicaSense RedEdge-MX multispectral camera was flown
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120 m above the ground (TPP_Multi) for 12 flights. Images were
collected with 80% forward and side overlap in both surveys. Raw
images were processed in Agisoft Metaphase Professional soft-
ware to generate the 3D point clouds and orthomosaics
(Supplementary Table 1 in File 1) (Murray et al. 2019).

Phenomic data extraction pipeline
Environmental Systems Research Institute, Inc. (ESRI) shape file
were constructed using R/UAStools::plotshpcreate function
(Anderson and Murray 2020) and applied to each survey’s respective
orthomosaic (.tif files) and 3D point clouds (.las or .laz files) to ex-
tract plot level image-based phenotypes. VIs (Supplementary Table
2 in File 1) for each flight date (from 27 days after planting until
144days after planting) were extracted using the FIELDImageR pack-
age (Matias et al. 2020) for each UAS survey (Supplementary
Materials and Methods in File 1). Plot-based 99th percentile tempo-
ral plant heights (canopy height measurement; CHM) were
extracted from 3D point clouds following the methods of (Anderson
et al. 2019) (Supplementary Materials and Methods in File 1) for each
UAS survey.

Experimental design and nested model for
phenomic data
To analyze the temporal VIs and CHM, a custom nested design
was applied to raw data of each VI and CHM belonging to each
row plot in OM and SM, where experimental design and maize
hybrids were treated as nested within drone flight times
(Supplementary Materials and Methods in File 1). Hybrids nested
within flights results were used to predict 4 agronomically impor-
tant traits (grain yield: GY, days to anthesis: DTA, days to silking:
DTS, and terminal plant height: PHT) within and between the tri-
als. GY (t/ha) was obtained at the end of season for each plot us-
ing a plot combine and adjusting moisture to 15.5%; DTA and
DTS were recorded when anthesis and silking of at least 50% of
each plot emerged; PHT was measured manually at the end of
season one time for each plot in that 5 plants were measured
within each plot. Correlation in Supplementary Figs. 5, 6 and 9
were calculated using genotypic values of hybrids predicted by
Supplementary Equation (2).

Machine learning-based phenomic prediction
models
Manually collect phenotypes (GY, DTA, DTS, and PHT) were pre-
dicted from UAS measures using linear, elastic net, ridge, lasso, and
random forest regressions. For all results in this study, TPP_RGB
and TPP_Multi contains the VIs at all time points belonging to each
hybrid that were obtained from UAV images captured by RGB and
multispectral camera respectively (Supplementary Dataset 1).
Prediction models were trained using a random sampling of 70% of
the common maize hybrids (tested genotypes). The remaining 30%
were used as the validation dataset (untested genotypes). Models
were trained using tested genotypes grown in OM trial (tested envi-
ronment) while the SM trial served as the untested environment.
Four cross-validation schemes (CVs) were conducted as follows:
(1) tested genotypes in tested environment (CV1), (2) untested geno-
types in tested environment (CV2), (3) tested genotypes in untested
environment (CV3), and (4) untested genotypes in untested environ-
ment (CV4) (Li et al. 2018). CV1 was used as negative control to show
the overfitting while CV2, CV3, and CV4 were used as merits of pre-
diction accuracies in temporal phenomic and GP. Additional details
on phenomic prediction models and prediction steps are available
in Supplementary Materials and Methods in File 1. Prediction accu-
racies were compared based on mean numeric values from 500

iterations of each CV; because the same iterations were used for dif-
ferent methods, they are directly comparable.

Genomic prediction for phenomic data
Genome-wide prediction was applied to 540 image-based pheno-
types (35 VIs and CHM belonging to up to 16 flight times) of the
158 maize hybrids in TPP_RGB of OM using 153,252 SNPs, tempo-
ral GP model was explained in Supplementary Materials and
Methods in File 1.

