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Abstract
National Institute on Aging–Alzheimer’s Association definition and classifica-
tion of sporadic Alzheimer’s disease (sAD) is based on the assumption that
β-amyloid drives the pathogenesis of sAD, and therefore, β-amyloid pathology
is the sine-qua-non condition for the diagnosis of sAD. The neuropathological
diagnosis is based on the concurrence of senile plaques (SPs) and neurofibril-
lary tangles (NFTs) designated as Alzheimer’s disease neuropathological
changes. However, NFTs develop in the brain decades before the appearance
of SPs, and their distribution does not parallel the distribution of SPs. More-
over, NFTs are found in about 85% of individuals at age 65 and around 97%
at age 80. SPs occur in 30% at age 65 and 50%–60% at age 80. More than
70 genetic risk factors have been identified in sAD; the encoded proteins mod-
ulate cell membranes, synapses, lipid metabolism, and neuroinflammation.
Alzheimer’s disease (AD) overture provides a new concept and definition of
brain aging and sAD for further discussion. AD overture proposes that sAD
is: (i) a multifactorial and progressive neurodegenerative biological process,
(ii) characterized by the early appearance of 3R + 4Rtau NFTs, (iii) later
deposition of β-amyloid and SPs, (iv) with particular non-overlapped regional
distribution of NFTs and SPs, (v) preceded by or occurring in parallel with
molecular changes affecting cell membranes, cytoskeleton, synapses, lipid and
protein metabolism, energy metabolism, neuroinflammation, cell cycle, astro-
cytes, microglia, and blood vessels; (vi) accompanied by progressive neuron
loss and brain atrophy, (vii) prevalent in human brain aging, and
(viii) manifested as pre-clinical AD, and progressing not universally to mild
cognitive impairment due to AD, and mild, moderate, and severe AD
dementia.
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1 | THE BEGINNING: PRE-SENILE
DEMENTIA, SENILE DEMENTIA, AND
NORMAL BRAIN AGING WITH
ALZHEIMER-LIKE CHANGES

In the first decade of the 20th century, the use of the Biel-
chowsky silver staining permitted the discovery of neuro-
fibrillary tangles (NFTs) and senile plaques (SPs) by

Alois Alzheimer in a woman with pre-senile dementia [1],
and by Oskar Fischer in cases with senile dementia [2, 3].

Alzheimer’s disease (AD), including pre-senile and
senile cases, was defined in 1984 as a neurodegenerative
disease manifested by progressive dementia and charac-
terized by brain atrophy, neuronal death, and a particu-
lar distribution of abundant SPs and NFTs in the
brain [4].
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NFTs in the hippocampus, entorhinal cortex, inferior
temporal cortex, and, very rarely, the frontal neocortex,
together with more variable presence and distribution of
SPs, in old-aged non-demented individuals, were consid-
ered normal brain aging [5–8].

In the early 90s, the Consortium to Establish a Regis-
try for Alzheimer’s Disease (CERAD) proposed a neu-
ritic plaque score based on the number of SPs per mm2

and the individual’s age as a predictor of dementia to dis-
tinguish normal brain aging from AD [9, 10]. NFTs were
not considered in this score.

2 | β-AMYLOID AND TAU
PATHOLOGY; FAMILIAL AND
SPORADIC AD

In the middle 80s and early 90s, β-amyloid was identified
as the primary component of SPs and β-amyloid cerebral
angiopathy (Aβ-CAA) [11–14].

At the same time, abnormal tau protein was identi-
fied as the main component of NFTs [15–19]. Abnormal
tau in AD comprises the six 3Rtau and 4Rtau isoforms
resulting from MAPT (microtubule-associated protein
tau) splicing [20]. Abnormal tau also shows post-
translational modifications such as hyper-phosphorylation,
acetylation, glycosylation, and nitration. Reshaped
tau conformation, truncation, oligomerization, and
aggregation are added through the generation of
NFTs [21–26].

Mutations in APP (β-amyloid precursor protein),
PSEN1 (presenilin1), and PSEN2 (presenilin2) were
causative of early-onset familial Alzheimer’s disease
(EOFAD, or fAD) in about 10%–15% of early-onset AD
(EOAD) cases. APP, PSEN1, and PSEN2 encode mem-
brane proteins, and all are involved in producing
β-amyloid through the cleavage of APP by the combined
action of β- and γ-secretases. Increased APP dosage was
also causative of fAD and β-amyloid angiopathy [27–32].
However, mutations in MAPT do not give rise to AD.

