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Choice information appears in multi-area brain networks mixed with sensory,
motor, and cognitive variables. In the posterior cortex—traditionally impli-
cated in decision computations—the presence, strength, and area specificity of
choice signals are highly variable, limiting a cohesive understanding of their
computational significance. Examining the mesoscale activity in the mouse
posterior cortex during a visual task, we found that choice signals defined a
decision variable in a low-dimensional embedding space with a prominent
contribution along the ventral visual stream. Their subspace was near-
orthogonal to concurrently represented sensory and motor-related activa-
tions, with modulations by task difficulty and by the animals’” attention state.
A recurrent neural network trained with animals’ choices revealed an equiva-
lent decision variable whose context-dependent dynamics agreed with that of
the neural data. Our results demonstrated an independent, multi-area decision
variable in the posterior cortex, controlled by task features and cognitive
demands, possibly linked to contextual inference computations in dynamic

animal-environment interactions.

The view of discrete neural modules in cortical networks that selec-
tively encode sensory, decisional, or motor processes?, has been
challenged by the evidence of mixed representations within and across
neurons’®. In the context of decision-making computations, mixed
selectivity reflects complex interactions of task and behavioral vari-
ables with decision information*®, with the prominence of decision
signals being influenced by a diversity of components, such as the
stimulus-coding strength of neurons’, the correlation properties of
the network®™, modulatory signals associated with changeable states
of attention’, which can also contextually enable, route, and gate
decision-related information®”. The area location along the sensory
hierarchy'*" and even the strategy used by an animal to solve a task can
affect the detectability of decision signals in neural circuits™.
Together, these observations have underscored the difficulty to
identify decision signals and separate them from co-represented per-
ceptual, motor, and cognitive variables. This challenge has not been
unique to primate studies, with the mouse animal model playing an

increasingly prominent role in decision-making studies in view of the
abundant tools available for the dissection of neural circuits™. In this
species, possibly more prominently than in larger mammals, task-
instructed and uninstructed movement-related activations have been
observed with large amplitude even in early sensory regions' 2 This
has further challenged the separation of decision from movement
variables, particularly in tasks with freely moving mice or in virtual-
reality navigation tasks in which motor signals continuously affect
cortex-wide networks, with head and body orienting movements
predictive of choice” (see Supplementary Table 1 for a summary of
related studies). In consideration of this complex superposition of
variables with decision signals, some studies have attempted to isolate
decision components by minimizing other possibly co-represented
signals (e.g., short-term memory, novelty, navigation, evidence accu-
mulation processes during visually guided behavior). Notably, these
studies (hereafter, visually guided tasks, for brevity) could not detect
significant choice information in posterior sensory and associative
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cortices* %, representing a departure from primate studies which
instead could detect choice information even in early visual areas
during similar tasks’>*,

Here, we sought to identify signatures of choice information
across multiple areas in the mouse posterior cortex during a visually
guided task, examining the cortical-area specificity and representa-
tional dependencies of choice signals with other variables co-activating
these networks. To this end, we introduced two novel elements in our
experimental and analytical design: first, we trained animals in a com-
plex variant of an orientation discrimination task”, aiming to maximize
cognitive demands based on perceptual information, but without
introducing memory, novelty, navigation, or evidence accumulation
components. Second, we applied a tensor decomposition method™
combined with activity-mode analysis*® on mesoscale recordings of the
posterior cortex (imaging of GCaMP signals); this analysis enabled the
detection of signals even if sparsely represented among neurons and
distributed across broad regions irrespective of classic area bound-
aries, such as those defined by retinotopic mapping™®.

Results

Mesoscale imaging of the posterior cortex during a discrimina-
tion task

Using an automated setup featuring voluntary fixation of the animals’
heads” (Fig. 1a), we trained mice (n=7) to carry out a complex version
of a two-alternative forced choice (2AFC) orientation discrimination
task”. The animals had to use their front paws to rotate a toy wheel*®
that controlled the horizontal position of two circular grating stimuli

presented on a screen positioned in front of them. Each stimulus was
presented at monocular eccentricities with orientations that varied
from trial to trial. To obtain a water reward, mice had to shift the
stimulus most similar to a learned target orientation to the center of
the screen (Fig. 1b, ), with the actual target orientation rarely shown to
the animal. Therefore, difficulty had an invariance to absolute orien-
tations, which had to be ignored by the animal and depended only
on the relative orientation between the two stimuli”. After ani-
mals reached performance levels above 75% correct (Fig. 1d), we used a
macroscope to image mesoscale GCaMP responses in 10 posterior
cortical areas (Fig. 1e; Methods). In individual trials, the neural activity
was highly variable, with response activity associated with the onset of
visual stimuli and movements of the limbs, trunk, and eyes, as recently
described” (Fig. 1f).

Decomposition of neural responses

To extract different variables from the neural signal and map them
onto defined cortical regions, we adopted a recent variant of non-
negative matrix factorization—locaNMF*. This decomposition method
identifies tensor components associated with specified seeding
regions. When seeding on a given area, locaNMF decomposes the
signal into a sum of separable spatial-temporal tensors, with spatial
components constrained by the seeding region and temporal com-
ponents representing the scaling amplitudes of the spatial compo-
nents. These temporal vectors are potentially more informative than a
single vector computed as the average across spatial locations (pixels)
within a given area®. We aligned all imaging sessions according to the
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Fig. 1| Imaging the posterior cortex during an orientation discrimination task.
a Mice were trained on a 2AFC orientation discrimination task using an automated
setup featuring voluntary head fixation. They signaled a L/R choice by rotating a
toy wheel with their front paws. Schematic adapted from®. b Mice rotated the
wheel to position the most vertical of two oriented gratings in the center of the
screen. ¢ Trial structure: After a 1s pre-stimulus period, the stimulus was pre-
sented, followed by a 1.5 s open-loop (OL) interval in which wheel movements were
decoupled from stimulus movements. Thereafter, in the closed-loop (CL) period,
wheel rotations resulted in L/R horizontal shifts of the stimuli. Correct choices
were rewarded with water; incorrect choices were followed by a checkerboard
pattern presentation. Ten seconds of no movement in the CL period triggered a
time-out period. d Left: mice’s performance in the task (fraction of right choices) as

