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 2 

ABSTRACT 24 

High error rates of viral RNA-dependent RNA polymerases lead to diverse intra-host viral 25 

populations during infection. Errors made during replication that are not strongly deleterious to 26 

the virus can lead to the generation of minority variants. However, accurate detection of minority 27 

variants in viral sequence data is complicated by errors introduced during sample preparation and 28 

data analysis. We used synthetic RNA controls and simulated data to test seven variant calling 29 

tools across a range of allele frequencies and simulated coverages. We show that choice of 30 

variant caller, and use of replicate sequencing have the most significant impact on single 31 

nucleotide variant (SNV) discovery and demonstrate how both allele frequency and coverage 32 

thresholds impact both false discovery and false negative rates. We use these parameters to find 33 

minority variants in sequencing data from SARS-CoV-2 clinical specimens and provide guidance 34 

for studies of intrahost viral diversity using either single replicate data or data from technical 35 

replicates. Our study provides a framework for rigorous assessment of technical factors that 36 

impact SNV identification in viral samples and establishes heuristics that will inform and improve 37 

future studies of intrahost variation, viral diversity, and viral evolution.  38 
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IMPORTANCE 39 

 When viruses replicate inside a host, the virus replication machinery makes mistakes. 40 

Over time, these mistakes create mutations that result in a diverse population of viruses inside 41 

the host. Mutations that are neither lethal to the virus, nor strongly beneficial, can lead to minority 42 

variants that are minor members of the virus population. However, preparing samples for 43 

sequencing can also introduce errors that resemble minority variants, resulting in inclusion of false 44 

positive data if not filtered correctly. In this study, we aimed to determine the best methods for 45 

identification and quantification of these minority variants by testing the performance of seven 46 

commonly used variant calling tools. We used simulated and synthetic data to test their 47 

performance against a true set of variants, and then used these studies to inform variant 48 

identification in data from clinical SARS-CoV-2 clinical specimens. Together, analyses of our data 49 

provide extensive guidance for future studies of viral diversity and evolution.  50 
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INTRODUCTION 51 

Large population sizes, high replication rates, and error prone polymerases all contribute 52 

to the generation of sequence diversity found in viral infections (1-5). Natural selection acts on 53 

this diversity, contributing to viral evolution. RNA viruses have some of the highest mutation rates 54 

among viruses (1, 6, 7). To replicate their genomes, RNA viruses must encode their own RNA-55 

dependent RNA-polymerases (RdRp), which often lack proofreading capabilities. Coronaviruses 56 

are a notable exception, as they possess a distinct protein with 3’-5’ exonuclease capability (1, 8, 57 

9). Most errors made during replication—up to 40% in RNA viruses—are lethal (10, 11). Beneficial 58 

mutations make up a much smaller proportion, and these, along with neutral mutations, comprise 59 

the substitution rate. This substitution rate can be used to estimate the viral evolutionary rate, an 60 

important calculation in considering viral spread, pandemic potential, and vaccine design (4, 12).  61 

Due to the large population sizes of RNA viruses, intrahost bottlenecks, and genetic drift, 62 

genetic diversity within a host is dynamic, with frequencies of mutations constantly rising and 63 

falling (13). Mutations can lead to changes in the consensus sequence, e.g., where the allele 64 

frequency (AF) is greater than 50%, and these specific sets of mutations separate globally 65 

circulating virus populations into clades. Mutations in the virus genomes that are not the majority 66 

within an infected host (i.e., present at lower than 50% frequency) represent minority variants. 67 

Deep sequencing enables the capture of intrahost variation, both at the majority and minority 68 

level, enabling the identification of variants and estimation of their frequency. Studying intrahost 69 

variation can help in tracking viral spread, estimating population bottleneck sizes, and identifying 70 

key amino acid changes that differentiate new viral strains (14-17). Additionally, minority variants 71 

can highlight regions of the genome under selection or regions with increased mutational 72 

tolerance, as well as allow for detection of subtle population shifts within the infected host and 73 

discovery of possible drug resistance mutations (18, 19). Thus, information gleaned from studying 74 

intrahost viral diversity has major implications for vaccine, monoclonal antibody, and drug 75 

development. 76 
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Given the many applications of studying intra-host viral diversity, accurately identifying 77 

and quantifying viral variants is essential. Precise identification of viral variants, especially those 78 

at low frequencies, is complicated by the fact that viral genome sequencing often requires reverse 79 

transcription and amplification, which, along with library preparation and the sequencing process, 80 

are error prone. Thus, distinguishing true sequence variation from technical and experimental 81 

noise is challenging. Typically, several ad hoc metrics are used to filter variants, such as applying 82 

frequency and coverage cutoffs to sequencing data, however, the frequency at which identified 83 

variants are considered valid can vary widely (20-27). Most studies using large sample cohorts, 84 

or performing analyses on publicly available data, generally use single replicate data, despite 85 

evidence suggesting that replicate sequencing may be essential for filtering false positive minority 86 

variants (27). Despite the large number of studies analyzing minority variants in virus data, there 87 

is no consensus on what coverage cutoffs and allele frequency cutoffs to use, and no large-scale 88 

studies have been performed to determine what thresholds lead to the highest confidence in 89 

variant identification. 90 

In addition to the diversity of cutoffs used for single nucleotide variant (SNV) identification, 91 

there is also great diversity in the variant calling software available. Variant callers are often 92 

designed with specific functions in mind, such as identifying germline or somatic mutations in 93 

cancer genomes or single nucleotide variants in viral populations (28, 29). The function for which 94 

a variant caller is designed can have a significant impact on the statistics used and assumptions 95 

made by the software. Tools designed for detection of germline mutations, such as 96 