Phenomic prediction vs genomic prediction
GBS marker data for GP and 2 sets of phenomic data (TPP_RGB
and TPP_Multi) were used to conduct GP and phenomic predic-
tion for maize grain yield (GY). A total of 118 G2F (Genomes to
fields; https://www.genomes2fields.org/) maize hybrids were
used to compare the predictive ability between the genomic and
phenomic data sets. Four cross-validation schemes were applied
as explained in “Machine learning-based phenomic prediction models”
section. Additional details regarding phenomic prediction vs GP
are available in Supplementary Materials and Methods in File 1.

Association mapping for phenomic data
The image-based VIs and Weibull_CHM (temporal plant height fit
based on Supplementary equation 1 in File 1) were converted to cu-
mulative area under the curve (AUC) values and used as trait data in
a genome-wide association study (GWAS) (Supplementary Materials
and Methods in File 1). Association mapping was conducted using
158 maize hybrids and 101,100 genotyping by sequencing (GBS) SNP
markers, implementing 3 multiple loci test methods; (1) fixed and
random model circulating probability unification (FarmCPU) (Liu
et al. 2016), (2) multiple loci mixed model (MLMM) (Segura et al. 2012),
and (3) bayesian-information and linkage-disequilibrium iteratively
nested keyway (BLINK) (Huang et al. 2019) (Supplementary File 1 in
Materials and Methods). Linkage disequilibrium (LD) estimates were
used to identify candidate genes within LD blocks (R2 � 0.8) of colo-
calized SNPs (Supplementary File 1 in Fig. 1).

Results
Variance decomposition and repeatability
estimates demonstrate UAS sensor-based
phenotypes were genetically stable
Variance component decomposition of the 83 sensor-based VIs
(35 RGB and 54 multispectral) demonstrated UAS sensor-based
data were statistically repeatable and biologically meaningful
with a genetic basis. The rotary-wing equipped with an RGB (3
band, 12 MP) sensor flown at 25 m resulted in �1 cm pix�1 image
resolution and had higher repeatability than the Tuffwing plat-
form equipped with a multispectral (5 band, 3.8 MP) sensor flown
at 120 m (�8 cm pix�1). The main source of phenotypic variation
for both platforms was explained by the temporal flight compo-
nent (bi component in Supplementary Equation 2 in File 1) of the
nested design (31–96%) showing a temporal plasticity of maize
spectral reflectance signatures throughout the plants growth cy-
cle (Supplementary Figs. 2 and 3 in File 1). Genetic variance (XiðjÞ
component in Supplementary Equation 2) was slightly greater for
the higher resolution-low altitude RGB Phantom 3 (1.5–5.2%;
Temporal repeatability (TR): 0.46–0.77) phenotypes compared to
the lower resolution-high altitude RGB Tuffwing (1.1–4.5%; TR:
0.26–0.66) and lower resolution-high altitude multispectral
Tuffwing (0.5–3.4%; TR: 0.28–0.62) phenotypes (Supplementary
Figs. 2 and 3 in File 1). The repeatability estimates over the 35
RGB phenotypes were highly correlated (r¼ 0.71) between the 2
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sensor systems, although repeatability was improved by 0.08 on
average, when implementing the higher resolution-low altitude
RGB platform. Noticeable improvements in repeatability esti-
mates (>0.1) were achieved for 13 RGB VIs and 6 VIs repeatability
were reduced (<0.06) when implementing the higher resolution-
low altitude RGB platform (Supplementary Figs. 2 and 3 in File 1).
Overall, significant genetic variation was attributed to all VIs on
both platforms, useful in predictive modeling of important agro-
nomic traits. Relevantly, the largest proportion of explained %
variation for important agronomic traits flowering times (DTA,

DTS), grain yield (GY), and terminal plant height (PHT) with re-
peatability of �0.9 for flowering times and yield, 0.8 for PHT
(Supplementary Fig. 4 in File 1).