0 1 2 3
Time (s)

a function of relative angle difference from the target orientation (nominal value of
zero), i.e., the task difficulty, averaging across trials with combinations of left and
right angles associated to the same difficulty level. Right: fraction of timeout trials
as a function of angle difference from the target orientation. Timeout trials did not
depend on task difficulty. Thick line =mean (+s.e.) across animals; thin lines =
individual animals. (n =7 animals). e Widefield calcium imaging of the posterior
cortices of Thyl-GCaMP6f mice, with retinotopic mapping of 10-12 visual areas
(colored contours). f Simultaneously recorded average fluorescence signal (dF/F),
wheel and eye velocities, and pupil area. In this example, choice was signaled at
t=3.1s (by a sharp increase in wheel velocity). Dashed line represents the stimulus
onset time.
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Allen Common Coordinate Framework® (Fig. 2a) and seeded the initial
spatial decomposition using 10 large regions centered on retinotopi-
cally identified areas (based on field sign maps, Supplementary Fig. 1a,
see also ref. %) that extended significantly beyond area boundaries
(Supplementary Fig. 1b). Consistent with the initial seeding, the fac-
torization typically converged toward components with peak ampli-
tudes within individual retinotopic areas (Fig. 2b, see Supplementary
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Fig. 2 for an example decomposition). Depending on the seeding
region, associated temporal components differentially emphasized
sensory or behavioral variables; for instance, when seeding on the
primary visual cortex, the largest component (in explained variance,
EV) clearly highlighted a stimulus-evoked response (Fig. 2b). The lar-
gest components within the parietal regions*® showed negligible
visually driven responses and strong movement-related activations
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Fig. 2 | LocaNMF decomposition identifies sensory, behavioral, and attention-
related variables. a Characteristic imaging window (dashed circle) superimposed
on 10 cortical areas from the Allen Brain Atlas reference framework. Blue, red, and
yellow contours are the reference-aligned area boundaries for V1, PM and RL for
each animal. b Spatial weights and trial-averaged time-series of the largest locaNMF
components for each of the 10 seeding regions (Supplementary Fig. 1a) for a
representative animal. This average consisted of trials with wheel movements
within the 1s shaded time interval, collectively for clock-wise and cc-wise wheel
rotations. Dashed lines denote stimulus onset. ¢ Schematic for the definition of
state axes. The direction of the state axis becomes stable after an event indicated by
the green arrow. Vector stability is measured as the temporal autocorrelation
R(S(t), S(t)), (right panel). Projections (cross-validated) of the two variables A(t)
and B(t) onto S separately over time, as quantified by a d’ discriminability measure.

d Stimulus-related state axes. Left: projections of trials with and without a stimulus
response onto the stimulus state axis for a given animal. Lines and shaded regions
indicate across-trial projection averages and its 95% CI. Middle: Discriminability d’
over time, averaged across all animals (n=7, line for mean and shaded area for its
s.e.). Gray bars on top, epoch used for the time average of the state axis. Right: area-
specific peak d’ scores obtained by defining the state axis using only the compo-
nents originating from that area averaged across animals. e As in d, but aligned to
movement-detection time, i.e., separability between trials with and without a
detected wheel movement. f, as in e, but for saccadic eye movements. g As in f, but
for sustained attention. Trials with high and low levels of sustained attention were
defined based on pupil area changes, using the highest or lowest 33™ percentile of
the area-change distribution.

(Fig. 2b). The largest locaNMF component of each cortical area pro-
vided significant explanatory power, together contributing to 96%
of the total explained variance (Supplementary Fig. 1c). These con-
tributions being highly heterogeneous, with the largest component of
V1 accounting for 45% of the total variance. By contrast, the first
PCA component contributed, on average, approximately 85% of EV,
being strongly influenced by large amplitude movement-related
activations”. For each area, the number of components significantly
contributing to the EV (Methods) was not directly proportional to
surface area; for instance, areas AL and L had commensurate surface
area and contributed similarly to the overall EV, but L required about
twice as many components as AL (Supplementary Fig. 1d-g), in
agreement with the different cortical localizations of task and beha-
vioral variables.

To identify these variables in locaNMF components, we defined
state axes in a multi-dimensional space of component activations
(Fig. 2¢). This approach further reduced the dimensionality of the data
by isolating activity dimensions that linearly discriminated pairs of
variables. For instance, the stimulus axis captured the onset of the
visual stimulus, remaining stable after the stimulus’ appearance (Sup-
plementary Fig. 3a), and with the projected locaNMF components
deviating from the baseline about 200ms after stimulus onset
(Fig. 2d). We quantified the time-dependent increase in the detect-
ability of stimulus components using a d’ discriminability measure,
which can be linked to Fisher information**?, bounding the variance
for estimating a population-encoded parameter. This resulted in d’
values greater than one at the peak of stimulus response (Fig. 2d;
1.38 £0.13, mean + standard error, s.e.). Using only the LocaNMF
components from a particular seeding region, allowed us to also
quantify the relative contribution of that area to the d’ discriminability.
For the stimulus variable, the primary and secondary visual cortices
(V1, L) had the largest discriminability (d’=1.10+0.09 and 1.12 + 0.13,
respectively), followed by area AL (d’ = 0.51 + 0.06). When attempting
to discriminate the orientation of the contralateral visual stimulus,
no area carried sufficient information, even for the most dissimilar
orientation pairs (Supplementary Fig. 4), as expected from the lack
of orientation domains in the mouse visual cortex” and the
spatial resolution of mesoscale imaging. In control experiments, we
used a dual-wavelength imaging approach to quantify the effect of
the hemodynamic component*. Measurements of the calcium-
independent GCaMP fluorescence showed that locaNMF compo-
nents, state axes, and discriminability values were not significantly
affected by the hemodynamic signal (Supplementary Fig. 5).