These discoveries led to the β-amyloid cascade
hypothesis, which supports the concept that the produc-
tion of β-amyloid fibrils is the primary factor triggering
NFT formation and AD progression [33]. Later, the
harmful effect of β-amyloid was extended to β-amyloid
oligomers in addition to fibrils [34, 35].

Transgenic mice bearing only pathogenic APP, PSEN1,
and PSEN2 mutations develop cerebral and vascular
β-amyloidosis. Among these are APP/PS1 double Tg mice
expressing a chimeric mouse/human amyloid precursor pro-
tein (Mo/HuAPP695swe) and a mutant human presenilin
1 (PS1-dE9); and 5XFAD Tg mice over-expressing mutant
human amyloid beta (A4) precursor protein 695 (APP) with
the Swedish (K670N, M671L), Florida (I716V), and
London (V717I) fAD mutations along with human preseni-
lin 1 (PS1) harboring two fAD mutations, M146L and
L286V, but not NFTs; tau pathology is restricted to

dystrophic neurites of SPs in transgenic mice. How-
ever, Tg mice bearing β-amyloid-related mutations and
tau gene mutations develop SPs and NFTs, as in 3xTg-
AD (APPSwe,tauP301L) and (APPSwe,tauP301L1Lfa
Psen1 tm1Mpm). Therefore, transgenic mouse-bearing
mutations linked to fAD are models of β-amyloidopathy but
not AD. Adding mapt mutations in the β-amyloidopathy
transgenic murine models is necessary to produce neuropa-
thology similar to that seen in fAD.

Moreover, not all APP mutations causative of (Aβ-
CAA) and cerebral amyloidosis are accompanied by tau
pathology as in the Dutch and Flemish inherited Aβ-
CAA. APP mutations causing primary cerebral hemor-
rhages are principally located within the Aβ domain [36].

Furthermore, the γ-secretase complex may act on
more than 90 substrates [37, 38]. The diversity of sub-
strates at the cell membrane suggests that mutations in
presenilin genes trigger β-amyloid processing and may
affect other membrane-associated proteins. In this line,
the PSEN-1 M146L mutation is causative of fAD with
Pick bodies [39]. A patient with a familial history of
early-onset frontotemporal lobar degeneration carried
the PSEN-1 M146V mutation; the post-mortem neuro-
pathological study disclosed β-amyloid plaques, NFTs,
Pick bodies in the hippocampus and cortex, cortical glo-
bose tangles, and ubiquitin-positive nuclear inclusions in
white matter oligodendrocytes [40]. The Gly183Val
mutation in PSEN1 is associated with Pick’s disease but
not β-amyloid plaques [41].

In summary, APP, presenilin1, and presenilin 2 are
involved in various cellular functions linked to cell mem-
branes. It can be suggested that mutations in fAD genes
may lead to complex membrane dysfunction beyond
β-amyloidogenesis. Altered membrane structure and
function may facilitate tau phosphorylation and disrupt
many metabolic signals. Cellular models learn about
alternative or complementary dysfunctional conse-
quences of AD-linked mutated proteins and vari-
ants [42–45].

However, about 95% of patients with dementia due
to AD are sporadic (sAD), and mostly they are older
than those suffering from EOAD (late-onset Alzhei-
mer’s disease: LOAD). Genetic factors play variable
roles in the genesis of sAD. Individuals with Down syn-
drome, caused by the presence of all or part of the third
copy of chromosome 21, have large numbers of SPs and
NFTs at the age of 40. Allele ε4 of apolipoprotein E
(APOE) was the first identified low-penetrating genetic
risk factor of sAD [46–48]. Currently, more than
70 genetic risk factors have been identified using
genome-wide association studies in patients with clinical
manifestations of sAD [49–55]. The products of these
genes modulate lipid metabolism and cell membranes,
cytoskeleton, and neuroinflammation [56]. A few gene
variants appear to be involved in APP metabolism,
mainly through their putative impact on membrane
structure and protein cleavage.

2 of 12 FERRER



Shockingly, tau pathology in sAD has also been con-
sidered a secondary tauopathy subjected to the driving
forces of β-amyloid pathology following the amyloid cas-
cade hypothesis.