Temporal correlation
Temporal correlations between temporal genotypic values of VIs
in TPP_RGB and GY showed that 14 of 35 VIs achieved a correla-
tion above 0.50 (up to 0.61) (Supplementary Fig. 5 in File 1).
However, temporal correlation between temporal genotypic val-
ues of Vis in TPP_Multi and GY showed that 14 VIs (calculated

Fig. 1. Prediction accuracy (on the y axis) of the phenomic prediction obtained by each model for 4 cross-validation schemes (on the x axis) belonging to
each predicted variable (from left to right) in phenomic prediction. a) The prediction performance of TPP_RGB phenomic data derived from HTP
platform including 25-meters elevation with RGB sensor. b) The prediction performance of TPP_Multi phenomic data derived from HTP platform
including 120-m elevation with multispectral sensor. The boxes in each point cloud show mean values of prediction accuracies.
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using only red, green blue bands) and 40 VIs (calculated using
red, green blue, red edge, and NIR bands) achieved correlations
above 0.50 (up to 0.70) (Supplementary Fig. 6 in File 1).
Correlation between sensor-based VIs and GY varied depending
on the flight dates. High correlations were found between VIs be-
longing to certain time points in both TP_RGB and TPP_Multi and
GY demonstrating that temporal VIs tend to synchronize with GY
in maize hybrids indicating potential measures for predicting
yield.

Phenomic prediction using high dimensional UAS
data
Temporal genotypic values of VIs for each genotype at each time-
point in TPP_RGB and TPP_Multi followed unique trajectories
(Supplementary Figs. 7 and Fig. 8 in File 1) visually discriminating
low, mid, and high yielding maize hybrids. Phenotype data of VIs at
different time points had different discriminative ability for yield.
This led us to test the predictive ability of 2 sets of phenomic data
derived from different sensors and resolutions utilizing the different
prediction models. To assess the multicollinearity of each phe-
nomic data measure, correlation coefficients were calculated.
Correlation results of each phenomic data showed that correlations
were fluctuating between �1 and 1, and VI’s were found to be less
correlated at different time points (Supplementary Fig. 9 in File 1).

The 3 machine learning models had high prediction accuracy
(>90%) for all 4 agronomic traits (GY, DTA, DTS, and PHT), espe-
cially when compared with the linear model when temporal phe-
notypes in TPP_RGB (Fig. 1a) and TPP_Multi (Fig. 1b) phenomic
data of 280 hybrids were used as predictors. The linear models
had the highest prediction errors (RMSE; root mean square error
and MAE; mean absolute error) and lowest R2 (Supplementary
Fig. 10 in File 1). Penalized linear regression methods (Ridge,
Lasso, and Elasticnet) generally performed similar or better than
non-linear models (Randomforest) for predicting DTA, DTS, GY,
and PHT when TPP_RGB phenomic data were used in prediction
performances for untested genotypes in tested environment
(CV2), tested genotypes in untested environment (CV3), and
untested genotypes in untested environment (CV4)
(Supplementary Fig. 1 in File 1). Using penalized linear regression
models (ridge, also and elastic net) with TPP_RGB predicted the
GY, DTA, DTS, and PHT greater than TPP_Multi in untested
environment-related prediction scenarios (CV3 and CV4); how-
ever, TPP_Multi predicted the GY greater than TPP_RGB in tested
environment-related prediction scenario (CV2) (Fig. 1). Among
the penalized linear regression methods, ridge regression
achieved the greatest prediction accuracy. For instance, predic-
tion accuracy of ridge regression was highest compared to lasso
and elastic net in prediction the GY in CV2 using TPP_Multi; its
prediction accuracy also highest compared to lasso and elastic
net in CV3 and CV4 using TPP_RGB. Prediction accuracies of the
prediction models for DTA, DTS and PHT in CV1 to CV4 were
given in Fig. 1. These results demonstrate that the reduction in
resolution, increased spectral bands, and increased sensor cost of
incorporating the multispectral bands did not significantly im-
prove model performance in CV3 and CV4 schemes.