Besides bottom-up visual inputs, imaged posterior regions
reflected activations associated with general movements of the body
and eyes®. Therefore, we defined state axes associated with wheel and
saccadic eye movements. Projections onto these axes resulted in high
discriminability of both types of movements (Fig. 2e, f; peak d’ =
1.29 £0.07 and 0.94 +0.08 for wheel and eye movements, respec-
tively). Area-specific projections highlighted larger contributions by
anterior-medial areas (Fig. 2e, f; Supplementary Fig. 3b, c), with d’

values increasing before or coincidentally with the detection
of movements, suggesting pre-motor contributions, e.g., corollary
discharges®, and reaching values greater than one after movement
execution. These axes remained stable after event onset, as shown
by their cross-correlograms (Supplementary Fig. 3b, ¢ and Supple-
mentary Fig. 6).

We also identified aspects of the variability in locaNMF compo-
nents that depended on the attention state of the animal. Underlying
changes in sustained attention can be both task-related (e.g., engage-
ment or motivational state) and task-independent components (e.g.,
arousal or alertness)*®*. Accordingly, in individual sessions, we
observed fluctuations in performance that correlated with changes in
pupil dilations and reaction times (Supplementary Fig. 7a, b)—two bio-
markers associated with changes in sustained attention***%, Based on
the pupil area increase within a short time window after stimulus pre-
sentation (open-loop, Methods), we defined a state axis that dis-
criminated between states of high and low sustained attention (Fig. 2g).
Associated d’ values deviated significantly from zero largely before
stimulus onset (after imposed zero discriminability at trial onset; see
Methods). Discriminability values reached d’ = 0.5 approximately 0.5 s
after trial onset and remained above this value throughout the trial
duration, with peak d’ =1.31+ 0.09. The state axis defined by attentional
modulations remained stable throughout the duration of the trial
(Supplementary Fig. 3d), consistent with periods of high and low sus-
tained attention that persisted across trials?®. The attention state axis
was stable relative to the trial outcome (correct or incorrect); the angle
between the state axes for sustained attention defined using either
correct or incorrect trials was 23° +2°, slightly larger than the expected
value for parallel vectors given the variability in the data, that is, the
average angle between the same state axis defined using different folds
of the cross-validation procedure (-13° on average, Supplementary
Fig. 8c). The d’ values obtained when discriminating attention states
from correct trials using their projections onto the state axis defined
with incorrect trials and vice versa were comparable (d’=1.17 + 0.07 and
d’=12+0.1 respectively). Finally, when looking at the spatial con-
tributions to discriminability, the anterior-medial visual areas and the
retrosplenial cortex contributed the most to large d’ discriminability
(Fig. 2g, Supplementary Fig. 3d).

Together, these results showed that sensory inputs, movement-
related activations, and attentional signals were concurrently present
in the posterior cortical regions, and could be separated by the
locaNMF tensor decomposition, permitting the identification of their
characteristic spatial and temporal signatures.

Choice signals

This approach also allowed us to identify choice-related signals. We
adopted an operational definition of choice as signals that correlated
with animals’ L/R decisions, independently of the stimulus and with
premotor signatures reflecting action selection*’. We considered trials
in which the first detected wheel rotation occurred at least half a second
after stimulus onset. When occurring in the open-loop (Fig. 1c), the
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Fig. 3 | Choice signals have pre-motor component and are modulated by task
difficulty and attention. a Projections of left- and right-choice trials on the choice
state axis for a characteristic animal (line for trial average and shaded area for its
95% CI). Wheel movements signaling either a left or a right choice were aligned to
the wheel movement onset. b Evolution of choice d’ discriminability relative to
movement time averaged across animals (n =7, line for mean and shaded area for
its s.e.). d’ values were significantly larger than baseline starting from 0.2 s before
movement onset (**p < 0.001 consistently across the range, baseline defined
between 1 and 0.5 s before movement onset, two-sided paired t-test). ¢ Temporal
stability of the state axis for choice, showing a clear change in the contribution of
the choice state axis near the time of movement onset. Same animal as in a.

d Temporal evolution of area-specific d’ curves (inset: area color code). e Piecewise
linear fits of the curves in d in pre- and post-movement periods. f Pre-movement

slopes fitted in e for different areas; error bars, 95% Cl of the mean (dots) across
animals (n =7 animals) (“global” indicates multi-area d’). g Times of slope change
for different areas from the fits in e. Data and colors as in f. h Choice discriminability
separated for low and high attention trials. No significant differences were found
(p=0.8, paired two-sided t-test). Dots are different animals; middle lines and sha-
ded areas are means and their 95% CI (n = 7 animals). i Left: example stimuli for easy
and difficult trials. Middle: evolution of choice discriminability, d’, in high attention
states for easy and hard trials (angle difference > or <45°, line for trial average and
shaded area for its 95% CI). Right: Paired comparisons of peak d’ values for each
animal (p = 0.003, paired two-sided ¢-test). Data as in h. j Temporal evolution of left
and right choice projections trajectories (averaged across 48 to 93 trials each), with
difficulty modulations and separately for low and high attention trials (repre-
sentative animal).

