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Deciphering genetic causes for sex
differences in human health through
drug metabolism and transporter genes

Yingbo Huang 1, Yuting Shan 1, Weijie Zhang2, Adam M. Lee1, Feng Li 1,3,
Barbara E. Stranger 4 & R. Stephanie Huang 1

Sex differences have been widely observed in human health. However, little is
known about the underlying mechanism behind these observed sex differ-
ences. We hypothesize that sex-differentiated genetic effects are contributors
of these phenotypic differences. Focusing on a collection of drug metabolism
enzymes and transporters (DMET) genes, we discover sex-differentiated
genetic regulatory mechanisms between these genes and human complex
traits. Here, we show that sex-differentiated genetic effects were present at
genome-level and at DMET gene regions for many human complex traits.
These sex-differentiated regulatory mechanisms are reflected in the levels of
gene expression and endogenous serum biomarkers. Through Mendelian
Randomization analysis, we identify putative sex-differentiated causal effects
in each sex separately. Furthermore, we identify and validate sex differential
gene expression of a subset of DMET genes in human liver samples. We
observe higher protein abundance and enzyme activity of CYP1A2 in male-
derived liver microsomes, which leads to higher level of an active metabolite
formation of clozapine, a commonly prescribed antipsychotic drug. Taken
together, our results demonstrate the presence of sex-differentiated genetic
effects on DMET gene regulation, which manifest in various phenotypic traits
including disease risks and drug responses.

Sex differences have been frequently observed in human health in the
form of differences in disease incidence rates, disease progression,
and responses to treatment1–3. These differences are at least in part
related to genetic differences between males and females4–6. Two
large-scale consortium studies have investigated sex differences in the
genetic basis of complex traits7 and in genetic regulation of gene
expression8. Both studies demonstrate that sex-specific or sex-
differentiated genetic effects can be masked when a genome-wide
association study (GWAS) is performed using a sex-combined model7.
Consequently, sex-differentiated causal inferences—causal effects
arising from sex-differentiated genetic effects—can be missed when

using sex-combined analyses. Although these large-scale studies pro-
vide strong support for the presence of sex-differentiated genetic
regulation, the broad scope of these reports prevents them from elu-
cidating the precise sex-differentiated molecular mechanisms. With-
out such information, it is difficult to translate these findings into
better patient care and apply them towards personalized medicine.

One of the reasons for late phase clinical trial drug development
failure is the large variability in treatment response among individuals.
Amongpatient characteristics, biological sex is amajor source of inter-
individual variability, wherein males and females may respond differ-
ently to the same medications9. Drug metabolism enzymes and
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transporters (DMET) genes influence the pharmacokinetics, pharma-
codynamics, and safety profiles of drugs10, 11. Pharmacogenomic stu-
dies have revealed that genetic variations in DMET genes are strongly
correlated with drug response12, 13. However, these studies typically
employ sex-combined models and report results in a sex-combined
fashion14, because of the sample size/power limitations, hence under-
estimating the role of sex as a modifier of the drug response. More-
over, functions of DMET genes are critical in determining the amount
of endogenous substrates (e.g., serum biomarkers that are frequently
used for disease diagnoses15, 16). A comprehensive study of sex differ-
ences in the genetic basis of DMET genes and their health impact is
currently lacking.

In this study, we hypothesized that single-nucleotide poly-
morphisms (SNPs) located in DMET gene regions contribute to the
observed sex-differentiated genetic effects of human complex traits.
Such differences could derive from sex differences in the genetic
regulation of gene expression and serum biomarkers; and in metabo-
lism of exogenous substrates (drugs); all of which can subsequently
impact human health phenotypes. We tested both sex-differential
genetic effects where the effect size of genetic regulation is different
between sexes, and sex-specific genetic effects where the association
only significant in one sex. Using sex-stratified genome-wide associa-
tion study (GWAS) summary statistics for 564 traits from the UK Bio-
bank (UKBB)17, we characterized genome-wide sex-differentiated
genetic effects on complex traits, and also focused on DMET gene
regions. Through sex-stratified expression quantitative trait loci
(eQTL) analysis of DMET genes using the Genotype-Tissue Expression
(GTEx) project resources and sex-aware mendelian randomization
(MR) test focusing on serum biomarkers, we discovered putative sex-
differentiated regulatory mechanisms contributing to sex differences
in human health. Furthermore, we identified sex-differentially
expressed DMET genes in the human liver and linked them to litera-
ture reported evidenceon sex differences in drug response. Finally, we
highlighted sex differences in CYP1A2 in metabolizing clozapine and
experimentally confirmed the differential expression and activity of
this gene in the human liver microsomes.

Results
Sex differences in genetic architecture and genetic effects of
DMET genes
Sexdifferences in humanphenotypes canbedriven by sex-differentiated
genetic effects4, 18. However, such effects can be masked in GWASs
because individuals of both sexes have typically been analyzed together7.
In this study, we evaluated the sex differences in the genetic architecture
of human complex traits in each sex separately using sex-stratified
GWAS summary statistics from the UKBB (http://www.nealelab.is/uk-
biobank, Fig. 1a). We analyzed 564 traits (421 binary/categorical traits,
143 continuous traits, Supplementary Data 2), for which at least one
DMET region SNP shows significant trait association based on the GWAS
catalog. DMET genes, which encode 222 metabolism enzymes and 150
transporters, were retrieved from a previous publication (Supplemen-
taryData 1)10.Wefirst estimated the narrow-sense heritability of each trait
separately in each sex to quantify the proportion of phenotypic variance
explained by the common genetic variation19. Sex differences in trait
heritability suggest a different molecular mechanism and/or a different
degree of environmental effect between sexes on the trait. Of 564 traits,
83 traits (14.72%) showed significant sex differences in heritability
(FDR<0.05, Fig. 1b and Supplementary Data 3). Among them, 56 traits
(67.4%) had higher heritability in males, including neuropsychiatric
traits, such as ever attempted suicide and anxiety, and other diseases,
such as gout, cardiovascular complications (coronary atherosclerosis)
and diabetes. In comparison, traits such as hypothyroidism, osteo-
porosis and gallbladder disorders have higher heritability in females.
These findings are robust across different methods employed to esti-
mate heritability (Supplementary Fig. 1). When expanding the genome-

wide heritability analysis to additional 1222 traits that have sufficient
samples for both sexes in UKBB and are not known to related to DMET
genetic regions, we found 13.7% (167/1222) of them showing sex differ-
ences in global heritability (Supplementary Fig. 2, Supplementary
Data 4). Interestingly, similar 13.40% (71/530) traits showing significant
differences in their heritability between two sexes have been reported by
an independent study7.

We alsoestimatedgenetic correlation between sexes for each trait
to evaluate potential sex differences in genetic architecture. Genetic
correlation estimates the proportion of variance that two groups share
due to genetic causes20. Low genetic correlation between males and
females in the same trait suggests sex differences in the genetic
architecture. We focused on only those heritable traits (defined by
greater thanmedian estimatedheritability across all traits through sex-
combined GWAS analysis) to generate robust estimates of the male-
female genetic correlation. We identified 253 traits for which male-
female genetic correlation differed significantly from 1 (Supplemen-
tary Fig. 3, Supplementary Data 3, FDR <0.05), suggesting a global
difference in genetic architecture between the sexes. These traits with
sex-differentiated architecture include gout (rg = 0.459; FDR = 1.26 ×
10−9), heart attack (rg =0.573; FDR= 6.39× 10−10), and cholelithiasis (rg =
0.634; FDR = 1.18 × 10−5).