HaplotypeCaller and freebayes, must consider the very large reference genome, higher frequency 97 

variants, the diploid nature of the genome, the possibility of copy number variation, and long 98 

repetitive regions or large insertions or deletions (30-35). In these instances, local realignment of 99 

haplotypes may be most effective (28). By contrast, software used for somatic mutations in 100 

tumors, such as Mutect2 and Varscan, or for viral diversity, such as iVar and timo (a variant caller 101 

developed in our lab), use base by base comparisons, or a combination of this with haplotype-102 
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based alignment, to find lower frequency variants (27, 33-36). These tools also may need 103 

alternative methods to reduce false positive calls to account for PCR errors introduced during 104 

amplification of the viral genome (29). Due to the differences in bioinformatic and statistical 105 

approaches used by each variant calling tool, identifying the tool that is the best fit for the specific 106 

research question being studied is essential. Some tools have been tested in pairwise 107 

comparisons (27, 35), however little work has been done to extensively test the performance of 108 

the many available tools on different viruses, across sequence coverages, and at various allele 109 

frequencies in viral deep sequencing data.  110 

Here, we tested seven variant callers on simulated, synthetic, and clinical deep 111 

sequencing data. We tested each tool across a range of coverages, allele frequencies, and 112 

experimental designs to determine the optimal parameters that should be used to decrease false 113 

positive variant identification, without sacrificing true positive data. To compare performance 114 

between a small RNA virus with a high mutation rate, and a large RNA virus with proofreading 115 

capability, we tested the variant callers on two viruses of particular interest in the viral diversity 116 

field, influenza and SARS-CoV-2. We find that choice of variant caller, and use of replicate 117 

sequencing have the most significant impact on SNV discovery and demonstrate how both allele 118 

frequency and coverage thresholds impact both false discovery and false negative rates. We also 119 

provide guidance on best practices for leveraging deep sequencing data from public repositories 120 

for intrahost studies. These analyses provide a resource for studies aiming to assess intrahost 121 

viral diversity in SARS-CoV-2 or influenza, and they lay the groundwork for similar studies in other 122 

viruses. 123 

  124 
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MATERIALS AND METHODS 125 

Extended methods are available in the supplementary materials.  126 

Generation of Simulated Data 127 

 Reads were simulated using NEAT (v2.0) by constructing a mutation, error, fragment 128 

length, and GC model for each viral type (37). The models were provided to NEAT genReads.py 129 

along with reference fasta files and a mutation rate of 0.009 (0.9%) for influenza and 0.0045 130 

(0.45%) for SARS-CoV-2 to produce a “golden VCF” containing a defined number of SNVs in 131 

each virus. Simulated random PCR errors were also added to each replicate using 132 

genReads.py (NEAT). Several copies of the replicate golden VCFs were made, each with the 133 

same variants but with differing allele frequencies (AF). These VCFs were used to simulate 134 

paired end fastq libraries at 100,000X genome coverage and down-sampling was used to 135 

simulate lower coverages.  136 

Sequences were trimmed using trimmomatic v0.36 (38), aligned to the respective 137 

reference genome with BWA mem v0.7.17 (39), and duplicate reads were marked using GATK 138 

MarkDuplicatesSpark v4.1.7.0 (40). Variants were called in each replicate with seven different 139 

tools, using multiple parameter configurations for each tool (Table S1). A VCF file containing the 140 

intersection of the two replicates was generated using bcftools isec (v1.9) (39). The pipeline used 141 

for data simulation, sequence processing, variant calling, and analysis is available at 142 

https://github.com/gencorefacility/MAD2.  143 

Synthetic RNA generation, library preparation, and data processing  144 

Synthetic, ‘wildtype’ (WT), influenza genomic RNA and variant RNA (created by adding 145 

18, 14 and 14 known nucleotide changes into the WT PB2, HA, and NA segments respectively) 146 

were synthesized as double-stranded DNA (gBlocks). The DNA was in vitro-transcribed with the 147 

HiScribeTM T7 High Yield RNA Synthesis Kit (Invitrogen). RNA samples were diluted to an equal 148 

copy number concentration of 6x108 copies/µL. WT and variant RNA were mixed at equal 149 
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molarity. The pools were mixed at various frequencies (50%, 25%, 12.5%, 6.25%, 3.13%, 1.56%, 150 

0.78%, 0.39%), and diluted to various copy number concentrations (6x106 - 6x103 copies/µL). 151 

cDNA was generated and libraries were prepared using the Nextera XT library preparation 152 

kit (Nextera), with all volumes scaled down to 0.25x of the manufacturer’s instructions, cleaned 153 

with AMPure beads, and pooled at equal molarity. Libraries were sequenced on the Miseq 300 154 

Cycle v2 using 2 x 75 pair-end reads. Samples were amplified and sequenced in duplicate and 155 

analyzed with the pipeline described above, with the addition of adapter trimming. Synthetic 156 

SARS-CoV-2 data from a similarly designed study was downloaded from SRA (PRJNA682212) 157 

and processed as above (26). 158 

SARS-CoV-2 clinical sample preparation, processing, and variant calling 159 

Total RNA was extracted from 300 µL of nasopharyngeal (NP) or mid-turbinate (MT) 160 

swabs collected at the NIH Clinical Center as part of diagnostic testing between 07/24/2020 and 161 