3 | TAU AND β-AMYLOID
PATHOLOGY IN BRAIN AGING AND SAD

In the 90s, the systematic analysis of NFTs and SPs in
post-mortem brains of non-demented and demented indi-
viduals revealed the natural distribution and progression
of NFTs and SPs with age [57–61].

At cortical Braak and Braak stages I and II, NFTs
appear in the entorhinal and transentorhinal cortex. At
stages III and IV, NFTs progress to the hippocampus,
temporal cortex, and limbic system nuclei. At stages V
and VI, NFTs spread to most areas of the neocortex. The
spreading of NFTs is accompanied by a dramatic increase
in neurons with NFTs across stage progression [57–61].
The olfactory bulb and tract, and several nuclei of the
brain stem, including the raphe nuclei and the locus coeru-
leus, are also affected by tau pathology at the first NFT
cortical stages; the number of NFTs increases in these
regions with the progression of the neurodegenerative pro-
cess [62–66]. The occurrence of NFTs in selected brain
stem nuclei is categorized as subcortical stages a-c [61].

The distribution of SPs differs from NFTs in brain
aging and sAD [67]. Stages 0, A, B, and C of Braak
define the progression of SPs in the neocortex. Stage A:
low density of SPs, especially in the frontal, temporal and
occipital cortex; stage B: SPs in the neocortical associa-
tion areas and hippocampus; stage C: in primary sensory
and motor areas [57, 59, 61]. Thal’s proposal categorizes
phase 1: exclusively neocortex; phase 2: also allocortex;
phase 3: diencephalic nuclei, striatum, and cholinergic
nuclei of the basal forebrain; phase 4: brain stem; and
phase 5: also the cerebellum [67].

The time of appearance of NFTs also differs from
that of SPs. NFTs are identified in specific brain regions
in young people in their twenties. The number of NFTs
increases with age and affects about 85% of human
beings at the age of 65, at least restricted to NFT stages
I–III. About 98% of individuals have NFTs in the telen-
cephalon at 80 [60, 61, 63, 68, 69]. In contrast, only about
30% have SPs at age 65 [57, 59, 61, 68, 69], and in around
60% over 80 [61]. NFTs without SPs are detected in
about 35% of individuals older than 90 [61, personal
observation].

The lack of temporal and regional concordance
between NFTs and SPs is intuitively hardly consistent
with the β-amyloid cascade hypothesis in brain aging and
sAD [70, 71]. However, this scenario does not contradict
the evidence that tauopathy is fueled by amyloid precur-
sor protein dysfunction [72, 73].

AD is unique to humans. Other species may have
scattered β-amyloid deposits and tau pathology, but in

none of these do SPs and NFTs show the prevalence,
localization, and widespread distribution they manifest in
human beings. Even so, the presence of tau pathology
and β-amyloid deposits in certain old-aged animals points
to a link between brain aging and abnormal tau and APP
metabolism in many species, including dogs, bears, pinni-
peds, primates, and cetaceans.

4 | REDEFINITION OF sAD IN THE
SECOND DECADE OF THIS CENTURY:
NATIONAL INSTITUTE ON AGING–
ALZHEIMER’S ASSOCIATION
GUIDELINES

Clinical and post-mortem neuropathological sAD pro-
gression suggests a concatenation of Alzheimer’s disease
neuropathological changes (ADNC, covering SPs and
NFTs) in sAD [57–61, 69, 74–80]. This situation
prompted a clinical redefinition of AD at the beginning
of the second decade of this century by the National
Institute on Aging–Alzheimer’s Association (NIA-AA).

Three pillars underlay this new approach: (a) the neu-
ropathological evidence of ADNC; (b) biochemical and
neuroimaging biomarkers; and (c) clinical symptoms.

4.1 | Neuropathology

NIA-AA guidelines considered SPs and NFTs essential
neuropathologic features of AD [81–82]. The main points
were (1) the recognition that ADNC may occur in the
apparent absence of cognitive impairment; (2) the consid-
eration of an “ABC” score for ADNC, incorporating his-
topathologic assessment of β-amyloid deposits (called A,
based on Thal phases), staging of NFTs (called B, based
on Braak stages), and scoring of neuritic plaques
(called C, based on CERAD); and (3) the assessment of
co-morbid conditions such as Lewy body disease, vascu-
lar brain injury, hippocampal sclerosis, and TDP-43 pro-
teinopathy that may modify the clinical presentation in
every particular individual.