Variable importance scores of the machine
learning models
To understand potential biological causes behind the most accu-
rate predictions, variable importance scores were derived from
the prediction models to identify critical predictor/time point
combinations for TPP_RGB and TPP_Multi phenomic data sets
(Supplementary Figs. 11 and 12 in File 1). Different contributions

of VIs and Weibull_CHM at multiple time points were important
among both phenomic datasets in the prediction of GY, DTA,
DTS, and PHT (Supplementary Figs. 11 and 12 in File 1). For in-
stance, the TPP_RGB red chromatic coordinate index (RCC) and
TPP_Multi modified nonlinear index values (MNLI) belonging to
various time points, either before or after flowering times, for all
predicted variables were identified by all machine learning mod-
els consistently and are therefore critical VI/timepoints combina-
tions for all predicted variables (Supplementary Figs. 11 and 12 in
File 1). This demonstrates an ability of machine learning models
to identify important image-based phenotypes for future UAS
surveying efforts and provides foundational insight toward un-
derstanding the biological importance of images-based pheno-
types within a plant’s growth cycle.

Genome-wide association mapping results
To gain further insight into biological significance of successful
predictions, GWAS peaks were identified using area under curve
values (Supplementary Figs. 13 and 14 in File 1) of each high reso-
lution VI and Weibull_CHM in the TPP_RGB phenomic data set of
158 hybrids (Supplementary Figs. 13 and 14 in File 1). Area under
curve was presented as a summation of all timepoints, rather
than each timepoint individually to keep the results interpretable
and robust. Still, a total of 241 GWAS peaks were identified across
the 36-temporal image-based phenotypes in TPP_RGB. Five geno-
mic regions had significant loci for VIs and candidate genes of rel-
evant interest (Supplementary Results in File 1). Two genomic
regions were identified as hotspots (the fourth bin in chr2 and
eighth bin in chr4) having GWAS peaks belonging to 24 VIs dis-
covered across all 3 tested GWAS models (Supplementary Fig. 14
and Dataset 2 in File 1). A 15 kb genomic distance around the
GWAS peaks was scanned to determine candidate genes based
on the calculated LD decay (Supplementary Fig. 15 in File 1). LD
patterns of both hotspots were visualized along with 6 candidate
genes with functions described in Supplementary Fig. 15 in File 1.

A hotspot was identified at 36,828,844bp on chromosome 2
(chr2_1), identified by the excessive red, modified green red, normalized
difference, Normalized green red difference, and visible atmospheri-
cally resistant indices by the 3 GWAS models consistently explaining
8–13% phenotypic variation (Supplementary Dataset 2). The chr2_1
peak is inside GRMZM2G023204 (chr2:36827859.36,829,876; B73
RefGen_v4), a putative protein kinase domain that catalyzes the func-
tion of protein kinases. Another candidate gene (�4kb away from
chr2_1) is GRMZM2G021560 (pebp25; chr2:36,779,809.36,782,444; B73
RefGen_v4) a member of phosphatidylethanolamine-binding proteins
(PEBPs) that regulate floral transitions (Danilevskaya et al. 2008) as well
as that GRMZM2G021560 found to be expressed at the early vegetative
stage (e.g. third leaf stage) (Song et al. 2019). Integrating GWAS with
temporal phenotypes (TPP RGB), loci controlling the temporal VIs
explained the phenotypic variations of multiple VIs revealing the
pleiotropic effects of the loci. Additional candidate genes for other hot-
spots are discussed in the Supplementary File 1.

Genomic prediction results of temporal phenomic
data
GP results of temporal VI’s identified specific time points for each
of the high-resolution VIs in TPP_RGB of 280 hybrids in OM had
varying ability to be predicted in cross-validation (Fig. 2).
Prediction accuracy showed the period of growth around flower-
ing was the most (and in a few cases least) predictable by geno-
mic markers for many VI’s likely because of differential
emergence of tassels (Fig. 2). It was surprising that time points
prior to flowering in some cases had relatively similar or higher
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prediction accuracy than those at flowering time (Fig. 2). Overall,
sensor-based VIs were predictable at different time points using
whole-genome markers but estimated different phenotypic effect
sizes at each timepoint, in patterns that appear to have some bio-
logical basis (Fig. 2). Showing genetic markers estimate changing
effects sizes to reveal a plasticity of temporal VIs help demon-
strate why temporal VIs were more explanatory to monitor the
interactions between genetic background of plants and their
growing stages and growing environments throughout growth
(Supplementary Fig. 9 in File 1).