03/31/2021 (Table S2). All samples were de-identified and anonymized. 162 

RNA from samples was extracted using the NUCLISENS easyMAG automated nucleic 163 

acid extractor and the viral genome was amplified using a modified version of the ARTIC protocol 164 

(https://artic.network/ncov-2019) and the methods described at 165 

https://github.com/GhedinSGS/SARS-CoV-2_analysis. All libraries were prepared as above and 166 

sequenced on either the Illumina MiSeq or the Illumnia NextSeq500 using either the 2x150 bp or 167 

2x300 bp paired end protocol. All samples were processed in duplicate. 168 

Samples were processed with the pipeline available and described above, with the 169 

addition of merging the two SAM files (from A and B primer pools) for each biological sample into 170 

one alignment file using Picard Tools MergeSamFiles v2.17.11. Variants were called as above 171 

using the standard parameters for each tool (Table S1).  172 

Data Availability 173 

Synthetic influenza data (bioproject PRJNA865369) and SARS-CoV-2 data from clinical 174 

samples are available in NCBI GenBank and SRA. Accession IDs can be found in Table S2. All 175 
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downstream analysis files are available at https://github.com/GhedinSGS/Optimized-176 

Quantification-of-Intrahost-Viral-Diversity. 177 

Ethics Statement 178 

All samples were anonymized and obtained with consent as part of SARS-CoV-2 179 

diagnostic testing.  180 
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RESULTS 181 

Simulated and synthetic data provide a ‘true’ set of minority variants to assess variant caller 182 

performance. 183 

To test the ability of each variant caller to accurately identify variants, it is essential to 184 

know the ‘true set’ of variants within the data, which is not possible with real sequence data. With 185 

this in mind, we tested the ability of six popular variant-calling software packages (Freebayes, 186 

HaplotypeCaller (hc), iVar, Lofreq, Mutect2, and Varscan) and one in-house pipeline (timo) to 187 

accurately identify minority variants in simulated and synthetic sequencing data (Fig. S1) (19-24). 188 

Single nucleotide variants (SNVs) were simulated across three influenza virus genomes (A/H1N1, 189 

A/H3N2, B/Victoria) and one coronavirus genome (SARS-CoV-2) at both defined and random 190 

allele frequencies and across a range of downsampled coverages (Fig. S1A-B). Further, synthetic 191 

RNA controls of three influenza virus segments (PB2, HA, and NA) containing known SNVs were 192 

mixed in varying amounts at various dilutions to create a range of allele frequencies and genome 193 

copy numbers (Methods) (Fig. S1C-D). Combined, we used these synthetic and simulated data 194 

sets to test variant caller performance on a known set of SNVs. 195 

We found that all callers performed poorly on our data using their default parameters (Fig. 196 

S2A). Therefore, to compare all callers equally, we used a standard set of permissive input 197 

parameters (min coverage = 1x, allele frequency cutoff = 0.01 (1%)) throughout our testing (Table 198 

S1). When assessing the F1 statistic across a range of simulated frequencies, most variant callers 199 

performed well at low frequencies (< 0.05 (5%)) when the coverage was high (downsampling 200 

fraction >= 0.005 or ~500X coverage). Conversely, high frequencies were necessary for accurate 201 

variant detection at small downsampling fractions where the average coverage was low (Fig. 1A). 202 

We did not observe significant differences between the four viruses in terms of variant calling 203 

accuracy (Fig. 1A, Fig. S2A). Most of the differences in performance between the variant callers 204 

could be seen at downsampling fractions < 0.005 and allele frequencies below 0.05 (5%) (Fig 205 

1A). A closer look at precision and recall for each tool at downsampling fractions of 0.002 and 206 
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0.003 indicated that many tools trade recall for precision at low frequencies (Fig. 1B). Some tools, 207 

such as iVar, timo, and varscan tended to be extremely conservative, especially at low 208 

frequencies. However, the stringency of these tools can be reduced by decreasing the input 209 

frequency parameter from 0.01 (1%) to 0.001 (0.1%) (Fig. S2 custom input parameters, Table 210 

S1).  The use of simulated data for initial testing showed that under ideal conditions, all variant 211 

callers have the ability to perform well on viral sequence data. This is important for establishing 212 

baseline performance against which to compare the variant caller performance on synthetic data 213 

and data from clinical specimens. 214 

While simulated data provides an ideal set of variants against which to compare the variant 215 

calls for each tool, it lacks the reverse transcription, amplification, and sequence library 216 

preparation steps involved in the generation of data from clinical specimens. To assess how these 217 

sample preparation steps, along with duplicate sequencing, and SNV thresholds may impact 218 

variant caller performance, we tested each tool on data from the synthetic RNA dataset (Fig. S1C-219 

D). The average read depth across gene segments was greater than 1000x and had similar 220 

coverage distributions to our simulated datasets at downsampling fractions of 0.01 and 0.1 (Fig. 221 

S3A). At this coverage in simulated data, we observed high F1, precision, and recall scores across 222 

all variant callers for SNVs > 1% frequency (Fig. 1A-B). Observed frequencies differed from 223 

expectation (Fig. S3B), likely due to mixing errors during sample preparation, but were consistent 224 

between viral copy numbers. Comparing the observed allele frequency to the median observed 225 

allele frequency revealed that most callers agreed on the frequency of identified variants; 226 

however, there is considerable variance in the AF estimations despite the fact that all SNVs are 227 

linked (Fig. 1C, S3B). We also tested the variant callers on a previously published synthetic 228 