NIA-AA guidelines assume that the appearance of
SPs is the sine-qua-non condition for the neuropathologi-
cal diagnosis of sAD. The presence solely of NFTs is not
considered a prime manifestation of sAD [81, 82]. This
way of thinking is based on the β-amyloid cascade
hypothesis as the origin and trigger component of AD.

4.2 | Biomarkers

Current cerebrospinal fluid (CSF), plasma, and blood
biomarkers used in AD diagnosis are β-amyloid species,
phospho-tau and tau, phospho-tau ratio, neurofilaments,
synaptic proteins, activated astrocytes, and inflammatory
markers [83–90]. The available methods cannot detect
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differential levels of tau, phospho-tau, β-amyloid, and
structural or synaptic proteins unless the degenerative
process is at least at the middle stages of ADNC (A2, B2,
C2, following the ABC score).

CT and MRI reveal that hippocampal atrophy is a
late marker of AD that is only positive when there is
advanced NFT pathology and neuron loss in the hippo-
campus. 18F-Fluorodeoxyglucose positron emission
tomography (18F-FDG PET) and fMRI may detect
hypo-perfusion and hypo-metabolism linked to neuronal
function.

PET using specific radiotracers permits the visualiza-
tion of abnormal protein deposits, particularly β-amyloid
and P-tau species. A recent meta-analysis revealed that
�25%–35% of cognitively normal older adults harbored
a significant amount of β-amyloid [91].

Tau-PET shows early tau deposition in the entorhinal
and temporal cortices in β-amyloid-negative non-demented
individuals and its progression to other brain regions follow-
ing more advanced NFT Braak stages in individuals with
added β-amyloid pathology [92–99]. Tau-PET is considered
a promising tool for better prediction of cognitive change
than amyloid-PET and MRI, and it may support the prog-
nostic process in the pre-clinical stages of AD [100].

PET studies, and particularly tau-PET observations,
confirm that: (i) tau pathology precedes by several
decades the appearance of β-amyloid in brain aging with-
out cognitive impairment; (ii) tau pathology may be
found in some individuals suffering from cognitive
impairment without concomitant β-amyloid deposition,
and; (iii) tau pathology, rather than β-amyloid pathology,
correlates with progressive cognitive decline in sAD.

4.3 | Clinical classification of Alzheimer’s
disease

A critical historical misunderstanding regards the term
Alzheimer’s disease (AD) as synonymous with Alzhei-
mer’s dementia. However, a significant achievement in
understanding AD as a clinically progressive neurodegen-
erative process was formalized at the beginning of the
second decade of this century by the NIA-AA. Clinically
AD was categorized as pre-clinical AD, MCI due to AD,
and mild, moderate, and severe Alzheimer’s dementia
[83, 101–116, and https://www.alz.org/media/Documents/
Alzheimer’s-facts-and-figures].

Pre-clinical AD is considered in individuals with mea-
surable brain changes revealed by biomarkers that indi-
cate the earliest signs of AD but have not yet developed
symptoms such as memory loss. MCI due to AD is con-
sidered in people with biomarker evidence of ADNC plus
new but subtle signs such as memory, language, and
thinking problems. Pre-clinical AD is contemplated as a
biological situation that makes possible, but not obliga-
tory, the appearance of dementia later in life in the con-
text of ADNC.

The selection of biomarkers by the NIA-AA is in line
with the creed of the β-amyloid cascade hypothesis. Pre-
clinical stage 1 is characterized by primary amyloidosis
and assessed by the positivity of β-amyloid biomarkers
and negativity of tau biomarkers. Stage 2 is asymptom-
atic cerebral amyloidosis plus “downstream” neurodegen-
eration based on high CSF tau/P-tau ratio, neuronal
dysfunction, cortical thinning, and hippocampal atrophy.
Pre-clinical stage 3 is distinguished by cerebral amyloid-
osis, neurodegeneration, and subtle cognitive decline.

The early presence of positive tau-PET in the inner
regions of the temporal cortex in the absence of positive
β-amyloid markers does not merit the categorization of
pre-clinical AD according to the current definition of the
NIA-AA.

However, cognitive status correlates with NFT bur-
den rather than β-amyloid plaques [107].