For variants located in DMET gene regions, to quantify sex dif-
ferences in SNP-trait associations, we calculated the z-score and P
values for each SNP that mapped into the cis-DMET regions to each
trait. We defined SNPs with sex-differentiated effects (SDEs) as those
trait-associated SNPswith a significant sex difference in genetic effects
(basedon z-score FDR<0.05). In total, we identified 25 traits harboring
at least one SDEs (Fig. 1c, Table 1 and Supplementary Data 5) and
mapped 954 SDEs onto 109 tagging loci (r2 < 0.2) and 125 genes. The
two disease traits with the largest numbers of SDEs are self-reported
gout and hypothyroidism/myxedema (Table 1). We indeed found SDEs
mapped in genes previously implicated in disease, such as ABCG2 in
gout15.

15 traits were found to have sex differences both in heritability
(global) and SDEs in DMET gene regions (Fig. 1d), affirming the pre-
sence of different genetic effects between males and females. How-
ever, whether these differential genetic effects are functionally related
to human health is unknown. To test this, we employed colocalization
analysis, which assess the probability of two GWAS traits sharing a
common causal variant in a genomic region21. In another word, if for
the same trait, the sex-stratified GWAS results were not colocalized,
the probability is high that males and females have a different causal
mechanism for that trait. Among the aforementioned 15 traits, we
excluded three of them (Treatment code: levothyroxine sodium,
treatment code: thyroxine product, major coronary heart disease
event excludes revascularization) as they represented information
redundant to other traits in the list. All 12 traits exhibit genetic corre-
lation coefficients differing from1 (SupplementaryFig. 4).Wedetected
22 male-specific causal loci in traits such as gout and major coronary
heart disease events, and 13 female-specific causal loci in traits such as
hypothyroidism (Fig. 1e, Supplementary Data 6) after colocalization
analysis. All support the presence of sex-differentiated genetic effects
of traits in cis-DMET gene regions.

Gout and hypothyroidism were found to have higher number of
sex-differentiated causal SNPs in the DMET gene regions. Previous
findings indicate that accumulation of crystal form of urate at the
joint causes gout22. We identified male-specific SNP-trait associations
of gout in the SLC22A12 region (Fig. 1f), specifically an upstream
variant rs2360872. SLC22A12, also known as urate transporter 1, is
involved in regulating urate levels in the blood and its variants are
associated with serum uric acid level and gout development23. Our
results suggest that rs2360872 affects gout uniquely in males.
Additionally, we detected female-specific SNP-trait associations of
hypothyroidism at the 5’UTR of SLC66A1 (Fig. 1f). SLC66A1 is a
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lysosomal amino acid transporter that mediates the export of
cationic amino acids from lysosomes24. The relationship between
SLC66A1 and thyroid function remains unknown.

Sex differences in the genetic regulation of gene expressionmay
lead to observed sex differences in human complex traits
Sex-differentiated genetic regulation of gene expression can lead to
different manifestations in downstream biological pathways. There-
fore, we characterized sex differences of genetic regulation on gene

expression in human liver samples using sex-stratified cis-eQTLs pro-
duced by the GTEx Consortium25.

Sex-differentiated eQTLs were defined as expression associated
variants who have significantly different effect size between males
and females (quantified through a z-score testing). We identified 31
sex-differentiated eQTLs (FDR <0.1) in and near 2 DMET genes
(Supplementary Fig. 5, Supplementary Data 7). Among them,
rs34109652, is associated with UGT2B17 gene expression only in
males (βmale = 0.84; Pmale = 5.44 × 10−7; βfemale = 0.27; Pfemale = 0.078;
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Z-score = −2.95; Fig. 2a). This gene encodes an enzyme that trans-
forms steroid hormones such as testosterone26. A previous study
reported higher UGT2B17 enzyme activity in males27. This male-
specific genetic regulation could in part explain the observation of
higher UGT2B17 activity in male, though functional work is required
for validation.

In addition to sex-differentiated eQTLs, we also identified 40
potential sex-specific eQTLs in the DMET gene regions (FDR < 0.1
in one sex and FDR > 0.1 in the other sex of eQTL, Fig. 2b, Sup-
plementary Data 7). For example, variant rs854572 on chromo-
some 7, is associated with PON1 gene expression in males only
(Pmale = 4.13 × 10−8; Pfemale = 0.01; Z-score = 0.33 Fig. 2a). This gene
encodes serum paraoxonase and arylesterase 1 enzyme, an
enzyme exerting protective effects in Major Adverse Cardiovas-
cular Events (MACE = death, myocardial infarction, stroke). In a
sex-combined GWAS, this variant is associated with the activity of
paraoxonase and arylesterase 128. Moreover, higher arylesterase

activity has been reported in females29. Although sex-specific
association of this variant with serum enzyme activity has not
been tested, this sex-specific eQTL provides a putative explana-
tion for the observed higher PON1 serum activity in females.
Together, our results support the presence of sex-differentiated
genetic regulation of DMET gene expression.

To examine the potential biological consequences of these sex-
differentiated/specific eQTLs, we performed colocalization21 between
them and the 564 complex traits described above. We identified 11
traits with a sex-differentiated/specific eQTL colocalization (PPH4 >
0.5 in only a single sex, Fig. 2c, Supplementary Data 8 Binary Traits,
Supplementary Data 9 continuous traits). Among them,multiple traits
related to alcohol intake are colocalized with a male-specific eQTL for
ADH1C (PPH4male = 0.73, PPH4female = 0.073, Fig. 2d). This gene
encodes enzymes that metabolize a wide variety of substrates,
including alcohol30. Alcohol metabolism determines blood alcohol
level over time, and the extent of organ exposure to alcohol.