SARS-CoV-2 data set (26). Here, HaplotypeCaller and timo found more true variants than the 229 

other callers, especially at higher viral load (Fig. S3C). Across all callers, the frequencies of 230 

observed variants in the SARS-CoV-2 data were less accurate than in the synthetic flu data i.e. 231 

the variance in allele frequencies is higher) (Fig. S3B-C). This is potentially due to the overall low 232 
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coverage of these samples and the amplicon-based sequencing method required for larger RNA 233 

genomes, suggesting that allele frequency estimation may be less reliable in SARS-CoV-2 data. 234 

 235 

Frequency thresholds and sequencing replicates reduce false positive SNVs 236 

Previous studies have reported the necessity of establishing frequency and coverage 237 

thresholds as well as having replicate sequencing to decrease false-positive SNVs in a data set 238 

(27, 40). Given that most publicly available data consist of single replicate sequencing data, we 239 

aimed to establish coverage and frequency thresholds that would minimize the false discovery 240 

rate (FDR) and false negative rate (FNR) to levels comparable to those observed using two 241 

replicates. To do this, we used both simulated and synthetic datasets with standard input 242 

parameters (Fig. S2A) and ignored the ‘binocheck’ requirement from timo (requiring variants to 243 

be found in near equal numbers of forward and reverse reads), allowing us to test the performance 244 

of timo on low frequency SNVs. 245 

In both the synthetic and simulated data, false positive SNVs were found across read 246 

depths but were primarily at allele frequencies less than 0.03 (Fig. 2A-2B). Therefore, applying 247 

frequency thresholds to single replicate data lowered the false discovery rate (FDR) for all callers 248 

(Fig. 3A, S4A).  While establishing coverage cutoffs did not drastically impact the number of false 249 

positive calls in either the simulated or synthetic dataset, coverage and library size are important 250 

factors when considering SNV recall (Fig. 1A, 2A-B, S5). However, using frequency thresholds 251 

did come at the cost of significantly increasing the FNR, as true SNVs found at low frequencies 252 

were filtered from the data. In contrast, keeping only SNVs shared between the two replicates 253 

dramatically decreased the FDR, while maintaining relatively low FNRs (Fig. 3, S4). 254 

HaplotypeCaller, LoFreq, and Mutect2 called notably higher numbers of false positive SNVs in 255 

synthetic data, including many that were maintained even after merging replicates—indicating 256 

that these callers are making consistently incorrect SNV calls. Further, these three callers had 257 

multiple instances where true positive SNVs were identified at high frequencies (AF > 0.05) in one 258 
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replicate and were entirely absent in the other (Fig. S6A). Importantly, replicates also increased 259 

the accuracy of allele frequency estimation of true positive variants in simulated data. The effect 260 

of sequencing replicates on allele frequency is especially pronounced for low coverage data, 261 

where the percent error of allele frequency estimation is pointedly lower for all tools when using 262 

replicates (Fig. S6B). This effect was less pronounced in synthetic data, likely due to the high 263 

coverage of these samples, again demonstrating the importance of read coverage for accurate 264 

allele frequency estimation (Fig. S6C). 265 

Together, these results indicate that using replicate sequencing with less stringent 266 

frequency cutoffs (AF >= 0.01) is the best combination to reduce the FDR while maintaining a low 267 

FNR. However, when replicate sequencing is unavailable, high coverage across the genome and 268 

strict frequency cutoffs (AF >= 0.03) are necessary. 269 

 270 

Choice of variant caller significantly impacts set and frequency of identified variants in real SARS-271 

CoV-2 data using single replicate data. 272 

While simulated and synthetic data allow for testing minority variant callers and cutoffs in 273 

a controlled setting, real data will always be more unpredictable. Thus, after using simulated and 274 

synthetic data to assess variant caller performance across frequencies and coverages, we tested 275 

how the callers performed on SARS-CoV-2 sequence data from diagnostic samples. Based on 276 

the simulated and synthetic data testing, we determined that a coverage cutoff of 200X and an 277 

allele frequency cutoff of 0.03 in single replicate data minimized false positive calls without 278 

sacrificing large amounts of true positive data with most variant calling tools. To test the variant 279 

calling tools on high-quality data, we used only samples where at least 80% of the genome had 280 

a read depth over 200x coverage cutoff in both sequencing replicates (Fig. S7A). We used each 281 

variant calling tool to identify minority variants in these samples and filtered them using a read 282 

depth cutoff of 200 and an allele frequency cutoff of 0.03. 283 
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We were interested in how similar the set of variants was that was identified by each caller. 284 

As a proof of principle, we filtered the set of variants for those present above an allele frequency 285 

of 0.5 and at read depths greater than 5x to identify consensus changes (AF >=50%, or major 286 

variants) within the data. As expected, the tools largely agreed on the consensus changes within 287 

the data (Fig. S7B). There was a small set of major variants that the callers did disagree on, 288 

however, most of which were a result of differences in the way some callers identify indels or 289 

handle variant at consecutive nucleotide positions. For the purposes of this study, indels were 290 

excluded from the analysis. These data indicate that even at high allele frequencies, the variant 291 

callers disagree to some extent on the set of variants present in clinical data, an important 292 

consideration when choosing how to define consensus sequences from SARS-CoV-2 data.  293 

We then analyzed the intersection of the minority variants (allele frequencies between 294 

0.03 and 0.5) identified by each tool. The total number of variants identified varied greatly between 295 

the callers, with Varscan calling the fewest variants by far, followed by timo and Lofreq, in line 296 

with the more conservative nature of these callers observed in the previous analyses (Fig. 4A). 297 