detected movement did not always coincide with the movement ter-
minating the trial. However, we confirmed that the direction of the first
movement had a large and significant correlation with the trial choice
(85+4% agreement with movement directions), suggesting that the
decision was made quickly after the stimulus presentation (Supple-
mentary Fig. 7c, d). We then aligned responses relative to movement
times and defined a state axis that linearly discriminated clockwise from
counterclockwise wheel rotations (hereafter left and right choice,
respectively). LocaNMF projections onto this axis sharply separated left
from right choices (Fig. 3a), reaching peak separation values approxi-
mately 0.15 s after movement detection (Fig. 3b; peak d’=1.5+0.1) and
with the choice axis showing two clearly stable regions before and after
movement onset (Fig. 3c). Area-specific d’ values started to increase
from baseline significantly 300 ms before movement onset (p <0.05,
paired t-test, Fig. 3d, Supplementary Fig. 9). We characterized pre-
movement components using a piecewise linear regression analysis
(Fig. 3e) applied to d’ curves to quantify the slope of the fit before the
movement and the time of the slope change (Fig. 3f, g). We found a
consistent trend for positive pre-movement slopes (ramping) and pre-
movement slope change times (slope=0.19+0.06 d’/s, p=0.007,

t-test; time of slope change =-0.06 + 0.02 s, p = 0.014, t-test), providing
evidence for temporally and spatially distributed pre-movement choice
components across these regions. The increase in choice discrimin-
ability after stimulus presentation was also apparent in trial time,
showing a clear split on the trajectories after the open-loop period
(Supplementary Fig. 10).

When conditioning on attentional levels, similar discriminability
values were found for high- and low-attention trials (Fig. 3h). We rea-
soned that although evidence accumulation might not be a relevant
factor in our task, a decision variable**—reflected in the time-varying d’
values—would still retain its sensitivity to task difficulty, more promi-
nently on high attention trials. Indeed, we found that in high-attention
states, d’ curves reflected stronger choice separation in easy trials than
in difficult trials (Fig. 3i; peak d’=1.4 £ 0.1 and 1.3 + 0.1, respectively;
paired t-test, p=0.003). In low-attention states, a similar trend
was observed, but the difference was not significant (paired t-test,
p=0.4). Thus, attention enabled a modulation of the decisional
process in proportion to trial-to-trial difficulty changes. An analysis
of wheel velocities confirmed d’ modulations did not simply reflect
a difficulty-dependent change in motor control (Supplementary
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Fig. 4 | Choice is distributed, near orthogonal to other components and with a
ventral-stream dominance. a Angles between state axes averaged across animals.
Choice axes (pre- and post-movement) were orthogonal to all other axes (smallest
angle 84 +7°). Attention and wheel had the smallest angular separation (44 + 3°),
followed by wheel and saccades (56 + 4°). b Hierarchical clustering from the angle
distances in a. Attention and wheel movements were most similar. Choice pre- and
post-movement onset clustered together, whereas stimulus and saccades had
unique profiles. ¢ Angle between choice and movement state axes averaged across
animals aligned to movement onset (line for average across animals and shaded
area for its 95% CI, n=7 animals); shaded gray band is the expected angular dis-
tance range for statistically independent axes; observed angles never significantly

deviated from the statistically independent condition. d Spatial-Distribution index
(SDI) for each state axis. Choice had the largest SDI (30 + 4%); dots are different
animals; middle lines and shaded areas are means and their 95% CI (n =7 animals).
e We computed five d’ values, each derived by restricting locaNMF components to
one of the five area groups (insets), thus defining a 5-D space for d’ components.
The five broad area groups consisted of the dorsal stream (PM and AM), ventral
stream (L), posterior parietal (A, AL, and RL), somatosensory (SSt and SSb) and
retrosplenial (RS) regions. Each plot shows a 2-D projection of the five broad area
groups, where each dot corresponds to the d’ values for a given animal and the
large dot with errorbars to the average across animals and s.e. (n =7 animals).

Fig. 11a, b). Furthermore, choice axes independently defined in low-
and high- attention states were highly correlated (Pearson’s
r=0.72+0.03), indicating they reflected a congruent underlying
decisional process. We verified that this correlation value reflected a
large stability of choice axes across attention states by computing
discriminability values in high attention trials using the axis defined
during low attention and vice versa (Supplementary Fig. 12). Finally, to
examine whether the spatial integration embedded in the locaNMF
decomposition was critical for the detection of choice signals, we
repeated the d’ analysis, defining state axes based on the activity of
individual pixels independently from each other. Both before and after
movement onset, this analysis was unable to separate left and right
choice trajectories (Supplementary Fig. 11c), in agreement with recent
reports relying on a similar independent-pixel analysis™ .

Together, these results indicated that choice signals, sparsely
distributed in the posterior cortex could be detected through spatial
integration; they defined a subspace for left and right trajectories, with
a stable representation across states of attention, but with attention
enabling difficulty-dependent modulations of response trajec-
tories (Fig. 3j).