Fig. 1 | Sex-differentiated genetic effect exists in genome-wide and in near-
DMETgene regions for complex traits. aOverviewof trait selection and analytical
pipeline. We defined each cis-DMET gene region as ±1Mb from the DMET gene
transcription start site. We first selected available human complex traits for which
sex-stratified GWAS summary statistics are available17. The trait list was further
narrowed down by the presence of significant SNP-trait associated with the DMET
gene regions. In total, we evaluated 564 traits (421 categorical/binary traits and 143
non-binary/non-categorical traits). We then performed several sex-aware analyses
(sex-stratified heritability, male-female genetic correlation, sex-differentiated
genetic effects) to characterize sex differences both a genome-wide and in DMET
gene regions. Lastly, we performed sex-stratified colocalization analysis between
sexes to identify DMET variants’ unique SNP-traits association in each sex for the
traits that demonstrated sex differences in genetic basis. b Male and female her-
itability estimates for 564 traits. Eachpoint represents the estimatedheritability for

a given trait. Blue indicates the 83 traits with a significant (FDR <0.05) sex differ-
ence inheritability. cNumber of sex-differentiated effects (SDEs)mapping toDMET
genes regions. d 15 overlapped traits with SDEs in cis-DMET gene regions and a
significant sex difference in heritability. e Sex-stratified colocalization of GWAS
signal for 8 traits. SDEs are labeled on the x-axis, and the traits are labeled on the y-
axis. The posterior probability of hypothesis (PPH) 1 (blue, representing SNP
putatively causal only in Male) and 2 (red, representing SNP putatively causal only
in Female) are color-labeled and the value of PPH is represented by the size of the
circle; only PPH >0.25 is shown. The variant effect and Combined Annotation
Dependent Depletion (CADD) score are shown for each SNP. The asterisk indicates
self-reported traits. f LocusZoom plots of SLC22A12 (left) and SLC66A1 (right) from
sex-stratified GWAS for self-reported gout and self-reported hypothyroidism,
respectively. Linkage disequilibrium (LD) between variants is quantified by the
squared Pearson coefficient of correlation (r2).

Table 1 | Summary of SDEs found in different traits

Traits Cis-DMET genes Number of SDEs (FDR <0.05) in corresponding cis-DMET gene regions

Self-reported: hypothyroidism/myxoedema ALDH2 218

Self-reported: gout ABCG2 128

Self-reported: hypothyroidism/myxoedema SLC16A1 108

Self-reported: gout SLC22A11 54

Self-reported: gout SLC5A6 53

Self-reported: hypothyroidism/myxoedema ALDH8A1 48

Self-reported: osteoporosis ALDH3B1 31

Palmar fascial fibromatosis SLCO5A1 29

Self-reported: hypothyroidism/myxoedema CYP20A1 27

i48 atrial fibrillation and flutter CYP17A1 24

Diastolic blood pressure CYP17A1 21

Self-reported: gout ABCB9 20

Endocrine, nutritional and metabolic diseases ALDH5A1 18

Palmar fascial fibromatosis PPARA 18

Self-reported: cholelithiasis/gallstones ABCG5 15

Treatment code: warfarin CYP17A1 15

Coronary atherosclerosis SLC22A2 15

Self-reported: gout SLC29A2 15

Coronary atherosclerosis CYP20A1 12

Self-reported: hypothyroidism/myxoedema ABCC2 11

k80 cholelithiasis ABCG5 11

Self-reported: hyperthyroidism/thyrotoxicosis CYP20A1 11

Hip circumference CYP7B1 10

Traits with at least 10 SDEs in the cis-DMET gene regions are shown. Traits are sorted by the number of SDEs. Treatment code ‘levothyroxine sodium/ thyroxine product’was excluded from the table
due to information redundant with self-reported: hypothyroidism/myxedema.
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Therefore, ADH1C has been implicated in alcohol dependency. Sex
differences in alcohol consumption have been widely reported, where
males are more likely to drink alcohol and to consume more than
females31. Genetic variants in ADH1C are associated with alcohol
metabolism capacity32. In males, genetic variants of ADH1C showed
significant association and a larger effective size with heavy/excessive
alcohol drinking habits than females33. Our results provided a plausible

explanation for this phenomenon where sex-differentiated genetic
regulation of ADH1C may be the culprit. Importantly, all traits that
showed significant sex-dependent colocalization with ADH1C eQTLs
were related to alcohol drinking frequency, but not alcoholism. This is
concordant with previous reports that ADH1C genetic variants were
not associated with alcoholism33. Of note, the observed sex dimorph-
ism in alcohol consumption can be affected by factors, such as body
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size, sociocultural behavior. The identification of genetic contributor
to this trait should not be interpreted without these other factors. Our
results provided a plausible explanation for this phenomenon where
sex-differentiated genetic regulation of ADH1C may play a part in this
complex issue. Overall, our colocalization results linked the genetic
basis of a small number of complex traits to sex-dependent genetic
effects on expression levels of specific DMET genes.

Sex differences in the DMET region genetic regulation of human
serum biomarkers and their impact on human health outcomes
Clinical laboratory tests are frequently used to diagnose diseases and
monitor human health status. Many of these serum biomarkers are
transformed in the liver by DMET enzymes10. Importantly, sex differ-
ences have been known for the level of many serum biomarkers34.
While the genetic basis of serum biomarkers has been studied in large
cohorts in a sex-combined fashion35, sex differences in genetic basis of
those biomarkers and putative causal relationships with human dis-
eases have not been extensively studied. Given the relevance of serum
biomarkers in human health and the potential masking effect intro-
duced by the sex-combined model, we hypothesized that sex-
differentiated causal relationships exist, and can be revealed by sex-
aware characterization of the genetic regulation of serum biomarkers
and human disease risks. To test this hypothesis, we performed Men-
delian Randomization (MR) in both sex-combined and sex-stratified
models. We pre-selected traits that harbor at least 1 significant SNP
(P < 5 × 10−8) that aremapped to a DMET gene region. In total, we have
29 serum biomarker traits as exposures and 186 outcomes selected
from the 564 human complex traits described above. A sex-specific
likelihood of causal relationship is defined if it is significant in only a
single sex but not in the sex-combined population (P <0.05/(186*29)
threshold, Fig. 3a).

We first examined the proportion of significant serum biomarker
level-associated SNPs (P < 5× 10−8) that are located in theDMETregions
relative to the whole genome (Fig. 3b, Supplementary Data 10); and
found the DMET region variants were associated with levels of
29 serumbiomarkers. The DMET region serumbiomarker associations
account for 20% (in the case of c-reactive protein) to 100% (in case of
oestradiol) of overall genomic association with these serum bio-
markers. The proportion of serum biomarker-associated variants that
mapped to cis-DMET gene regions is greater than random selection of
variants from genome sequence of the same length (Supplementary
Fig. 6), which suggests the important impact of DMET genes on serum
biomarker levels.

Using the same analytical pipeline described earlier on human
complex traits (not including any of the serum biomarker traits), we
characterized sex differences in the genetic basis of serum biomarker
traits. As expected, we observed that hormone-related traits, such as
testosterone, harbor the largest sex differences in estimated herit-
ability (Supplementary Data 11), genetic correlations (Supplementary
Fig. 8, Supplementary Data 11), and SDEs (Supplementary Fig. 9, Sup-
plementary Data 12)34.