Of note, we found that replicate 2 data had much higher numbers of minority variants, particularly 298 

at very low frequencies, regardless of Ct value or date of sequencing. This suggests that freeze 299 

thawing samples may impact minor variant numbers (Fig. S7C). When comparing the set of 300 

minority variants identified by each of the seven tools, there was significant disagreement 301 

between the variants. Mutect2 and HaplotypeCaller identified many variants that other callers did 302 

not, particularly in replicate 1, and missed several variants identified by the other callers. This was 303 

similar to the performance of these callers on the synthetic data sets (Fig. S7D). Given the high 304 

number of false positives identified by HaplotypeCaller, Mutect2 and Lofreq in the simulated and 305 

synthetic datasets, we focused on the intersection of minority SNVs found in just the other four 306 

variant callers: Freebayes, iVar, Varscan, and timo. Of all the minority variants found in the data, 307 

104 from replicate 1, and 142 from replicate 2 were identified by all four of the variant callers (Fig. 308 
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4B). Overall, choice of variant caller appears to have a significant impact on the set of minority 309 

variants identified in SARS-CoV-2 data from clinical specimens. 310 

Many studies of minority variants investigate frequency of minority variants to calculate 311 

selection, bottleneck size, and potential for transmission (24, 41). We were interested in how well 312 

the variant callers agreed on the frequency at which variants were identified. We plotted the 313 

frequency of a variant in one caller against the frequency in each other caller and found that most 314 

of the minority variant callers were strikingly similar in their frequency calls of shared variants. 315 

Timo, Freebayes and iVar all showed almost complete agreement on frequency of the variants 316 

(Fig. 4C). Varscan showed more variation in frequency, generally calling variants at a lower 317 

frequency than the other three tools (Fig. 4C). Of interest, variants called by one caller but not 318 

another spanned a frequency range of 0.03 all the way to 0.5, indicating that even high frequency 319 

minority variants were often not agreed upon by variant callers. These data show that choice of 320 

variant caller not only affects the set of the minority variants that are identified in a data set, but 321 

also the frequency of those variants. 322 

 323 

Most minority variants in data from SARS-CoV-2 clinical specimens are not reproducible across 324 

sequencing replicates 325 

            In our sequencing data, the number of variants identified in each replicate by each tool 326 

was markedly different, suggesting that many of the identified minor variants may not be true 327 

variants introduced through viral replication, but instead technical artifacts (Fig. 4A, S7C-D). As 328 

was shown with our simulated and synthetic data, errors introduced through PCR, library 329 

preparation, and sequencing are mostly random, and therefore less likely to reappear and be 330 

identified across multiple sequencing replicates, particularly when using Freebayes, iVar, timo, or 331 

Varscan (Fig. 3). To find high confidence minority variants, we looked at the intersection of 332 

variants between the two replicates using each caller, using a lower allele frequency threshold, 333 

0.01, as established in synthetic data for merged replicates (Fig. 3). iVar and Freebayes called 334 
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the highest number of reproducible variants, while timo called the fewest number of reproducible 335 

variants, however the percentage of reproducible variants compared to variants identified in single 336 

replicates was the highest (Fig. 5A). Timo is one of the most conservative callers that was tested; 337 

these data indicate that being conservative may lead to increased reproducibility and therefore 338 

increased confidence when used on single replicate data. It is however important to note that the 339 

relatively low percentages of reproducible variants are likely skewed by the high numbers of low 340 

frequency variants found in replicate 2 (Fig. 5A, S7C). When we looked at the intersection of only 341 

the variants found by each tool in both replicates, only 80 SNVs were found by all callers across 342 

replicates, suggesting again that variant callers do not agree on the set of minority variants 343 

present (Fig. 5B). Together, these data suggest that most minority variants are not reproducible 344 

across replicates and support the idea that more than any other criteria, sequencing replicate has 345 

the highest impact on the set of minority variants identified (Fig. 5B, S7C-D). 346 

 347 

Variants identified by all variant callers show the most reproducible frequencies 348 

            Using synthetic data, we showed that in a controlled setting, SNVs that were found in both 349 

sequencing replicates generally showed reproducible frequencies (Fig. 2C). Given that frequency 350 

is an important metric in most analyses performed using minority variant data, we wanted to test 351 

if this held true in clinical samples. Plotting the frequency in replicate 1 against the frequency in 352 

replicate 2 revealed that while some variants showed consistent frequencies, some differed 353 

drastically—identified at 5-10% in one replicate and as high as 45-50% in the other replicate (Fig. 354 

5C). These data were striking as they reveal that averaging frequency across replicates, or 355 

performing only one sequencing replicate, could drastically alter downstream analyses performed 356 

using these numbers. Interestingly, when we looked at the variants that were reproducible across 357 

replicates and found by most, or all the variant callers, frequency tended to be much more 358 

consistent than those identified only in a single replicate, or by a single caller (Fig. 5C, dark red 359 
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points). Together, these data suggest that confidence in each variant and its frequency is 360 

increased with replicate sequencing and identification by many variant callers.  361 

 Since replicate sequencing data is not always available, we investigated what frequency 362 

cutoff could be applied such that single replicate data closely resembled the merged replicate 363 

data. To do this, we looked at the intersection of SNVs called in both replicates by Freebayes, 364 

iVar, timo, and Varscan (80 variants shown in Fig. 5B) and compared those to the intersection of 365 