Genomic prediction vs phenomic prediction
Grain yield (GY) prediction accuracy of phenomic and genomic
approaches were compared between both phenomic data sets
(TPP_RGB and TPP_Multi) and genomic data (GP) of the 118 hybrids

with complete data. Comparing model prediction accuracies for
untested genotypes in tested environment (CV2), low-resolution
multispectral-related phenomic prediction (TPP_Multi) outper-
formed (r ¼ 0.80) both GP (r ¼ 0.71) and high-resolution RGB-related
phenomic prediction (TPP_RGB; r ¼ 0.72) (Fig. 3). Comparing model
prediction accuracies for untested genotypes in untested environ-
ment (CV4), GP and high-resolution RGB-related phenomic predic-
tion supplied close prediction accuracies (r: 0.53–0.55), while low
resolution with multispectral sensor-based HTP supplied a lower
prediction accuracy (r: 0.47) (Fig. 3). Overall, the phenomic predic-
tion platforms used in this study were largely able to predict
untested genotypes in tested environment better than GP (CV2)
while TPP platforms predicted untested genotypes in untested envi-
ronments similarly with GP, in which TPP_Multi and TPP_RGB pre-
dicted 0.08 and 0.02 less than GP on average (Supplementary Fig. 3

Fig. 2. Each box plot shows the genomic prediction accuracy results belonging to each time points of each temporal trait in TPP_RGB, each contains
500-prediction accuracies. Y axis shows the prediction accuracy and x axis shows the flight date as days after planting time. Each box plot was colored
based on the mean. Heatmap color scale was given in the figure legend changing between 0 and 0.6. Gray shading in each represents flowering time.
Different time points of temporal traits were found to have different responses to genetic markers across growth stages of plant development.

6 | G3, 2023, Vol . 13, No. 1

academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac294#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac294#supplementary-data


in File 1). However, GP outperformed phenomic prediction when
predicting known genotypes in unknown environments (CV3).
Combining both UAS measures (TPP_RGB and TPP_Multi) using
ridge regression did not further improve prediction accuracies with
our data set (data not shown).

Discussion
Field-based high-throughput phenotyping technologies, such as
drones, are able to provide phenome-wide measurements of plants
in much the same way that high-throughput sequencers have pro-
vided genome-wide data. Uniquely, phenotyping technologies can
screen high numbers of plots repeatedly through the growing period
resulting in not only high spatial resolution but also high temporal
resolution, helping dissect how different genotypes respond to their
environments to maximize fitness in near real time
(Supplementary Figs. 7 and 8 in File 1). Correlations were variable
between overall VIs in the phenomic data (Supplementary Fig. 9 in
File 1). First, there were low to moderate correlations between VIs.
Second, temporal values of the same VIs had low correlations
across different time points. These results indicate that both using
different VIs and their temporal values belonging to multiple time
points provide unique and additional information; thus importance
of including different VIs and high temporal dimension in con-
structing the phenomic data were emphasized.

As new temporal phenomic markers are difficult to indepen-
dently measure and validate, one of the first approaches to eval-
uate phenomic marker utility is to look at heritability/
repeatability values over different replicates and environments.
This approach is not needed for genomic markers which do not
vary over replicates and environments and theoretically have a
repeatability near 1 but are also unable to capture environmental
interaction in real time. Temporal repeatability (Supplementary
Equation 3) of VIs were moderate, above �0.5 for TPP_RGB
(Supplementary Fig. 2 in File 1) and between 0.26 and 0.66 for
TPP_Multi (Supplementary Fig. 3 in File 1). Temporal repeatability
relied on variation across plant development, biologically more
meaningful than using genotypic variation which is static at ev-
ery time point. Temporal variation captured by drones assesses
temporal genotypic variation jointly over time via nested design

(Supplementary Equation 2). Previously, repeatability has only
been calculated between different VIs/CHM and yield at one or
few time points (Rutkoski et al. 2016; Aguate et al. 2017;
Montesinos-López et al. 2017; Anderson et al. 2019; Sun et al. 2019;
Wu et al. 2019; Krause et al. 2020; Galán et al. 2021); disregarding
the temporal genotypic variation occurring across plant growth.
Furthermore, previous studies using either one or a limited num-
ber time points analyzed each time point separately.