By conducting MR analysis using sex-combined and sex-stratified
models, we identified a total of 141 female-specific and 167 male-
specific putative causal relationships (Fig. 3c, Supplementary Data 13),
which were not seen in the sex-combined model. Serum biomarkers,

such as bilirubin and aspartate aminotransferase, have a large number
of female-significant causal relationships, whereas testosterone, cho-
lesterol and glucose have a large number of male significant causal
relationships (Supplementary Fig. 10). We found sex-specific causal
relationships between blood cell counts (e.g., monocyte count, plate-
let count) and several anthropometric traits (e.g., BMI, waist-to-hip
ratio, hip circumference). While sex differences have been known for
either the blood cell counts or the anthropometric traits36, 37, these
putative sex-specific causal relationships have not been reported.
Among diseases, we identified 24 traits that exhibit at least 1 sex-
specific causal relationship (Fig. 3d). We observed that testosterone
increases the likelihood of high blood pressure only in females; and
apolipoprotein B increases the likelihood of coronary atherosclerosis
and major coronary heart disease events only in males. Given that
DMET genes are largely involved in the transformation of these
endogenous compounds, we hypothesized that genetic variations in
DMET gene regions affect levels of these serum biomarkers and result
in sex-specific human health outcomes. We further conducted MR
analysis only considering SNPs inDMET gene regions in traits with sex-
specific causal effect; and identified 61/141 (43.2%) female-specific and
66/167 (39.5%) male-specific putative causal relationships that
remained valid (Bonferroni adjusted P <0.05, Supplementary Fig. 11,
Supplementary Data 14). Overall, our results highlight the importance
of examination of causal relationships in each sex separately, by which
sex-specific causal effect can be identified.

To understand themolecular basis of sex differences in this causal
relationship, we examined shared loci that associated with testoster-
one and high blood pressure in each sex. In females, six loci (P < 5 ×
10−8)were sharedbetween testosterone andhighbloodpressure, and3
(CYP11B1, SLC16A1, SLC22A7) of them were in DMET gene regions
(Fig. 3e). In males, only 4 loci were shared between testosterone and
high blood pressure, none of these loci were located in the DMETgene
regions (Supplementary Fig. 12). Variant rs7003319 inCYP11B1 3′UTR is
associated with both testosterone level and high blood pressure in
females, but not males. Colocalization analysis of these two traits
revealed a shared genetic basis only in females (PPH4females = 0.73,
PPH4males = 0.00034; Fig. 3f). CYP11B1-encoded enzymes catalyze
glucocorticoid production and lead to the production of 11-
ketotestosterone (11-KT)38. A previous study reported that 11β-
hydroxylase deficiency (11βOHD), a rare autosomal recessive dis-
order caused by mutations in the CYP11B1 gene, is associated with
hypertension39. Further investigation of the interplay between
CYP11B1, testosterone, and high blood pressure in the context of bio-
logical sex is warranted.

Sex differences in DMET gene expression are linked to sex dif-
ferences in drug response
Elimination of drugs and exogenous toxins is the major function of
DMET gene products. Such processes mainly take place in the liver.
Differences in the abundance and activity ofDMEThave been shown to
play a major role in drug responses and side effects10. Although sex
differences in the gene expression ofDMETgenes have been studied in
different contexts40, the impact of these differentially expressed genes
on responses to relevant medications is sparsely reported. Here, we
hypothesized that sex differences in DMET gene expression would

Fig. 2 | Sex differences in the genetic regulation of gene expression in human
liver in part mediate human complex traits. a Example of sex-differentiated/
specific cis-DMET eQTLs in both sexes for UGT2B17 (left panels) and PON1 (right
panels) in liver. b Manhattan plot of sex-stratified cis-eQTLs in DMET regions in
human liver. Sex-differentiated/specific cis-eQTLs and their corresponding genes
are labeled (blue: Male, red: Female) and parentheses indicates the number of cis-
eQTLs. Highlighted genes are statistically significant after multiple testing correc-
tion (FDR<0.1). cColocalization ofGWAS traitswith sex-differentiated/specific cis-

eQTLs for DMET genes. PPH4 values are represented by the size of circles. Only
colocalizations with PPH4>0.5 in one sex are shown (females: red; males: blue).
d LocusZoomplots for alcohol intake frequency at theADH1C locus. The toppanels
illustrate the results from the sex-combined GWAS, while female-only and male-
only cis-eQTLs are shown in the middle and the bottom panels. rs34076947 is a
male-specificADH1C cis-eQTL in liver. In (a) and (d), linkage disequilibriumbetween
loci is quantified by the squared Pearson coefficient of correlation (r2). In (a, b, d),
association testing was performed using a linear regression model by FastQTL.
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provide insights into observed sex differences in drug responses and
side effects.

Using RNA-seq data fromGTEx liver tissue, we identified 20DMET
genes with significant sex differences in expression; 10 expressed
higher inmales and 10 others expressed higher in females (FDR <0.05,
Fig. 4a, Supplementary Data 15). Among them, several well-

characterized pharmacogenes, such as CYP1A2, CYP3A4 and CYP2C19,
were found to exhibit sex-differential expression. When assessing the
reproducibility of our discovery in an independent dataset, we reca-
pitulated the differential expression for 14 of 19 genes (expression of
CYP1A2 was not quantified in the validation dataset) (Supplementary
Fig. 13)41. Two additional smaller datasets42, 43 were also evaluated and
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our top differential expressed genes, such as UGT2B17, UGT2A3,
CYP3A4, SLC3A1, SLC16A14 are concordant with previous finding
(Supplementary Data 16). Protein abundance of two pharmacogenes,
CYP1A2 and CYP3A4, was quantified in pooled human liver micro-
somes (HLMs) that were collected separately from male and female
donors. We confirmed higher protein abundance of CYP1A2 in the
male-pooled HLMs and the opposite trend for CYP3A4 (Fig. 4b), which
is correlated with a previous report11.

To evaluate the potential clinical consequences of these sex dif-
ferentially expressed DMET genes with respect to medication use, we
annotated these genes with FDA-approved drugs. Specifically, using
data from PharmGKB44 and DrugBanks45, both of which have sum-
marized gene and drug relationships from published literature, we
found 1,166 drugs that have been linked to at least one of the sex
differentially expressed genes identified in this study (Supplementary
Fig. 14, Supplementary Data 17). Not surprisingly, CYP3A4, a cyto-
chrome P450 family member which is responsible for metabolizing
approximately 50% of drugs on the market, has been linked with the
greatest number of drugs.

To further investigate whether these annotated drugs have been
reported to have sex differences in response, we performed web
scraping to comprehensively search literature in PubMed for evidence
supporting sex differences in response to these annotated drugs. Using
“sex difference” and drug names as our key search terms, we identified
2,340 journal articles that contained information for 306 drugs. Given
the high intensity of inspecting all articles, we focused on those drugs
that were annotated with CYP1A2, as a proof-of-concept. This resulted
in 519 journal articles whichwere thenmanually inspected to determine
whether sex differences in drug responses were reported. Among
them, we identified 75 articles that reported sex differences in either
efficacy, pharmacokinetics, or toxicity of 49 drugs that aremetabolized
by CYP1A2 (Fig. 4c, Supplementary Data 18). Fluoxetine, for example,
was reported to have greater weight reduction in females than inmales
at the same dosage46. Furthermore, antipsychotic medications, such as
clozapine and olanzapine, have been reported to have a slower elim-
ination in females thanmales47, which is in agreement with our findings
that males have a higher expression of CYP1A2 (Fig. 4d).