SNVs called by the same four callers in each individual replicate (Fig. 4A). We then applied allele 366 

frequency cutoffs between 0.01 and 0.1 to determine the best cutoff for use on single replicate 367 

data. Here, we identify a true positive as a variant present in the reproducible set, and a false 368 

positive as any other variant found in a single replicate. As was noted previously, we find that 369 

replicate 2 data shows an increased number of SNVs, perhaps due to freeze/thawing of samples 370 

between preparations (Fig. S7C, 5D). As such, replicate 1 is likely more representative of what 371 

single replicate data may typically look like. At an allele frequency cutoff of 0.01, all true positives 372 

were found, but the number of false positives was very high, while a frequency cutoff of 0.05 or 373 

0.1 removed an outsized number of true positives from the dataset (Fig. 5D). Based on these 374 

data, we suggest an allele frequency cutoff of 0.03 when only single replicate data is available, a 375 

cutoff that was also confirmed in the simulated and synthetic data sets (Fig. 3). We further suggest 376 

using the intersection of multiple variant callers to increase confidence in the data, especially 377 

when estimating SNV frequency (Fig. 5B). Using all variant callers for analysis would likely be 378 

tedious and unrealistic, thus we looked at the intersection of just two callers, iVar and timo, and 379 

we found a similar trade-off in true positive and false positive data when using a single replicate 380 

and a cutoff of 0.03 (Fig. 5E). Based on these data, it is clear that there are many considerations 381 

necessary when performing minority variant analyses, and parameters and cutoffs should thus 382 

be chosen carefully and thoughtfully depending on the data available. In general, using replicate 383 

data and multiple callers provides the highest confidence set of SNVs and the most accurate 384 

frequencies.  385 
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DISCUSSION 386 

It has long been understood that intrahost viral populations are heterogeneous in nature, 387 

however capturing and measuring this viral diversity is complicated due to errors introduced 388 

during preparation and sequencing. We set out to identify the optimal tools, parameters, and 389 

filtering methods necessary for accurate variant identification. To accomplish this goal, we used 390 

a combination of simulated and synthetic influenza and SARS-CoV-2 sequence data to test the 391 

technical and experimental challenges and limitations of minority variant analyses. We found that 392 

sequencing depth and choice of variant caller has a significant impact on sensitivity of minor 393 

variant calls, and most false positive SNVs were detected at either low allele frequency, or low 394 

read depth. Additionally, our results show that replicate sequencing allows for the use of lower 395 

frequency thresholds, and this combination provides the best results, keeping the false discovery 396 

rate low, without sacrificing true positive data. We tested our optimized frequency and coverage 397 

cutoffs using SARS-CoV-2 sequence data from clinical infections. Most variant callers did not 398 

agree on the set of minor variants in the virus sequence data from clinical samples, and most 399 

minority variants were not reproducible across replicates. Ultimately, we determined that using a 400 

combination of sequencing replicates and multiple variant callers, along with moderate allele 401 

frequency and coverage cutoffs, can increase confidence in SNV calls. Our results outline the 402 

main considerations for minority variant analyses and highlight the intricacies and difficulties of 403 

studies of this nature. Further, we provide a framework for designing minority variant analyses, 404 

which will ultimately lead to more accurate conclusions surrounding viral transmission and 405 

evolution. 406 

Using a standardized set of parameters, most callers performed relatively similarly on high 407 

coverage simulated data, having both high precision and high recall. The main differences in caller 408 

performance were seen in lower coverage data or at low frequencies. As many minority variants 409 

are found at low frequencies, understanding how tools perform under these conditions is more 410 

relevant to analyses of real sequencing data. Timo had the lowest recall at lower coverages and 411 
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simulated frequencies due to its rigid requirements for SNVs to be above the 0.01 threshold 412 

parameter, while many other callers found SNVs at or below this frequency, regardless of setting 413 

a 0.01 AF cutoff. Timo, iVar, and Varscan all have the functionality to drop the input frequency 414 

parameter down to 0.001. Decreasing this parameter did not change the accuracy of iVar and 415 

Varscan but did increase the recall of timo. These data highlight the importance of optimizing 416 

bioinformatic tools to one’s own data. 417 

As previously observed by our group and others, the best method for filtering out errors 418 

generated during sample processing is to sequence each sample twice and only keep the SNVs 419 

found in both replicates. Sequencing replicates removed nearly all false positive calls in simulated 420 

data and significantly reduced the number of false positive SNVs in the synthetic datasets. 421 

However, for the synthetic datasets, the number of false positive SNVs was highly dependent on 422 

the variant caller used. HaplotypeCaller, Lofreq, and Mutect2 were all made and optimized for 423 

identifying variants in cancer cell datasets and had significantly higher false discovery rates than 424 

tools designed for viral use, particularly at low allele frequencies. Adjusting the filtering or input 425 

parameters on these callers may better optimize them for their use on viral data. For example, 426 

HaplotypeCaller suggests additional filtering of output data, however, when performed on this 427 

dataset, SNV detection was significantly reduced. Without this additional filtering, most variants 428 

are identified (high recall) but high numbers of false positives are included, suggesting additional 429 

optimization could improve performance. 430 

The use of simulated and synthetic data allows tools to be tested against a true set of 431 

minority variants. This is invaluable given that it is not possible to know which SNVs are real, and 432 

which are not, in clinical sequencing data. However, each of these controlled settings comes with 433 

both benefits and limitations. Simulated data allows for testing of various coverages using random 434 

downsampling, showing how low coverage data impacts caller performance and allele frequency 435 

estimation. Since high coverage is often the goal in sequencing, and coverage is unpredictable 436 

with real samples (42), this is a variable that can only be truly tested through simulation. 437 
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Conversely, while error models in simulated data can imitate PCR and sequencing errors, there 438 

are limitations to how ‘real’ these errors look to variant callers. Synthetic data allows for real error 439 

to be introduced during sample preparation and ultimately be easily separated from real variation 440 

during analysis. This gives a more accurate depiction of false positives that would exist in clinical 441 

data and variant caller performance on synthetic data may be more representative of true 442 

performance. However, both methods are limited in their ability to mimic sequence data from 443 

clinical samples where the RNA is not as homogeneous and intact as with synthetic RNA, and 444 

likely contains human contamination from sample collection and potential degradation from 445 

freezing, thawing, and handling (43). This is evident in the disagreement between variant callers 446 

and replicates, both on the set of minority variants and on their frequencies, in real data. 447 