Distinct spatial and temporal characteristics of choice signals

Distinct signatures of choice signals were evident in the pairwise
angular distance between state axes (Fig. 4a). Overall, angles between
state axes were greater than 44°, with the choice axis being near-
orthogonal to the sensory-, movement-, and attention-related axis.
Sensory and movement components had large angles (69 +2°,
mean+s.e.), and the smallest angles were observed between

the movement and attentional axes (44 +4°). In time, choice axes
computed separately before (-0.1s) and after (0.3 s) movement onset
were relatively stable in the pre- and post-movement periods
and orthogonal to each other (81+3°, with 79°-89° the expected
95% CI for independent axes; Methods; Fig. 3c, Fig. 4a). The angle
between wheel movement and saccades axes, similarly, computed
across time windows, was also stable with angles of approximately
70° (69 + 5° Fig. 4a). Hierarchical clustering analysis on the angular
distances (Fig. 4b) highlighted that choice axes pre- and post-
movement clustered together and were the most dissimilar to the
other state axes.

Irrespective of the time period, choice was nearly orthogonal to
the movement axes (Fig. 4c), with no significant differences when
comparing with a null model with orthogonal axes, both before and
after movement onset (before: 77 +3° at t =-0.5 s; p-value = 0.25, one
sided t-test against 79° null-model lower bound. After: 80+3° at
t=0.5s; p-value = 0.73, one sided t-test against 79° null-model lower
bound). When transitioning from the pre- to the post-movement per-
iod, choice d’ values never collapsed to zero (Fig. 3b), suggesting a
rotation of the choice axis while preserving the orthogonality between
choice and movement axes. This can be interpreted as a rotating state
axis for choice in a multi-dimensional choice sub-space, that remained
orthogonal to a similarly defined movement subspace.

We verified that the smaller angles observed between some state
axes in Fig. 4a were not a direct consequence of correlated behavioral
variables by computing their discriminability power after orthogona-
lization with the other axes (choice vs attention, movements, and
saccades; movements vs saccades and attention; and choice in high
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Fig. 5| RNN model relates neural representations to DM computations. a Left:
recurrent neural network (RNN) architecture consisting of a module with N =50
recurrently connected units. The module receives two inputs for the left and right
stimuli, and one input for the attentional state. It generates a continuous output
that will determine the choice. Right: Target psychometric curves—matching the
animals’ psychometric responses—used to determine the proportion of L/R-choice
trials in the training set for each difficulty level, depending on the attention state.
Data showing mean and its 95% Cl across n =200 trained networks. b Projection of
left and right trials onto the choice state-axis following the same methods used in
Fig. 2. Shaded bar at the top denotes the selected time used for state-axis averaging
(line for trial average and shaded area for its 95% Cl for a representative network).
c Evolution of choice axis discriminability over time (line for average across and
shaded area for its s.e. across n =10 networks). d Cross-correlogram of choice axis

Attention level

Angle difference <|0 |-|6,|>

stability averaged across n=10 networks. The choice axis becomes stable quickly
after the stimulus presentation (¢=1s). e Discriminability (d’) in easy and difficult
trials during states of heightened attention (group difference significance
p=14-107, paired two-sided t-test). Dots are different network realizations; middle
lines and shaded areas are means and their 95% CI (n =10 networks). f As in e, but
for low attention trials (group difference significance p=1.2-10", paired two-sided
t-test). g Projected choice trajectories with splits by difficulty and attention. h We
computed independently choice axes for each difficulty level. Choice axes obtained
at different difficulty levels were near parallel to each other, with the largest
deviation (between the easiest and most difficult conditions) smaller than 20°. i As
in h, but for choice axes computed at different attention levels instead.

j Psychometric curves from the trained model showing that the model can gen-
eralized across levels of attention and difficulty.
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and low attention). All state axes retained significant discriminability
after orthogonalization (Supplementary Fig. 13).

In addition to these overall representational differences, choice
signals also had distinct spatial characteristics relative to other vari-
ables. We defined a spatial distribution index (SDI) that captured
whether several or only a few areas contributed prominently to the d’
discriminability (SDI= 0% if only 1 area contributes and (N-1)*100% if all
N areas contribute equally and independently) and found that choice
had the largest SDI values (30 +4%, more distributed contributions)
compared to sensory, movement, and attentional signals (approxi-
mately 10%) (Fig. 4d). To further examine the area-specific contribu-
tions to choice signals, we clustered higher visual areas into three main
groups—ventral (L), dorsal (PM, AM), and parietal (A, RL, AL)**—and
separately analyzed somatosensory (SSt, SSb) and retrosplenial (RS)
regions. V1 contributed an overall uniform d’ value to all separations
(Supplementary Fig. 3a, b); hence, we did not include it in this analysis
of relative differences. We then computed d’ values using only the
locaNMF components that originated from these grouped areas and
did this for all variables: visual, movement, choice, and attention. This
resulted in a five-dimensional (5D: ventral, dorsal, parietal, somato-
sensory, and retrosplenial) space, where the coordinates of a variable
reflected the distinct contribution of the grouped areas to the d’
separability of that variable. When examining discriminability power in
2-D projections of this 5-D space (Fig. 4e), we could identify area-
specific contributions. Stimulus and choice post-movement onset
presented the largest contribution in the ventral stream (stimulus,
d’=111£0.12; choice post-movement d’=0.87+0.13). These con-
tributions were significantly larger than those in parietal and dorsal
stream areas (ventral vs parietal: p=0.012 and p=0.019 for stimulus
and choice; ventral vs dorsal: p = 0.011 and p = 0.043; paired t-test). For
the discriminability of attentional states, the parietal and dorsal stream
regions had larger contributions than ventral stream regions (high vs
low sustained attention, ventral vs parietal: p = 0.015; ventral vs dorsal:
p=0.008; paired t-test). Dorsal and parietal areas contributed the most
to the discriminability of movement variables, with the parietal areas
having the largest d’ for wheel movements (dorsal vs parietal:
p =0.001; ventral vs parietal, p = 0.014; paired t-test). Retrosplenial and
somatosensory areas contributed similarly to the discriminability of
choice and movements, with d’ values generally correlated across all
variables (r = 0.79; 95% confidence intervals [0.64, 0.87], p-value <10™",
for d’ correlations between somatosensory and retrosplenial areas
across animals).