Our analysis identified a number of sex-differential drug respon-
ses that were supported by existing literature. For example, flunar-
izine, another CYP1A2 substrate, which is used in treating epilepsy48,
was reported to not affect catalepsy in male mice, but attenuated
catalepsy in females at the same doses49. Another study found that
male rats formed two oxidative metabolites of flunarizine at higher
rate than female rats50. These are in agreement with our findings that
higher CYP1A2 expression in male can lead to faster metabolism/
breakdown of this drug and therefore less response. Similarly, female
mice have been reported to be less susceptible to acetaminophen

overdose induced hepatotoxicity than male mice51. Acetaminophen is
also metabolized by CYP1A2 to N-acetyl-p-benzoquinone imine
(NAPQI), known to induced hepatotoxicity. In this case, the lower
expression of CYP1A2 in female liverwould lead to lower production of
the toxic metabolite and therefore partially explain the lower toxic
response in females.

Given thewide usage of clozapine and the higher rate of clozapine-
induced toxicity observed in males52, we hypothesized that the higher
abundance of CYP1A2 contributes to higher formation of an active
metabolite, and subsequently leads to higher rate of clozapine-induced
side effects in males (Fig. 4e). We quantified the sex differences in
clozapine metabolism using separate pools of HLMs from men and
women. Because CYP3A4 also contributes to the metabolism of clo-
zapine, in our HLM experiments we employed ketoconazole, a CYP3A4
inhibitor, to specifically evaluate CYP1A2-mediated metabolite forma-
tion. In the presence of ketoconazole, the formation of N-demesthyl-
clozapine, the active metabolite, was significantly higher in the male
HLMs (Fig. 4f, P =0.0309). We observed no sex differences in the for-
mation of an inactivemetabolite, clozapine N-oxide (Fig. 4f) and parent
drug clozapine (Supplementary Fig. 15). Higher plasma concentration
of N-desmethylclozapine has been associated with clozapine side
effects, such as agranulocytosis53. Our observation supports the notion
that the observed higher frequency of clozapine-induced toxicity in
males can be due to elevated formation of N-desmethylclozapine
resulting from higher CYP1A2 levels in males (Fig. 4e).

Discussion
In this study, we comprehensively examined the genetic basis of DMET
genes to over 500 human complex traits in a sex-aware fashion. Unlike
the majority of previous genomic studies, sex-differentiated genetic
effects and regulatory mechanisms were identified by sex-stratified
analytical model.We performed various analyses including heritability
estimation, colocalization, genetic correlation, MR to survey global
and regional genetic basis with the goal of not only establishing cor-
relation but also inferring potential causality. When a sex-
differentiated SNP-trait association was observed, a number of biolo-
gically plausible hypotheses were tested for causality, which include
the identification of sex-differentiated genetic regulation of gene
expression (eQTL) and serum biomarker level.

We observed significant sex differences in genome-wide herit-
ability estimated for 83different humancomplex traits.When focusing
on the DMET gene regions, we identified a number of SDEs that are
associated with human complex traits. Using colocalization we iden-
tified 35 sex-specific causal loci corresponding to eight traits. The
majority of these traits have reported sex differences in disease pre-
valence, such as gout, hypothyroidism, and major coronary heart
disease1. For example, we discovered that rs2360872 in the upstream

Fig. 3 | Sex-specific relationshipsbetween serumbiomarkers andhumanhealth
outcomes. a Analytical pipeline for theMendelian Randomization (MR) analysis to
establish the causal relationship between serum biomarkers and human health
outcomes. We evaluated SNP-trait associations for 30 serum biomarkers and 564
humancomplex traits fromUKBB separately, focusing on those SNPs inDMETgene
regions. MR tests were conducted using both sex-combined and sex-stratified
GWAS summary statistics, limiting to those traits with significant DMET region
genetic associations (P < 5 × 10−8), which include 29 exposures (serum biomarkers)
and 186 outcomes (traits). b SNPs in DMET gene regions are important in the
genetic regulation of serum biomarkers from UKBB. The barplot shows the total
count of significant variants in the sex-combined serum biomarker analysis. The
proportionof variants inDMETgene regions is shown in blue. cVolcanoplot of sex-
combined and sex-stratified MR results. The x-axis represents the −log10 (P value)
from theMR-Egger test. The y-axis represents the effect size ofMR-Egger tests. Each
point represents a MR test from sex-combined (diamond) or sex-stratified (square
if females; triangle ifmales) GWAS summary statistics. The color of points indicates
sex-specificity of the MR relationship; blue indicates males (blue) or females (red)

or not sex specific (gray). Theplot does notdisplay those caseswith extremely large
−log10(p) values without sex-specific MR relationships. The vertical dashed line
represents the significance threshold (P <0.05/(186*29)).d Sex-stratifiedMR results
between 24 diseases and serum biomarkers. Rows represent 24 diseases as out-
come and columns represent 28 serum biomarker traits as exposure. The color
represents the effect size. Significant causal effects are indicated with a solid black
dot. Colored outlines highlight sex-specific MR relationships, with female-specific
in red, and male-specific in blue. eManhattan plot for GWAS of testosterone (top)
and doctor-diagnosed high blood pressure (bottom) in females. SNPs associated
with both traits (P < 5 × 10−8) are highlighted in red. SNPs in DMET gene regions and
included in the MR test are labeled with DMET gene names. f Colocalization
between testosterone level and doctor-diagnosed high blood pressure in the
CYP11B1 locus, shown separately formales and females. Theposterior probabilityof
shared causal effects (PPH4) is calculated separately for each sex. Linkage dis-
equilibrium between variants is quantified by the squared Pearson coefficient of
correlation (r2).
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of urate transporter 1 is significantly associatedwith gout exclusively in
males. Our findings highlight the need of incorporating sex as a bio-
logical variable in analysis approaches, especially for traits with known
sex differences.

We characterized sex differences in genetic regulation of gene
expression of DMET genes. Previous GTEx pan-tissue study identified
few sex-biased expression quantitative trait loci (sb-eQTLs)8. Only 3 sb-
eQTLs (q <0.25)were reported in human liver, where none of them are

mapped into DMET gene regions. The design of the prior GTEx study
was to provide a genome-wide characterization of sex-biased genetic
regulation across tissues. As such, due to the high multiple testing
burden, the study was powered only to detect large effects. In the
present study by restricting the genes of interests to DMET genes, we
alleviate the multiple testing correction penalty. Specifically, we
detected sex-differentiated/specific cis-regulation of expression of six
DMET genes in human liver. Male-specific regulations were detected
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for genes PON1 and UGT2B17, which provide putative explanations for
reported sex differences in the abundance of protein28. Our work is
complementary to the previous GTEx global analysis. The present
study highlights the need and potential to reveal sex differences in the
genetic regulation of gene expression by focusing on a collection of
important functional genes. The results from our work provide plau-
sible mechanistic explanations for the observed sex differences in
several human health traits.