5 | PRIMARY AGE-RELATED
TAUOPATHY

The term “primary age-related tauopathy” (PART) was
coined to include cases with NFT pathology at stages I–
IV of Braak in the absence of β-amyloid plaques [108].
Patients are cognitively “normal for age” or maybe suffer
from MCI; dementia is rare [108–111]. Early tau pathol-
ogy without β-amyloid deposits can be detected by tau-
PET, thus allowing a clinical identification of the pathol-
ogy during life [96, 99, 100]. PART is predominant until
the age of 60–70, prior to the progressive appearance of
SPs in the brain. At this point, the incidence of AD
increases at the expense of reduced incidence of PART.
Thus, AD prevails in individuals aged 80–90, whereas
NFT-only pathology accounts for about 20% of the popu-
lation. Dementia only with tangles (or tangle-predominant
dementia), which would be the logical progression of
PART, is very uncommon [112].

Genetic studies carried out in neuropathologically-
verified PART cases have shown a lower prevalence of
APOEε4, rs28834970 PTK2B, rs6733839 in the BIN1,
and CR1 genes, and a higher prevalence of APOEε2
[110, 113, 114]. In contrast, tangle-predominant dementia
has been associated with the MAPT H1 haplotype [115].
The proposal of PART as a new tauopathy is not widely
accepted; PART is also interpreted as part of AD [61,
116, 117].

6 | BRAIN ALTERATIONS IN THE
AGING FRONTAL CORTEX AND SAD
ARE NOT RESTRICTED TO NFTs AND
SPs, AND THEY MAY PRECEDE ADNC

Molecular changes in brain aging and sAD are not
restricted to β-amyloid and abnormal tau accumulation.
Multiple systems are primarily dysfunctional or
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secondarily damaged by abnormal β-amyloid and tau spe-
cies. Added molecular changes compromise: (i) synapses;
neurotransmitters, neuromodulators, and related recep-
tors, including acetylcholine and acetylcholine receptors,
glutamate and glutamate receptors, γ-aminobutyric
acid (GABA) and GABA receptors, serotonin and
5-hydroxytryptamine (5-HT) receptors, noradrenergic sys-
tem, adenosine receptors, endocannabinoids, cannabinoid
receptors, endorphins, and orexin; (ii) trophic factors and
receptors; (iii) mitochondria and oxidative phosphorylation;
(iv) oxidative and nitrosative stress damage to lipids, nucleic
acids, and proteins; (v) mitochondria/endoplasmic reticulum
interactions; (vi) endoplasmic reticulum stress; (vii) failure
of the ubiquitin-proteasome system and autophagy to
remove debris; (viii) granulovacuolar degeneration;
(ix) purine metabolism; (x) histone modifications, DNA
methylation, and hydroxymethylation; (xi) non-coding
RNAs; (xii) protein synthesis; (xiii) altered cell cycle and re-
entry; and (xiv) cell death. Other key elements in the patho-
genesis of brain aging and sAD are early dysfunctional
astrocytes and microglia, followed by altered oligodendro-
cytes; and alterations in the neurovascular system mani-
fested as early reduction of the cerebral blood flow and
abnormal blood barrier function. All these factors, together
with β-amyloid and tau, contribute to neuronal cell death
and reduced neuronal connectivity [69, 118–120].

Notably, several of those determining molecular
changes linked to brain aging and sAD precede the
appearance of NFTs and SPs, as demonstrated by their
occurrence in brain regions not affected by SPs and
NFTs at NFT stages I and II. Molecular changes pro-
gress with particular profile-, time-, and region-
dependent patterns [120]. Molecular changes have
deleterious effects on brain functions, involving various
structures and pathways. Most of them may participate in
the later development of tau pathology and β-amyloid pro-
duction [120].

NFTs and β-amyloid, in turn, potentiate all the
above-mentioned molecular alterations, thereby creating
positive feedback for the degenerative process [120].
Other putative factors influencing brain aging and sAD,
categorized as environmental factors, include oral cavity
infections, intestinal microbiota, intellectual reserve, diet,
and good health [120].

Table 1 summarizes molecular changes in the frontal
cortex and hippocampus in sporadic cases at NFT stages
I and II.

7 | TOWARDS AN ALTERNATIVE
INTERPRETATION OF BRAIN AGING
AND sAD: A NEW DEFINITION OF AD

The natural history of ADNC changes during the human
lifespan shows the early formation of NFTs, followed by
the appearance of β-amyloid deposits decades later
[57–61, 69]. This fact has been interpreted in two ways.