High dimensional and temporal resolution phenomic data used in
predictive plant breeding integrated with high-throughput genotyp-
ing data discovered underlying genetic causes for many important
temporal VI features. For instance, pleiotropy discovered via GWAS
identified specific loci controlling the AUC of many VIs
(Supplementary Figs. 14 and 15 in File 1 and Dataset 2) though these
VIs themselves are largely independent and uncorrelated. In addi-
tion, GP of temporal VI phenotypes proved that estimated effects of
each marker varied through time, causing different prediction accu-
racy results for temporal phenotypes of the same VIs (Fig. 2).
Therefore, instead of depending on discrete genome-wide markers as
predictors for yield, temporal phenotype data formed by estimated
temporal marker effects can be used to better predict certain scenar-
ios (e.g. untested genotypes in tested environment). Predicting grain
yield of untested genotypes in a tested environment is an important
scenario for public breeding programs because lines developed in
public breeding programs are mostly targeted for specific environ-
ments. Figure 3 showed that TPP predicted the grain yield better than
GP in CV2 indicating that TPP could be a better solution for public
breeding programs for genetic gain. In addition, the predictive ability
of TPP in untested genotype untested environments (CV4) was in the
same range as that of GS (Fig. 3). This is also an important proof of
concept that TPP can be used as widely as GP. GP methods have been
developed over more than a decade and phenomic prediction meth-
ods can likewise be improved. Further optimization and improve-
ment of this approach will likely benefit from the integration of novel
crop growth models as GP has Messina et al. (2018).

Phenomic data can predict yield and flowering
times via machine learning regressions
Penalized linear regression models using shrinkage were previ-
ously shown as the best performing prediction models when

Fig. 3. The prediction accuracy results of yield belonging to the 3 models. GP represents the prediction accuracy of genomic prediction, TPP_Multi
represents the prediction accuracy of phenomic prediction using the VIs derived from the multispectral images with low resolution, TPP_RGB
represents the prediction accuracy of phenomic prediction using the VIs derived from the RGB images with high resolution. Four cross-validation
schemes were used: predicting tested genotypes in tested environments (CV1), predicting untested genotypes in tested environments (CV2), tested
genotypes in untested environments (CV3), and untested genotypes in untested environments (CV4). Phenomic prediction predicted the grain yield (GY)
of maize hybrids better in CV2 than genomic prediction. Prediction accuracies were close to each other in CV3 and CV4.

A. Adak et al. | 7

academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac294#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac294#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac294#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac294#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac294#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac294#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac294#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac294#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac294#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkac294#supplementary-data


using different hyper parameters have been adapted for predict-
ing both yield (Aguate et al. 2017; Kismiantini et al. 2021; Adak,
Murray, Bo�zinovi�c et al. 2021) and flowering times (Adak, Murray,
Bo�zinovi�c et al. 2021) when different reflection bands were used
as predictors. Penalized linear methods with different regulariza-
tion parameter settings to predict yield and flowering times
(Fig. 1) were more accurate than linear regression (Montesinos-
López et al. 2017; Adak, Murray, Bo�zinovi�c et al. 2021). This is be-
cause simple linear regression tends to overfit when there are in-
creasing numbers of predictors and with fluctuating collinearity
between predictors, such as in phenomic data. Penalized linear
(ridge, lasso, and elasticnet) models or the non-linear (random-
forest) model are capable to explain deviations in linear or non-
linear relationships of temporal genotypic values belonging to
high- or low-resolution phenomic data.