The main function of DMET genes is to transform endogenous
and exogenous molecules10, 15. Indeed, we observed a large proportion
of serum biomarker-associated SNPs were mapped into DMET gene
regions in comparison to randomly selected SNPs, which further
confirmed the critical role of DMET genes in the genetic basis of serum
biomarkers. Further, sex-differentiated genetic effects on the level of
serum biomarkers may also provide explanations for observed sex
differences in higher-order complex traits. Consistent with previous
reports34, 54, we found that hormone-related traits harbor the most sex
differences in genetic architecture. By conducting sex-stratified MR,
we revealed hundreds of sex-specific serum biomarker and traits
associations, which were not identified in sex-combined models.
Interestingly, on average, 40% of these causal relationships remain
significant when only including the DMET SNPs as instrumental vari-
ables. Of note, these sex-differentiated causal inferences can represent
different magnitudes of causal effect, different causal SNPs, or even
differences in pleiotropic effect between males and females. Overall,
we demonstrated sex differences in the genetic basis of serum bio-
markers and a role for sex-differentiated effect of DMET gene in reg-
ulating those endogenous compounds.

Lastly, we evaluated sex differences in the expression of DMET
genes. We identified 20 DMET genes with significant sex-
differentiated expression. We further confirmed the sex differences
in the protein abundance of CYP1A2 and CYP3A4 in HLMs. Because
CYP1A2 expression is highly inducible by smoking55, we carefully
designed our protein quantification experiments to include the same
percentage of smokers in each separate male and female donor pool.
To further explore the clinical impact of our findings, we extensively
examined published literature of sex differences in CYP1A2 meta-
bolized drugs. Of 519 articles, we found 49 drugs with previously
reported sex differences in the PK profile, efficacy or toxicity. Among
them, clozapine and olanzapine showed a consistent higher rate of
adverse events in males52. We investigated whether this observation
could be due to sex differences in metabolizing clozapine and found
that a higher level of the active metabolite, N-desmethylclozapine,
was detected in male-pooled HLMs, suggesting that male HLMs have
higher CYP1A2 abundance. Both clozapine and
N-desmethylclozapine are considered efficacious in treating schizo-
phrenia and inducing side effects56. However, N-desmethylclozapine
has a longer half-life than clozapine57. We proposed that a higher
abundance of CYP1A2 in males leads to the accumulation of N-des-
methylclozapine, which consequently increases the likelihood of

drug side effects. These results suggest that sex differences in DMET
gene expression could affect the drug response.

Our study has limitations. First, our analyses were performed in the
DMET gene regions (with 1Mb flanking) rather than only the coding
region of DMET genes. Our rationale is that the proximal gene region
contains regulatory elements, such as promoters and enhancers, and
genetic variants in these regions can have large impacts on gene
expression25. By this definition, situations can rise where sex-differential
genetic effects are actually coming from variants mapped onto nearby
non-DMET genes. Therefore, one needs to be careful when interpreting
the results from our work and avoiding simply calling DMET gene
regions as DMET genes. Second, sex differences in genetic effects could
be confounded by both sociological and behavioral differences between
males and females. Such differences complicate the detection of true
molecular mechanisms of disease. We noted that the potential sex dif-
ferences highlighted in our results need to be distinguished with many
features of behavior and external environments in future investigations.
Third, for traits that exhibit sex differences in incidences (e.g., hypo-
thyroidism), there is often imbalance in the sample size between the two
sexes, which could affect the power of sex-stratified GWAS discovery.
This is partly why we only selected traits that have cases number > 300
in both sexes for our analysis to avoid simply missing findings due to
small sample size in one sex. We acknowledge that this might not be
enough. In an ideal scenario, GWAS could be performed after matching
the sample size between males and females. However, having access to
only the summary statistics from the UKBB prevented us from taking
this approach. Last, our analyses were built upon publicly available
GWAS summary statistics which were generated using a simple linear
regression model. However, this approach has the potential to produce
spurious results when dealing with case/control traits where the ratio of
cases number to control number is high58. This impact could be severe
in sex-stratified GWAS analysis. Methods such as the Logistic MixModel
(LogMM) can account for case/control imbalance59. We therefore re-ran
our analysis using GWAS summary statistics from LogMM for 11 traits
and compared it with our original discovery. We found that results were
highly consistentwith our original analyses. For sex-stratified heritability
estimation, we observed remarkable concordance between two meth-
ods (Corfemale = 0.98, Pfemale = 4.16 ×10−8; Cormale =0.63, Pmale = 0.039,
Supplementary Fig. 16, Supplementary Data 19). We observed similar
results for estimates of male-female genetic correlation (Supplementary
Fig. 17, Supplementary Data 19) and the number of SDEs (Supplemen-
tary Fig. 18 & Supplementary Fig. 19, Supplementary Data 20). There is
only one exception: the self-reported heart/cardiac problem trait. For
this particular trait, the estimated heritability and the number of SDEs
changed between the two methods in males. Manhattan plots showed
that more trait-associated SNPs (P< 5 × 10−8) have been identified using
LogMM compared to regular linear regression (Supplementary Fig. 20).
Of note, this difference might not only be resulted from the analytical
model, but could also come from the inclusion of participants, the
selection of SNPs (e.g., MAF cutoff), and covariates in the designed

Fig. 4 | Sex differential DMET gene expression is linked to sex difference of
clinical drug response. a Volcano plot of differential gene expression of DMET
genes in human liver. Eachpoint represents aDMETgene. There are 10DMETgenes
more highly expressed in males (blue), and 10 more highly expressed in females
(red). Wald test was performed using DEseq2. The horizontal dashed line repre-
sents FDR<0.05. bWestern blot analysis of sex-stratified human liver microsomes
(HLMs; female HLMswere pooled from 21 donors, male HLMs were pooled from 12
donors) showing expression of CYP1A2 and CYP3A4. Top: Representative Western
blot. Bottom: Quantification of CYP1A2 and CYP3A4 protein normalized over
GAPDH from six replicates. Data are presented as means ± SEM. PCYP1A2 = 0.0126,
PCYP3A4 = 0.0209. c Workflow for web-scraping analysis. d Web-scraping identified
49CYP1A2-associateddrugswith reported sexdifferences in clinical drug response.
Sanky plot shows the number of articles reporting sex differences in drug response
for those drugs annotated with CYP1A2 in DrugBank and/or PharmGKB.

e Schematic representation of sex difference in clozapinemetabolism and toxicity.
The active metabolites (N-desmethylclozapine) were primarily produced by
CYP1A2, which has a higher abundance in the male liver. More
N-desmethylclozapine could contribute to the reported higher frequency of side
effects in males receiving clozapine. Font size of the gene name represents the
relative contribution of each gene in generating the corresponding metabolites.
f Impact of sex on clozapine metabolites generated in male and female pools of
HLMs. N-desmethylclozapine, an active metabolite of clozapine and clozapine N-
oxide, an inactive metabolite of clozapine, were shown in (f). Metabolite con-
centrations weremeasured by liquid chromatography-mass spectrometry (LC-MS).
Each point represents an independent microsomal incubation experiment. The
horizontal bar indicates the mean concentration. The color of points indicates sex
(Blue: male; Red: female). P values (*P <0.05) were determined by two-tailed t test.
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equation. In conclusion, we believe that our original discovery is similar
to the results using LogMM method, and thus our results accurately
reflect the sex differences of genetic effects in the DMET genes region.