These results highlighted the major differences between choice
state axes defined pre- and post-movement. Choice pre-movement
was less localized (lower SDI), with each cortical region contributing
similarly. On the other hand, choice post-movement was more loca-
lized (higher SDI), with larger contributions in ventral stream areas
(Fig. 4e). We also computed the increase in choice discriminability
from the pre- to the post-movement periods and found that the d’
increase from the ventral components ranked significantly higher than
the increase associated with components from the dorsal and pos-
terior areas (95% CI) (Supplementary Fig. 14a). Even in the absence of
ventral components (i.e., defining the choice axis using only compo-
nents from non-ventral areas), pre- and post-movement axes were still
orthogonal to each other (Supplementary Fig. 14b, Discussion).

In summary, distributed choice signals were distinct from sen-
sory, movement, and attentional components, dominantly in ventral-
stream visual areas and modulated by task difficulty and attention,
suggesting that they might reflect the decision-making computations
associated with the discrimination task.

RNN modeling of decision dynamics

To examine this possibility, we used RNNs as implementation-level,
mechanistic models of the decision-making process. Building on
previous work showing that RNNs can capture decision-making

computations associated with 2AFC discrimination tasks®-?, we

examined the dynamics of RNNs trained according to the invariance
for absolute orientations built into our task—and learned by the ani-
mals. Furthermore, rather than using the optimal task solution, we
trained RNNs with the trial-to-trial choices of the animals and intro-
duced variability in attention states (Fig. 5a). Using the animals’ choices
rather than the task rule created numerous contradictory examples,
where the input evidence for a left or right choice was non-
deterministically associated with left or right output decisions, even
in the easiest trials (e.g., non-zero lapse rate). As a result, RNNs learned
to produce L/R binary choices from an internal representation that
followed a psychometric probability function based on the absolute
difference between the two inputs (Fig. 5a). That is, output amplitudes
depended only on task difficulty, reflecting a learned invariance for
absolute orientations. Context-dependent attention modulations
(introduced as an additional binary input) modified output prob-
abilities and created shallower or steeper psychometric curves in low
or high attention states, respectively (Fig. 5a right). Performance levels
and differences between high and low attention states were chosen to
match experimental values. We then analyzed the internal dynamics of
the network by computing choice and attention axes from RNNs unit
responses, as we did for the neural data with locaNMF components. In
the RNNs the choice axis identified a decision variable that represented
L/R decisions as separate trajectories in a low-dimensional embedding
space (Fig. 5b-d). Furthermore, the separation between L/R trajec-
tories was modulated by attention and task difficulty, with larger
separations in easy trials and high attention (Fig. 5e-g). This separation
did not depend on absolute orientations, as expected from the RNN
having learned this invariance. Attentional modulations maintained an
invariant representational geometry of the decision variable across the
embedding space, that is, the choice axis remained stable with atten-
tion and task difficulty (Fig. 5h, i). This was consistent with what
observed in the neural data, where choice and attention axes were
near-orthogonal with each other (Fig. 4a). Although the model was
trained only with a subset of 13 difficulties and two attention states, it
was able to generalize to any difficulty level and range of attention
within the trained boundaries (Fig. 5j).

In summary, the similarity of the representations between the
RNN and neural dynamics, suggests that the contextually modulated
choice signals observed in locaNMF components represented the
decision-making computations underlying this task, as learned by the
RNN when using the same behavioral output of the animals.

Discussion

In this study, we used a complex visually guided task to isolate
choice signals broadly distributed in the posterior cortex and
near-orthogonal to sensory-, movement-, and attention-related
variables. We showed that choice signals were prominent in
ventral-stream visual areas. Choice signals defined left-right tra-
jectories in a low-dimensional activity space that were modulated
by task difficulty, with this modulation enabled contextually by
the attention state of the animal. Using RNNs trained on the
animals’ choices, we showed that the representational dynamics
of choice signals were consistent with the decision-making com-
putations underlying the behavioral task. These results suggest a
multiplexed representation of variables in the posterior cortex,
with a widespread distribution of decisional information, possibly
mediating probabilistic inference computations; for instance,
information about the ongoing decision-making process could be
used for perceptual inference with unreliable sensory stimuli®***
and to influence sensory-to-decision signal transformations that
inform future action plans. Collectively, our results highlight task
and analytical constraints for the detection of choice signals in
the mouse posterior cortex, aligning decision-making research in
mice during visually guided behaviors with primate studies.
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Methodological relevance

We achieved these results by combining two powerful methods for the
analysis of population responses: locaNMF and activity-mode analysis.
LocaNMF reduced the dimensionality of the neural data while retaining
spatial information, that would have been lost with traditional
dimensionality reduction methods (e.g., SVD, NMF). Traditional
decomposition methods could also be used to reduce data dimen-
sionality, but the loss of spatial localization would greatly reduce the
interpretability power of the components, and the components would
also be less robust to session-to-session variability, as previously
reported®. Furthermore, the state space representation allowed fur-
ther reduction of dimensionality by aligning the dynamics along task
and decision-relevant dimensions. This latter step took place within an
interpretable linear framework, where the angle between the state axes
as well as d’ values could be directly linked to the linear discriminability
of the underlying variables.