Combined, the simulated, synthetic, and clinical data sets show that there will always be a trade-448 

off between inclusion of the maximum number of true variants, and inclusion of false positive data. 449 

Our study provides an extensive framework for studying minority variants in sequence 450 

data from clinical samples, outlining major considerations around choice of variant caller, 451 

application of frequency and coverage thresholds, and use of replicate sequencing. Further, we 452 

have established a pipeline that can be used for further testing and optimization of parameters, 453 

or for other viruses. This work will inform and improve future studies of intrahost variation and 454 

estimates surrounding viral diversity and viral evolution.  455 
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FIGURE LEGENDS 456 

Figure 1. Variant caller performance on simulated and synthetic data with variants at set 457 

allele frequencies. (A) F1 statistic for each variant caller across a range of downsampling 458 

fractions and allele frequency values. Values shown are mean and standard deviation of the four 459 

viruses (A/H1N1, A/H3N2, B/Victoria, SARS-CoV-2) using standard input parameters (Table S1). 460 

Color represents the variant caller used. (B) Precision/Recall graphs of each variant caller across 461 

allele frequencies (point shape) for downsampling fractions 0.003 (top left) and 0.002 (top right) 462 

or across downsampling fractions (point shape) for allele frequencies (AF) 0.02 (bottom left) and 463 

0.03 (bottom right). Color represents variant caller. Mean and standard deviation are shown 464 

across the four viruses for precision and recall scores. (C) Scatter plot showing median observed 465 

frequency (x-axis) versus individual observed frequency (y-axis) for each synthetic influenza gene 466 

segment and SARS-CoV-2 genome. Black dots indicate the median value for each expected 467 

frequency. Color represents the variant caller used. 468 

 469 

Figure 2. Frequency and coverage of false positive variants in synthetic and simulated 470 

data. (A-B) Scatter plots and associated histograms showing number of false positive SNVs 471 

across allele frequencies and read depths in synthetic (A) or simulated (B) data. Dotted lines are 472 

drawn at allele frequency = 0.03 and read depth = 200x. Color represents the variant caller used. 473 

 474 

Figure 3. Effect of frequency cutoffs and sequencing replicates on false discovery rate and 475 

false negative rate in synthetic and simulated data. (A) False discovery rate (FDR) of synthetic 476 

data using either single replicate data (colored points and lines) with applied frequency cutoffs 477 

(line type) or merged two replicate data without cutoffs (solid black points and lines). Lines 478 

represent mean across viruses. (B) False negative rate (FNR) of synthetic data using either single 479 

replicate data (colored points and lines) with applied frequency cutoffs (line type) or merged two 480 

replicate data without cutoffs (solid black points and lines) as above.  481 
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 482 

Figure 4. Effect of variant caller on identification and allele frequency estimation of SNVs 483 

in SARS-CoV-2 data from clinical samples. (A) Bar plot showing raw number of variants 484 

identified by each variant caller in replicate 1 (left bar) or replicate 2 (right bar). (B) Upset plot 485 

showing agreement of minority variants between variant callers in each replicate using an allele 486 

frequency cutoff of 0.03 and coverage cutoff of 200X. Vertical bars indicate the size of the shared 487 

set of variants while dots and connecting lines show which callers share a given set of identified 488 

variants. (C) Scatter plot showing the output frequency of minority variants identified by two 489 

different variant callers. Color represents replicate. Variants with frequency of 0 were not identified 490 

by that variant caller. 491 

 492 

Figure 5. Reproducibility of minority variants across sequencing replicates. (A) Bar plot 493 

showing number of reproducible variants across sequencing replicates by each variant caller. 494 

Percentages shown are the percentage of total individual variants that were reproducible. 495 

Background bars indicate the total number of variants found by each tool in each replicate (r1-496 

left, r2-right). (B) UpsetR plot showing overlap of reproducible variants across Freebayes, iVar, 497 

timo, and Varscan, using a frequency cutoff of 0.01 and coverage cutoff of 200x. Vertical bars 498 

indicate the size of the shared set of variants while dots and connecting lines show which callers 499 

share a given set of reproducible variants. (C) Scatter plot showing frequency of variants across 500 

sequencing replicates with frequency in replicate 1 on the x-axis and frequency in replicate 2 on 501 

the y-axis. Color represents reproducibility of each variant across variant callers and replicates. 502 

(D,E) Line graph showing the number of ‘true positive’ (D) and ‘false positive’ (E) in single replicate 503 

data across allele frequency cutoffs compared to merged replicate data. A TP variant is defined 504 

as a SNV found by the selected callers in both replicates (80 variants shown in B) and a FP is 505 

defined as any other variant found in an individual replicate by the selected callers. Color 506 

represents sequencing replicate. 507 
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 508 