In summary, we identified a number of human complex traits
that were under different genetic regulation between the two sexes
at both global and regional scale (focusing on DMET gene regions).
Our results strongly support that sex-stratified analysis is critical for
studying the underlying mechanisms of sex differences in human
health. Using DMET genes as a gateway, we highlighted the transla-
tional impact of understanding sex differences in the genetic con-
tribution to gene expression, endogenous and exogenous substrate
formation. Critically, follow up studies based off sex-specific dis-
coveries made from our work can and will improve our under-
standing of disease etiology and development and facilitate disease
prevention and treatment.

Methods
Data collection
We obtained GWAS sex-combined and sex-stratified GWAS summary
statistics from the UK biobank (UKBB) (release 2; http://www.nealelab.
is/uk-biobank). Traits were selected based on 3 criteria: (1) We defined
the genomic region for each DMET gene as the region 1Mb up/
downstream of the transcription start site (TSS) of each DMET gene of
interest. Using the European Bioinformatic Institute (EBI) GWAS cata-
log (https://www.ebi.ac.uk/gwas/), we first selected those traits with
trait-associated SNPs mapping to DMET gene regions, which resulted
in 3100 unique studies. By manually extracting the keywords of each
trait from the GWAS catalog and matching them to the phenotype
description of UKBB GWAS summary statistics, we had 1105 traits
(both binary/categorical and continuous) for subsequent analysis. (2)
We removed categorical/binary traits with a) fewer than 300 cases in
either sex, and b) no sex difference in prevalence (ratio of prevalence >
0.02)60. This resulted in 421 categorical/binary traits. (3) 30 serum
biomarker traits were removed from initial analysis to be used for
subsequent causality inference. In total we used GWAS data for 564
traits (421 categorical/binary traits and 143 quantitative traits) in the
present study (Fig. 1a). For these traits, we obtained LDSC-estimated
heritability (https://nealelab.github.io/UKBB_ldsc/index.html). For
continuous traits, we selected the GWAS summary statistics where the
phenotype was inverse rank normalized (IRNT). The variant effect and
Combined Annotation Dependent Depletion (CADD) score were
obtained from https://gnomad.broadinstitute.org/. Data analysis was
conducted in RStudio 3.6.3.

Transcriptome data from human liver tissue were obtained from
the NIH Genotype-Tissue Expression (GTEx) Portal (https://gtexportal.
org/home/datasets) and Gene Expression Omnibus (GEO) repositories
(GEO: GSE24293). All GTEx genotype data were obtained from dbGap
(phs000424.v8).

Drug substrate information and clinical annotation for DMET
genes were obtained from DrugBank (https://go.drugbank.com/
releases/latest, release on 2021-01-03) and PharmGKB (https://www.
pharmgkb.org/downloads, release on 2021-05-05). The PharmGKB
clinical annotation consists of evidence from the literature of asso-
ciation between specific genetic variants and drugs. The DrugBank
dataset recorded literature reported enzymes/genes that involve the
metabolic process of the corresponding drug.

Estimation of heritability and genetic correlation
Heritability and genetic correlationwere calculated for each trait using
the “HDL” R package, which utilized GWAS summary statistics and has
been shown to improve precision in estimating genetic correlation
than linkage disequilibrium score regression (LDSC)61. Briefly, because
our data were fromUKBB, we used pre-computed SNP panels available
in the HDL package for the European-ancestry population, which
were imputed to Haplotype Reference Consortium (HRC) and

UK10K + 1000 Genomes. We excluded SNPs mapping to the major
histocompatibility complex (MHC) region or minor allele frequency
(MAF) < 5%, resulting in a total of 1,029,876 SNPs passing QC. Detailed
information about the reference panels is described in https://github.
com/zhenin/HDL.

To quantify sex differences in estimated heritability, the z-score
test to each of the 564 traits:

z � score =
STATfemale � STATmale

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2female + SE2male

q ð1Þ

where STAT represents heritability and SE represents the standard
error of the estimated heritability. Two-tailed P values were calculated,
and we controlled for multiple testing using the Benjamini-Hochberg
FDR approach. We defined statistical significance as FDR<0.05.

To test whether genetic correlation between males and females
differs from 1, we used the t-score test:

t � score =
rg � 1

SErg
ð2Þ

where rg represents the genetic correlation coefficient and the SErg
represents the standard error. Two-tailed P values were calculated,
significance determined by FDR <0.05.

Sex-differentiated genetic effects
To quantify sex differences in gene-trait associations for those SNPs in
the DMET genes regions, we used Eq.(1) to test for sex differences in
male and female genetic effects for all SNP-trait pairs. In this case, the
STAT is theGWASeffect size (β) fromsex-stratifiedGWAS, andSE is the
standard error of the effect size. Two-tailed P values were calculated.
We defined SNPs with sex-Differentiated Effects (SDEs) as those with
significant sex differences in genetic effects (FDR <0.05) and sig-
nificantly associated (P < 5 × 10−8) with the trait in at least one sex.

Two-sample Mendelian Randomization analyses
To test whether sex-differentiated genetic basis on serum biomarker
levels might mediate sex-differentiated casual relationships, we
applied mendelian randomization (MR) to a total of 29 serum bio-
marker traits as exposures and 186 human complex traits as outcomes
that were selected from the aforementioned 564 human complex
traits. In brief, the traits were selected based on whether there are
shared significant variants (P < 5 × 10−8) between exposure and out-
come that are mapped into the DMET genes region. We applied MR-
Egger regression to estimate the causal effect of genetically regulated
serum biomarker levels on outcomes. The MR tests were performed
using sex-combined and sex-stratified analyses.We applied a stringent
statistical threshold (0.05/(186*29); 186 outcomes and 29 exposures)
to define statistically significant MR relationships. A sex-specific MR
relationship was defined asMR significant in a single sex, but not in the
other sex and sex-combined model MR test. All MR analyses were
performed using the “TwoSampleMR” R package62.

Sex-stratified cis-eQTL analysis in human liver
To quantify the association between genotype and gene expression,
we obtained summary statistics of sex-stratified cis-eQTL in human
liver from the GTEx project. In brief, a linear regression model was
applied using FastQTL while adjusting for additional and unknown
factors as previously described in8.

Y ∼ β0 + βGGenotype+ βð1...mÞC + ε ð3Þ

Where Y is the gene expression, β0 represents the intercept, C repre-
sents covariates that were used in cis-eQTLmapping. The total number
of male liver samples was down-sampled to match the female sample
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size for maintaining the same discovery power. We applied a 2-step
multiple testing correction: (1) using Bonferroni correction to account
for the number of independent SNPs tested within each DMET gene
region; (2) using FDR to account for the number of tested genes. We
defined independent SNPs in each region as thosewith r2 < 0.8with the
SNP in the same region identified using the “LDlinkR” package63.
Linkage disequilibrium information was calculated using the “CEU”
(Utah Residents (CEPH) with Northern and Western European
ancestry) population as a reference. FDR <0.1 was defined as a
statistically significant threshold for sex-stratified cis-eQTL. To identify
sex-differentiated eQTL, we once again applied the z-score test from
Eq. (1). FDR <0.1 is used to define sex-differentiated eQTL. In addition,
eQTL analysis was conducted in males and females separately. We
identified sex-specific eQTLs that is statistically significant in only one
sex (FDR <0.1) but not statistically significant in the other
sex (FDR >0.1).