Dimensionality reduction via trial and spatial averaging permits
the robust isolation of state axes, however, it can also collapse sub-
spaces over which important aspects of the dynamics might evolve.
For instance, we found that pre- and post-movement decision axes had
large angular separations, defining a sub-space orthogonal to that of
movement signals. We also found that the dimensionality of choice
signals was further enriched by attentional modulations, which pro-
duced an isomorphic shift of choice representations. It is conceivable
that extra dimensions linked to more subtle aspects of the decision-
making process exist but have been collapsed by averaging signals
across trials. Future investigations, for example based on probabilistic
low-rank dimensionality reduction methods®, might be able to
uncover these hidden dimensions.

The imaging methodology and data analysis used in this study
facilitated the identification of distributed choice signals encoded by
sparse populations of cells*. Indeed, sparse encoding in multi-region
networks would make choice signals hard to detect with methods that
examine decision information independently at each cortical location,
whether because of the use of a single electrode (or multi-contact
electrode shank)® or because of imaging data analysis focused on
individual locations (pixels) independent from each other’*”~’. We
confirmed this observation by reanalyzing our data at the single pixel
level: assuming independence between the activations of different
pixels, we failed to detect choice information both before and after
movement onset. This result may explain why some recent mouse
studies have failed to detect choice signals in posterior cortices during
similar visually guided tasks* .

Our choice of seeding-area sizes was chosen to approximately
match the spatial correlation length of visual or movement components
using smooth penalty boundaries, with sharp boundaries imposing an
unnecessary split of components at the border between seeding areas.
Small changes in seeding parameters (areas size, centers, smoothness of
the boundaries) did not significantly affect the properties of the state
axes, suggesting that the spatial correlation length of broadly dis-
tributed choice signals approximately matched that of visuomotor
components. Additionally, as previously reported®, the robustness and
stability in spatial profiles across experimental sessions enabled by this
seeding method follows from two main observations: 1) the boundaries
between visual areas are identified by gradient flips in field sign maps,
but the identification of the boundaries can be imprecise, especially for
the smaller higher visual areas (as we observed in our data and as dis-
cussed, e.g., ref. *%). Allowing a seeding boundary to extend beyond
retinotopic boundaries reduces the dependence of the results on the
precise identification of these boundaries. 2) Activity components do
not have to follow retinotopic boundaries (e.g,., if representing afferent
signals from other brain regions or top-down modulations), but these
activations are still likely to be spatially correlated. A loose (penalty-
based) boundary component allows to capture spatially coherent sig-
nals crossing area boundaries.

Another contributing factor to the identification of choice signals
could have been task complexity. In our task, mice were asked to make
a relative comparison between stimulus orientations, a difficult task
even for primates”*, whereas other studies used simpler visual
detection” or contrast discrimination tasks®. More complex percep-
tual decisions engage more spatially distributed networks; therefore,
the complexity of our task might have facilitated the emergence of
choice signals in these posterior cortical regions.

Feedback origin of choice signal

Choice signals emerged after stimulus onset, were broadly distributed
in the posterior cortex, and could be significantly detected as early in
the visual hierarchy as in V1, suggesting feedback activations from
areas causally involved in the decision-making process. Other non-
sensory signals identified in our recordings, (e.g., related to body and
eye movements), could also result from feedback activations. Indeed,
feedback signals to the posterior cortex have been extensively docu-
mented in the literature, in association with a great diversity of
underlying variables and computations, including attentional
modulations®, movement-associated responses”, sensory context®’,
and predictive coding®.

Choice signals have distinctive spatial and temporal signatures
The properties of the choice signals met several criteria that are char-
acteristic of a decision variable. Their pre-movement components sug-
gested that they did not simply reflect the execution of a motor plan or
an unsigned pre-motor preparatory state®*. Choice signals did not simply
reflect bottom-up, stimulus-related information that correlated with the
decision process because, given the task design, the contralateral sti-
mulus orientation was uninformative for L/R decisions”. Furthermore, at
the mesoscale resolution used in this study, we showed orientations
were not decodable from the neural signal®. In addition, choice signals
were modulated by task difficulty, with the strength of the modulation
dependent on the attentive state of the animal.

Choice signals could be separated from movements. The cortical
localization of movement components was prominent in dorsal-
stream regions, consistent with previous reports?’. Choice signals were
instead localized in the retrosplenial cortex and in the visual cortex,
mostly in ventral stream regions, along the so-called “what” visual
pathway®’. This was consistent with the task requirements: mice had to
evaluate the orientation content of both stimuli and make relative
orientation comparisons. Absolute orientations were uninformative,
as were the locations of the stimuli, which were unchanged across
trials; thus, in contrast to the “where” type of information, which is
supposedly associated with dorsal stream regions, solving the task
relied on “what” information in ventral stream areas.