Defenders of the β-amyloid cascade hypothesis, repre-
sented by the NIA-AA, split the process into two dis-
eases: AD and PART. Other researchers postulate that
tau pathology is an initiating factor in sAD [61]. How-
ever, there is no 3R tauopathy or 4R tauopathy and no
other sporadic 3R + 4R tauopathy linked to the genera-
tion and deposition of β-amyloid. Therefore, it is specula-
tive to posit that tau pathology sets off β-amyloid
production in sAD, even though NFTs are the first
ADNC in human brain aging [61].

Another proposal suggests the existence in the human
brain of a PART to which β-amyloid deposition is added
in a time-, rate- and region-dependent manner in the dif-
ferent AD categories, reliant on genetic factors involved
in the production of β-amyloid [121].

Not surprisingly, the mutually exclusive hypotheses
formulated to explain sAD are not satisfactory and have
not produced significant beneficial results when applied in
clinical trials. In short, anti-β-amyloid therapies have been
unsuccessful not because they cannot reduce β-amyloid
deposits, as they indeed do, but rather because they do not
stop the progression of the disease. In addition, therapies
geared to reducing abnormal tau deposits face difficulty
picking up the critical tau species, which may block NFT
formation. Moreover, current therapies do not contem-
plate actions directed to the multiple genetic and molecu-
lar factors, which are indeed the inducers of ADNC.

A new concept and definition of brain aging and sAD
are brought forward for further discussion. AD overture
guidelines advance that sAD is: (i) a multifactorial and
progressive neurodegenerative biological process,
(ii) characterized by the early appearance of 3R + 4Rtau
NFTs, (iii) later deposition of β-amyloid and SPs, (iv) with
particular non-overlapped regional distribution of NFTs
and SPs, (v) which are preceded by, and occurring in par-
allel with, molecular changes involving determining sub-
cellular structures and functions; (vi) accompanied by pro-
gressive neuron loss and brain atrophy, (vii) prevalent in
human brain aging, and (viii) manifested as pre-clinical
AD, and progressing not universally to mild cognitive
impairment due to AD (MCI-AD), and mild, moderate,
and severe AD dementia (ADD).

The neuropathological characteristics and clinical
correlates of sAD overture compared with NIA-AA
guidelines are summarized in Figure 1.

The “ABC” score for ADNC proposed by the NIA-
AA is helpful, but Braak β-amyloid scores are similar to
CERAD neuritic plaque scores and might also be used to
categorize the extension of plaques in the cerebral cortex.
As a supplementary note, immunohistochemistry with
validated antibodies against P-tau and β-amyloid is
mandatory.

The critical point that distinguishes the AD overture
definition from the NIA-AA proposal is the early appear-
ance of tau pathology as the first neuropathological
ADNC marker of sAD. The β-amyloid cascade hypothe-
sis is no longer considered the cause of sAD. However,
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the early appearance of tau pathology does not presup-
pose that tau pathology is the sAD’s origin. As indicated
in Figure 1, genetic factors and molecular changes

summarized in Table 1 are considered the earliest and
complementary partners that induce tau and β-amyloid
pathology at separate times of the lifespan.

TABLE 1 Altered components, pathways, and functions in the frontal cortex and hippocampus at NFT stages I and II preceding the appearance
of NFTs and SPs in these regions in cases with pre-clinical AD

Main components Main functional effects

Aberrant cell-cycle re-
entry and altered
adult neurogenesis

• Programmed cell death, activation of kinases, oxidative stress damage, tau hyperphosphorylation, activation of
β-amyloid pathways, altered NGF/proNGF/p75 signaling

Brain lipids • Progressive decrease in the levels of cholesterol, phosphatidylethanolamine, phosphatidyl inositol, phospholipid,
ethanolamine plasmalogen, and sphingomyelin; progressive modifications in the composition of PUFAs, and higher
levels of MUFAs: altered brain composition, altered cell signaling, altered neuroinflammatory responses

• Modifications in DHA, AA, and PUFAs produce an imbalance between their protective role (the adaptive responses
derived from their lipid mediators) and a deleterious role (derived from their susceptibility to oxidation)

• Cholesterol-derived lipid mediators, including 24- and 25-hydroxycholesterol, produce apoptosis
• Increased lipid peroxidation results in altered membrane function
• Increased lipofuscin