Tuning regularization parameters of the ridge, lasso and elastic
net-based prediction models is a good approach to deal with model
overfitting when high dimensional phenomics data are used in pre-
diction. Tuned regularization parameters in ridge, lasso, and elastic
net models can lessen coefficients, and predict test data more reli-
ably than linear models. For example, genotype within flight combi-
nation (XiðjÞ component in Supplementary Equation 2) was found to
be statistically significant for all VI and CHM (Supplementary Fig. 2
in File 1) indicating a temporal interaction among the genotype
across flight times because of fluctuating temporal phenotype val-
ues of VIs (Supplementary Figs. 7 and 8 in File 1). Nevertheless, a
general trend demonstrated that high- and low-yielding genotypes
segregate according to temporal phenotypes of VIs. A lack of corre-
lations in temporal genotypic values of the genotype through time
supports the existence of nonlinear relationships, problematic for
linear models to capture. Because of multiple decision tree learning,
the random forest model accounts best for non-linearity, limiting
overfitting.

Phenomic prediction reached up to �0.80 for grain yield and
flowering time prediction (Fig. 1) higher than previously reported
prediction accuracies (Rutkoski et al. 2016; Aguate et al. 2017; Sun
et al. 2019; Wu et al. 2019; Krause et al. 2020; Galán et al. 2021).
Aguate et al. (2017) showed use of raw reflected bands instead of
ratios (e.g. VIs) performed better in prediction models.
Montesinos-López et al. (2017) further reported using all bands si-
multaneously increased prediction accuracy instead of VIs alone.
However, reflected bands used in past studies derived from 5 to 9
time points, lower time dimension data than what we generated
in this study. This suggests that predictors derived from addi-
tional time points could play an important role on increasing the
prediction ability of the models; more so than using the predic-
tors as either raw reflectance bands or VIs.

Genomic prediction for temporal traits can vary
depending on the time points of growth
TPP_RGB phenomic data tested using GP to identify temporal
marker effects and their prediction accuracies for each VI and
Weibull_CHM throughout time (Fig. 2) demonstrated that geno-
mic markers could predict an individual’s VI or Weibull_CHM
value through cross-validation using other individuals at the
same stage. This demonstrated that certain stages and VIs have
more genetic determination and are more heritable.

Temporally varying marker effects on the phenotype of VIs
resulted in phenotypes at different timepoints of VIs and
Weibull_CHM having different correlations with yield

(Supplementary Figs. 5 and 6 in File 1) as well as different prediction
abilities for dependent variables (Fig. 2). A dynamic pattern of
marker effects as shown here has so far been overlooked in
GP/selection of yield. Bernardo (2021) underlined that predicting
candidate genotypes using phenotype information collected from
across multiple environments may be more accurate than using
the genetic markers in a prediction model. Similarly, instead of pre-
dicting grain yield fitness by whole-genome marker effect
approaches such as RR-BLUP and GBLUP, including the temporal
phenotypic variation occurring across growth into prediction mod-
els can result in more accurate fitness prediction as phenomic data
already contain temporal marker effects. This study also showed
that specific loci can explain different phenotypic variance across
more than one derived VI (Supplementary Figs. 14 and 15 in File 1
and Dataset 2) signifying pleiotropic effects of certain markers for
the VIs. These pleiotropic effects have various associations with de-
veloping young tissues, inflorescence, and yield.