SUPPLEMENTAL TABLES 509 

Supplemental Table 1. List of variant callers and parameters used for each. 510 

Supplemental Table 2. Metadata associated with diagnostic samples processed for whole 511 

genome sequencing of SARS-CoV-2. 512 

 513 

SUPPLEMENTAL FIGURES 514 

Supplemental Figure 1. Experimental setup of simulated and synthetic data generation. (A) 515 

Schematic of the SNV simulation pipeline. (B) Nucleotide positions of SNVs in simulated data 516 

across the genomes of A/H1N1 (n=121), A/H3N2 (n=110), B/Victoria (n=118), and SARS-CoV-2 517 

(n=144). Gene segments for influenza A and B strains are ordered largest (PB2) to smallest (NS), 518 

left to right. (C) Schematic of allele frequency and viral loads used for mixing WT and variant RNA 519 

for library preparation and sequencing. (D) Location of synthetic SNVs across the three influenza 520 

gene segments. Gray lines represent the designed SNVs (PB2 (n=18), HA (n=14), NA (n=14)) 521 

and red lines represent the pre-mRT-PCR errors, likely generated during template preparation or 522 

in vitro-transcription. 523 

 524 

Supplemental Figure 2. Variant caller performance using default, standard, and custom 525 

parameters. (A) F1 statistic for each variant caller across a range of downsampling fractions and 526 

allele frequencies. Values shown are mean and standard deviation of four viruses (A/H1N1, 527 

A/H3N2, B/Victoria, SARS-CoV-2) using default (top), standard (middle) or custom (bottom) input 528 

parameters (Table S1). Color represents the variant caller used. Dark timo points and lines 529 

indicate timo output with the removal of the binomial check option. 530 

 531 

Supplemental Figure 3. Coverage and Expected vs. Observed frequency of variants in 532 

synthetic data samples (A) Coverage plots showing log10 read depth for each synthetic 533 
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influenza control across the PB2, HA, and NA gene segments. Color represents individual 534 

samples. (B) Expected (x-axis) versus observed frequency (y-axis) for synthetic influenza SNVs 535 

(replicate one only). Color represents the copy number.  (C) Expected (x-axis) versus observed 536 

frequency (y-axis) for synthetic SARS-CoV-2 SNVs. Dashed black lines represent y=x. 537 

 538 

Supplemental Figure 4. Effect of frequency cutoffs and sequencing replicates on false 539 

discovery rate and false negative rate in simulated data. (A) False discovery rate (FDR) of 540 

simulated data using either single replicate data (colored points and lines) with applied frequency 541 

cutoffs (line type) or merged two replicate data without cutoffs (solid black points and lines). 542 

Background points represent values for individual viruses. Lines represent mean across viruses. 543 

(B) False negative rate (FNR) of simulated data using either single replicate data (colored points 544 

and lines) with applied frequency cutoffs (line type) or merged two replicate data without cutoffs 545 

(solid black points and lines) as above. 546 

 547 

Supplemental Figure 5. Effect of coverage cutoffs and sequencing replicates on false 548 

discovery rate and false negative rate in synthetic and simulated data. (A, B) False discovery 549 

rate (FDR) (A) of false negative rate (FNR) (B) of synthetic data using either single replicate data 550 

(colored points and lines) with applied coverage cutoffs (line type) or merged two replicate data 551 

without cutoffs (solid black points and lines). Background points show individual values for each 552 

of the four viruses. Lines represent mean across viruses. (C, D) False discovery rate (FDR) (C) 553 

of false negative rate (FNR) (D) of synthetic data using either single replicate data (colored points 554 

and lines) with applied coverage cutoffs (line type) or merged two replicate data without cutoffs 555 

(solid black points and lines) as above. 556 

 557 
Supplemental Figure 6. Effect of sequencing replicates on the accuracy of allele frequency 558 

estimation. (A) Scatter plot showing the frequency of variants in synthetic influenza data across 559 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 16, 2022. ; https://doi.org/10.1101/2021.05.05.442873doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.05.442873


 25 

sequencing replicates with frequency in replicate 1 on the x-axis and frequency in replicate 2 on 560 

the y-axis. Color represents the SNV type. (B, C) Percent error (
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑)

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
∗ 100) of 561 

single replicate (greyed boxes) or merged replicate (open boxes) SNVs in simulated data across 562 

downsampling fractions (B) or synthetic data across expected frequencies and viral loads (C). 563 

Color represents the variant caller used.  564 

 565 

Supplemental Figure 7. Quantification of majority and minority variants identified in data from 566 

SARS-CoV-2 clinical specimens (A) Scatter plot showing Ct value against percentage of genome 567 

with coverage over 200x after filtering for only samples with 80% of the genome over the 200x 568 

cutoff. (B) Upset plot showing agreement of consensus changes between variant callers in each 569 

replicate using an allele frequency cutoff of 0.5 and coverage cutoff of 5X. Vertical bars indicate 570 

the size of the shared set of changes while dots and connecting lines show which callers share a 571 

given set of identified changes. (C) Box and whisker plot showing number of minor variants with 572 

indicated allele frequency cutoffs found in replicate 1 and replicate 2 sequencing data. Points 573 

represent individual samples. Boxes and whiskers show min, first quartile, median, third quartile 574 

and max for each replicate. (D) Upset plot showing agreement of minority variants between all 575 

variant callers in each replicate using an allele frequency cutoff of 0.03 and coverage cutoff of 576 

200x. Vertical bars indicate the size of the shared set of variants while dots and connecting lines 577 

show which callers share a given set of identified variants. 578 

  579 
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