Lipid rafts and cell
membranes

• Altered lipid raft composition involving plasmalogens, PUFAs (especially DHA and AA), total polar lipids (mainly
phosphatidylinositol, sphingomyelin, sulfatides, and cerebrosides), and total neutral lipids (particularly cholesterol
and sterol esters) alter membrane composition and impair normal cell membrane signaling

• Altered cell membrane composition impacts cytoskeletal proteins through protein–protein interactions, electrostatic
interactions with lipid membranes, and lipid tails

• Increment in local cholesterol increases BACE1/AβPP interaction and facilitates the production of β-amyloid
• Microglial pro-inflammatory mediators generate membrane damage

Specialized
membranes

• Altered synaptic membranes
• Altered expression of certain neurotransmitter receptors and modulators of neurotransmission
• Altered connectivity

Mitochondria • Altered mitochondrial membranes
• Altered OXPHOS
• Increased production of ROS
• Altered mitochondrial DNA methylation
• Impaired cross-talk between endoplasmic reticulum and mitochondria: altered MAM interaction

Oxidative stress
damage

• Mitochondria, peroxisomes, ER, microsomes, nucleus, and plasma membrane are potential sources of ROS
• Oxidative stress damage DNA, RNA, carbohydrates, lipids, and proteins

Protein synthesis
impairment

• Alterations of protein synthesis pathways at the level of the nucleolus, mRNAs, miRNAs, ribosomal proteins

Dysregulated protein
phosphorylation

• Dysregulated phosphoproteins at NFT stages I and II are membrane proteins; proteins of the cytoskeleton; proteins
of the synapses and dense core vesicles; proteins linked to membrane transport and ion channels; kinases; proteins
linked to DNA and protein deacetylation; proteins linked to gene transcription and protein synthesis, and proteins
involved in energy metabolism

• Altered phosphorylation of selected proteins, accomplished by activation of several kinases, may alter membrane
and cytoskeletal function, among these synaptic transmission and membrane/cytoskeleton signaling, in addition to
energy metabolism, protein synthesis, and DNA homeostasis

Inflammation • Aging is accompanied by low levels of activated innate inflammatory responses
• Activated microglia showing increased expression of ApoE, triggering receptor expressed on myeloid cells 2

(TREM2), and lipoprotein lipase (LP2)
• Modified astrocytes: increased expression of glial fibrillary acidic protein (GFAP), S100β, and vimentin, and

modifications in morphology and number
• Senescent astrocytes; senescence-associated secretory phenotype manifested by increased production of pro-

inflammatory cytokines together with oxidative damage and increased superoxide production
• Early dysregulation of selected inflammatory mediators such as C3AR1, CSF1R, CSF3R, IL6, IL6ST, TGFB1, and

IL10RA
• Different inflammatory responses occur simultaneously in different regions in the same individual
• Clinical evidence of the protective role of non-steroidal anti-inflammatory drugs at pre-clinical stages of AD

Primary alteration of
small cerebral
blood vessels

• Altered endothelium, pericytes, composition of basal membranes, and altered function of podocytes
• Impaired CBF
• Impaired glucose uptake
• Impaired BBB

Abbreviations: AA, arachidonic acid; BBB, blood–brain barrier; C3AR1, complement component 3a receptor 1; CBF, cerebral blood flow; CSF1R: colony-stimulating
factor 1 receptor; CSF3R, colony-stimulating factor 3 receptor; DHA, docosahexanoic acid; IL10RA, interleukin-10 receptor; IL6, interleukin-6; IL6ST, interleukin-6
signal transducer; MAM, mitochondria-associated ER membranes; MUFAs, monounsaturated fatty acids; OXPHOS, mitochondrial oxidative phosphorylation system;
PUFAs, polyunsaturated fatty acids; ROS, reactive oxygen species; TGFB1, transforming growth factor-A1.

6 of 12 FERRER



F I GURE 1 Schematic representation of the natural history of ADNC and associated genetic factors, environmental factors, molecular changes
listed in Table 1, NFTs, and SPs with age in years. The proposed AD overture diagnosis and staging are compared with NIA-AA guidelines. ADNC:
Alzheimer’s disease neuropathological changes; AD, Alzheimer’s disease; ADD, AD dementia; MCI-AD, mild cognitive impairment due to AD;
NFTs, neurofibrillary tangles; PART, primary age-related tauopathy; SPs, senile plaques. Major differences between NIA-AA guidelines and AD
overture are the consideration of tau pathology as the first ADNC marker of AD; pre-clinical sAD is used instead of pre-clinical AD; the diagnosis of
pre-clinical sAD is advanced by several decades based on the detection of tau pathology in the inner temporal cortex; normal brain aging with ADNC
and PART are within the spectrum of sAD; molecular changes (most of them deserving in deep study) preceding, or occurring in parallel with,
ADNC, converge at different times leading to neuronal and glial dysfunction, and act as inducers of ADNC; genetic factors have determining roles
pointing to the relevance of lipid transport, membrane integrity, and neuroinflammation in the pathogenesis of sAD.