Sex-stratified colocalization analysis
For SDEs and those eQTLs with evidence of sex-differentiated/specific
effects, we performed colocalization analysis using the “coloc” R
package21. For SDEs, we performed colocalization analyses of 12 traits
using GWAS summary statistics between sexes. The genomic regions
for colocalization are defined as ±200k base pairs from the tagging
SDEs (r2 < 0.2). For case-control traits, the effect size and their variances
were used. For quantitative traits, the standard deviation of the mea-
sure outcome is not available. We input the MAF and sample size that
are recorded in each GWAS summary statistics to run the coloc.abf()
function. The PPH1 indicates the posterior probability that only males
have a genetic association in the testing region. The PPH2 indicates the
posterior probability that only females have a genetic association in the
testing region. The PPH3 indicates the posterior probability that both
sexes have a genetic association in the testing region; however, the
causal variants are different. The PPH4 indicates the posterior prob-
ability that male and female share the same causal variant.

For colocalization between sex-combined GWAS summary sta-
tistics and sex-stratified eQTL, we applied coloc.abf() to all variants in
the gene region of each sex-differentiated/specific cis-DMET eQTLs
(±1Mb) thatwere available for both cis-eQTLs andGWAS. The input for
GWAS summary statistics and eQTLs were the same as previous
descriptions. The PPH4 indicates the posterior probability that the
traits share the same causal variant with either female or male-specific
eQTLs. We defined sex-specific colocalization as those with PPH4 lar-
ger than 0.5 in one sex but not the other.

Identification of sex-differentiated DMET gene expression in
human liver
We quantified sex differences in DMET gene expression in GTEx liver
tissue using the DEseq264. The list of DMET genes was obtained from10,
and filtered to remove low-expressed genes and genes that are on Y
chromosomes and mitochondria. Retained genes are those where at
least 20% of samples have gene count larger than six and TPM larger
than 0.1. We then fit a generalized linearmodel to each gene to test for
sex-differentiated expression using the ‘DEseq2’ package, while con-
trolling for known sample characteristics such as ischemic time and
RNA integrity (RIN), and 13 surrogate variables (SVs), which were
defined by the “smartSVA” package65. The SVswere estimated from the
whole transcriptome after removing low expressed genes that capture
confounding effects from technical and biological factors. Differen-
tially expressed genes were defined as those with Benjamini-Hochberg
FDR <0.05.

To validate the differentially expressed DMET genes, we char-
acterized sex differences in gene expression in an independent dataset
comprisingmicroarray data fromhealthy liver tissue (GSE24293)41. For
those DMET genes differentially expressed in GTEx liver, we assessed
differential expression in the replication dataset using Welch’s t-test,

defining significant replication as thoseDMETgeneswith P value <0.05
in the second dataset.

Web scraping for literature evidence of sex differences
To establish links between the sex differentially expressed DMET
genes and clinical treatment outcomes, we applied web scraping
using “easyPubMed” (https://cran.r-project.org/web/packages/
easyPubMed/index.html). Drugs that that are metabolized by
the sex-differentially expressed DMET genes were obtained from
PharmGKB and DrugBank. We searched PubMed.gov for articles
with the drug names and “sex difference” in the title and abstract.
This resulted in a total of 2340 unique publications. After
excluding articles primary focused on sex differences in endo-
genous sex hormones, such as testosterone and estradiol, 519
articles remained. We manually inspected each article to deter-
mine if the article reported sex differences in drug efficacy,
toxicity, or pharmacokinetics (PK) based on the following criteria:
(1) the drug demonstrated sex differences in pharmacokinetics;
(2) for Food and Drug Administration (FDA) approved indications,
the drug displays sex differences in efficacy; (3) the drug displays
sex differences in frequency of drug-related toxicity/adverse
effects; (4) the drug did not serve as an inducer/inhibitor of other
drugs in the study.

Protein quantification in human liver microsome (HLM)
Male-pooled HLM from 12male donors (Corning, Catalog: 452172, Lot:
1077002) and female-pooled HLM from 21 donors (Corning, Catalog:
452183, Lot: 5061002) were lysed in the RIPA buffer. Protein con-
centrations were then determined using a Bicinchoninic acid (BCA)
assay. Samples were then denatured, resolved in Tris-glycine gel, and
blotted with the primary (ABclonal, CYP1A2: A0062, CYP3A4: A2544,
GAPDH: A19056, 1:1000) and secondary (ABclonal AS014, 1:20000)
antibodies.

Clozapine metabolism in single-sex HLM pools
The experiment was performed as described66. Briefly, 0.4mgmale or
female pooled HLM was incubated with 100 µM clozapine with the
presence or absence of 2 µM ketoconazole (CYP3A4 inhibitor). After
30min of incubation, the reaction was stopped by adding ice cold
acetonitrile. Protein was precipitated twice, and the collected super-
natant was stored at −20 °C. Lastly, a 10 µl portion of the supernatant
was injected into the LC-MS system to determine the concentration of
parent compound andmetabolites67. The detection and quantification
of clozapine and metabolites was performed using high-performance
liquid chromatography (Agilent 1200 Series, Santa Clara CA) coupled
with mass spectrometry (TSQ Quantum triple stage quadrupole mass
spectrometer; Thermo-Electron, San Jose, CA). Chromatographic
separation was performed with a Phenomenex Polar RP column, 75 ×
2.0mm, 4.0 micron, (Torrance, CA) with a mobile phase containing
(60:40) DI water with 0.1% formic acid: Acetonitrile with 0.1% formic
acid, at a flow rate of 500 µL/min, with the column temperature set at
30 °C. The experiment was repeated independently 3 times. Data
acquisition was performed with Xcalibur Version 2.07 (Thermo-Elec-
tron). Statistical analyses were performed using the student t test.
P value <0.05 was defined as a statistically significant threshold.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The UKBB GWAS summary statistics by the Neale laboratory can be
obtained from http://www.nealelab.is/uk-biobank/. The summary sta-
tistics of cis-eQTL is available at the GTEx (https://gtexportal.org/
home/). All GTEx protected data are available via dbGaP
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(phs000424.v8). Differential gene expression validation dataset is
available at GSE24293. Drug substrate information and clinical anno-
tation for DMET genes were obtained from DrugBank (https://go.
drugbank.com/releases/latest, release on 2021-01-03) and PharmGKB
(https://www.pharmgkb.org/downloads, release on 2021-05-05). The
LDSC-estimated heritability (https://nealelab.github.io/UKBB_ldsc/
index.html). The variant effect and Combined Annotation Dependent
Depletion (CADD) score were obtained from https://gnomad.
broadinstitute.org/. Source data are provided with this paper.

Code availability
HDL software is available at https://github.com/zhenin/HDL/. The code
used in this manuscript is available at Open Science Framework (OSF)
and are stored in the “Decipher genetic underlying causes for sex
differences in human health through the lens of drug metabolism and
transporter genes” project, which can be accessed at https://osf.io/
vfpjx/.
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