Phenomic prediction can perform similarly to or
outperform genomic prediction
Phenomic data (TPP_Multi and TPP_RGB) predicted grain yield as
well as genomic data using ridge regression (Fig. 3), but different
results were observed depending on the cross-validation scheme.
TPP_RGB contained 35 VIs derived from only RGB bands and
Weibull_ CHM belonging to 15 time points (525 phenomic fea-
tures) resulting in an accuracy of 0.71; this accuracy was same as
the accuracy of 0.71 belonging to GP containing the 153,252 segre-
gating whole-genome markers. However, when TPP_Multi, which
contains the 89 VIs derived from the multispectral bands and
Weibull_CHM belonging to 12 time points (1,068 phenomic fea-
tures), were used in the prediction the yield, prediction accuracy
reached up to 0.80; substantially higher than both GP and
TPP_RGB supplied for the untested genotype in tested environ-
ments schemes (CV2) (Fig. 3). Moreover, in the most challenging
cross-validation scheme, untested genotypes in untested envi-
ronment (CV4), GP, TPP_RGB, and TPP_Multi performed approxi-
mately equally as their prediction accuracies were around
0.50 6 0.05 (Fig. 3). These empirical findings suggest, for the first
time, that increasing temporal as well as spectral information
could be used to predict fitness substantially better than GP. This
also suggests that temporal and continuous phenomic data can
be better predictors than discrete genomic data in prediction and
selection of high yielding genotypes. It is also important to note
that hybrids used in G2F contains the high genetic diversity, it is
likely to expect the high prediction accuracies that does not nec-
essarily reflect a public or special breeding populations
(Windhausen et al. 2012), but G2F hybrid population is still useful
population to compare temporal phenomic and GPs. Successful
phenomic prediction studies reported to date have used NIRS
data; some of phenomic prediction results performed favorably
in comparisons with GP (Rincent et al. 2018; Lane et al. 2020; Lane
and Murray 2021; Zhu et al. 2021; Robert et al. 2022; Weiß et al.
2022; Zhu et al. 2022). Drone image-derived data have also been
used as complementary data in GP that increased prediction ac-
curacy of grain yield in wheat (Rutkoski et al. 2016; Sun et al. 2019;
Galán et al. 2020; Krause et al. 2020). However, these studies have
not used the temporal phenomic data derived from the drone
images belonging to multiple time points. Multiple time point de-
rived phenomic data have been shown in this study to predict
grain yield in maize similarly or even better than GP depending
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on the prediction scenarios defined. Overall, phenomic selection

is an emerging approach that may replace genotyping each year

required by GP/selection with phenotyping. Adding a temporal

component into phenomic prediction has innumerable known

and yet to be discovered advantages.
In summary, this study demonstrated the predictive capability

of phenomic data for complex traits in maize, yielding as much as

genomic markers frequently applied in plant selection over the past

20 plus years. UAS surveys over the experimental field plots sup-

plied temporal traits as predictors to facilitate the selection of

untested genotypes in untested environments. Growing more

plants and measuring them accurately are critical steps to drive ef-

fectiveness of selection intensity and accuracy resulting in higher

genetic gain over time. This study exemplified that screening more

plants and measuring them thanks to repetitive UAV flights across

plant growth may results in greater genetic gain than genomic se-

lection when phenomic prediction/selection is applied routinely.

Conclusion
Genetic prediction methods, primarily genomic selection, became

instrumental over the last decade to drive genetic gain for crop

improvement. Such prediction methods leverage information

shared between relatives to predict an individual’s fitness but re-

main prohibitively resource intensive and unable to dissect

responses to a changing environment. UAS (i.e. drones with sen-

sors) have demonstrated high-throughput, low-resource

approaches to temporally evaluate fitness of large and geneti-

cally diverse populations. For the first time, this study demon-

strates that TPP made from UAS have capacity to perform equal

to or better than genomic selection and require fewer resources.

TPP success opens new lines of inquiry for understanding organ-

ism reactions to their environment and for our understanding of

genetic relationships.

Data availability
Supplementary Dataset 1 contains the 4 phenomic data that

belongs to RGB HTP platform in optimal management

(TPP_RGB_OM), RGB HTP platform in stress management

(TPP_RGB_SM), multispectral HTP platform in optimal manage-

ment (TPP_Multi_OM), and multispectral HTP platform in stress

management (TPP_Multi_SM). Supplementary Dataset 2 contains

the discovered SNPs in GWAS for the AUC phenotype values

of each VI along with their chromosome, chromosome positions,

P-values, minor allele frequencies, effects, explained % variation,

Vis, and GWAS models.
Supplemental material is available at G3 online.
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