TABLE 2 Comparison of staging categories for pre-clinical AD between the NIA-AA (A) and AD overture (B) guidelines

(A)

Stage Description
Aβ-PET, low
CSF Aβ1–42

High CSF tau/P-tau, neuronal
dysfunction (FDG-PET or fMRI),
cortical thinning, hippocampal atrophy (sMRI) Subtle cognitive decline

1 Asymptomatic cerebral amyloidosis Positive Negative Negative

2 Asymptomatic cerebral amyloidosis
+“downstream” neurodegeneration

Positive Positive Negative

3 Cerebral amyloidosis
+Neurodegeneration
+Subtle cognitive decline

Positive Positive Positive

(B)

Stage Description
Tau-
PET

Aβ-PET, low
CSF Aβ1–42

High CSF tau/P-tau, neuronal dysfunction (FDG-PET
or fMRI), hippocampal atrophy (sMRI)

Subtle
cognitive
decline

1 Asymptomatic primary
tauopathy

Positive Negative Negative Negative

2 +Asymptomatic cerebral
amyloidosis

Positive Positive Negative Negative

3 +Positive CSF tau biomarkers,
+cerebral dysfunction

Positive Positive Positive Negative

4 +subtle cognitive decline Positive Positive Positive Positive

Abbreviations: Aβ, β-amyloid; FDG, fluorodeoxyglucose (18F); fMRI, functional magnetic resonance imaging; PET, positron emission tomography; sMRI,
structural MRI.
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Regarding the value of biomarkers suggested by the
NIA-AA, AD overture shifts to recognizing early tau
pathology, mainly revealed by tau-PET, as the earliest
marker of sAD. However, new indicators are needed to
detect early molecular alterations preceding, or occurring
in parallel with, tau and β-amyloid pathology. Among
them, changes in protein and lipid composition of cell
membranes, and altered membrane signaling with the
cytoskeleton, mitochondria, and vesicles are significant
targets for further research. Age-related astroglial and
microglial alterations, modification of neuroinflamma-
tory profiles, and cerebral blood vessel dysfunction with
age are determining, as well.

Finally, the clinical classification of AD overture also
differs from the NIA-AA classification in categorizing
pre-clinical sAD. Nevertheless, the terms MCI due to
AD and mild, moderate, and severe Alzheimer’s demen-
tia are modified slightly in the new classification. MCI
due to AD is named MCI-AD, and mild, moderate, and
severe Alzheimer’s dementia, are named mild, moderate,
and severe ADD. ADD is introduced to avoid confusion
between AD (Alzheimer’s disease) and AD dementia
(restricted to the most advanced AD phase).

Regarding pre-clinical sAD, AD overture guidelines
propose that stage 1 corresponds to asymptomatic pri-
mary tauopathy as revealed with high-resolution tau-
PET. Stages 2–4 are similar to stages 1–3, respectively,
proposed by the NIA-AA [83], but tau-PET is positive in
every stage. The new staging and diagnostic criteria for
pre-clinical sAD compared with the NIA-AA guidelines
are summarized in Table 2A, B.

The concept of human brain aging and sAD proposed
in AD overture seems more closely adapted to the natural
history of events during brain aging and sAD. AD over-
ture has additional clinical implications. The diagnosis of
pre-clinical sAD has been advanced for several decades.
Moreover, learning about molecular changes involving
various structures and signaling pathways preceding or
occurring in parallel with the appearance of tau pathol-
ogy and β-amyloid deposition may be an opportunity to
design new unconventional, breakthrough therapies.

AD overture guidelines are centered on human brain
aging and sAD. At present, we do not have enough infor-
mation to apply the same parameters, particularly those
linked to molecular brain changes at pre-clinical stages
and pre-clinical biomarkers, to fAD caused by mutations
in APP, PSEN1, and PSEN2.
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