We also verified that ventral stream responses were not linked to
eye movements (Supplementary Fig. 15a), which typically followed
whole-body movements®, or to stimulus movement (Supplementary
Fig. 15b) However, signals detected in ventral areas may still be asso-
ciated with motor-related components that also carry choice-relevant
information®’. The fact that pre- and post-movement choice axes
remained orthogonal to each other in the absence of ventral compo-
nents (Supplementary Fig. 14b) suggests a representational change of
choice information broadly distributed in the posterior cortex and not
restricted to ventral regions. What, mechanistically, could cause this
change is difficult to establish solely from our widefield data. It could
reflect a change in afferent choice signals from the pre- to the post-
movement periods: for example, before the movement, choice signals
could reflect a distributed afferent from midbrain regions®, while
post-movement, choice-related components from motor cortices®”*®
could add to those from the midbrain and possibly with a stronger
signature along ventral regions. Future studies examining functional
feedback to these regions in similar decision-making tasks might shed
light on these mechanisms.
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Attention-mediated modulations were identified via an analysis of
pupil area changes around the time of stimulus onset, known to reflect
variability in internal states of the animals due to changes in engage-
ment and vigilance during the task, with sustained attention referring
to a broad spectrum of these goal-directed internal states?**’*%¢°_ In
the time window of our analyses, the main event triggering changes in
pupil area was the stimulus onset. The variability in pupil area changes
correlated with task performance and response times (Supplementary
Fig. 7a, b) and could also be associated with sustained changes in
cortical activity, as demonstrated by the presence of a stable attention
axis throughout trial time (Supplementary Fig. 3d). The axes’ stability
was not linked to trial outcome, which would have been the case if the
changes in pupil area were related, for example, to reward delivery or
other task variables (Supplementary Fig. 8).

Attention-mediated modulations were orthogonal to the sub-
space defined by choice variables, with the choice axis remaining sig-
nificantly autocorrelated across time irrespective of attentional state.
This can be described as an isomorphic transformation in the
embedding space of the decision variable, where the subspace defined
by the L/R trajectories is shifted without deforming the representa-
tional geometry. The modulation of the decision variable with task
difficulty was clear in high-attention trials, but not significant in low-
attention states. This might reflect an actual dependence of the
decision-making process on attention, given that mice might commit
to a difficulty-independent heuristic strategy in low-attention states".

The analysis of angles between state axes highlighted a large
angular separation between variables, with choice and movements
remaining orthogonal to each other before and after movement onset.
However, movement onset correlated with a 90° rotation in the choice
axis while retaining orthogonality with movements. This phenomenon
can be interpreted as movement signals affecting the multi-area
dynamics as an endogenous contextual input triggering a rotational
dynamic in a multi-dimensional choice space™*. A similar rotational
dynamic was observed for movements signals in a movement space,
but the subspaces defined by choice and movement rotations
remained orthogonal to each other. The large angular difference
between pre- and post-movement axes indicated distinct preparatory
and movement response signatures in the posterior cortex, possibly
reflecting a similar distinction in anterior motor regions®*’°. Move-
ment signals potently increased neuronal activity across multiple
posterior regions'”?’. These large activations occupy the main
dimensions of variability’”?, enabling a representation shift while
keeping movement representations separate from other variables, that
is, in near-orthogonal subspaces. Cellular-level simultaneous record-
ings from motor areas and posterior cortical regions may provide
further evidence for this interpretation in future studies.

Sensory and movement axes had the smallest separation. This
latter observation agreed with previous reports both at the local scale
of small neuronal assemblies” and at the mesoscale?, indicating a
covariability axis between these variables. Similarly, the smaller angles
observed between the movement axis and the attentional axis agreed
with a recent report showing that attention enhances distinctive spa-
tial features in movement-related activations across these cortical
regions®. However, even after axes orthogonalization, decoding
attentional and movement information was still possible.

RNN implementation and mechanistic insights

Recurrent state-space models, including RNNs, have been previously
used in mechanistic investigations of decision-making processes’-*~
Moreover, analyses of the similarity of the state-space representations
in RNNs and neural responses has been successfully used to infer
underlying computations®’. Here, we adopted a similar approach, but
with three main distinguishing features. First, we trained the network
with the animals’ decisions, rather than the task rule. This constituted a
relevant departure from previous research, which added noise to fully

deterministic RNNs to capture logistic behavioral tuning functions™”".

Instead, we trained the network with contradictory information, such
as that involved in the inconsistent trial-to-trial animals’ decisions, thus
exposing the network to the biases and heuristics of the animals. This
allowed the network to capture the probabilistic choice behavior of the
animal, agnostically relative to the causes underlying the animals’ trial-
to-trial variability. Training with the animal choices was akin to training
with label noise, for which many deep learning algorithms are robust’.
The RNN outputs effectively implemented two dynamic accumulators
providing time-dependent scores for L/R choices, with the difference
between the scores being proportional to the psychometric function.
This result was probably related to the mathematical observation that
if L/R choices were determined by two accumulators (for the left or
right evidence, respectively), the log-likelihood ratio of the conditional
probabilities for a given choice, given the state of the accumulators,
can be shown to be proportional to the psychometric (logistic)
function”’*, The temporal dynamics of the RNN enabled a repre-
sentational comparison with the time-evolving neural trajectories, but
it was not intended as a mechanistic descriptor of a decision time. The
second novelty was that we trained the RNN to learn an invariance
regarding absolute orientations, which were uninformative for the task
choice and that was readily learned by the network. Finally, the third
novelty concerned attentional modulations. As observed in the neural
data, the added attentional input to the RNN caused an isomorphic
shift of the decision-making manifold, which retained the geometry of
the decision variable. Geometry-preserving isomorphic shifts in low-
dimensional embedding spaces, might reflect a general decorrelation
principle for variables that are concurrently represented across over-
lapping cortical networks”. These results confirmed that, mechan-
istically, the representational dynamic of choice signals reflected the
decision-making computations underlying the animals’ psychophysi-
cal behaviors.

Limitations and open questions

Our results raise several questions to be addressed in future studies;
for instance, whether the broad distribution of choice signals mirrored
equally broad spiking activations is still unclear. Regarding anatomical
considerations, feedback signals are known to preferentially target
deep layers (five and six) and layer one’®. Considering that our imaging
macroscope focused on superficial cortical layers and that GCaMP was
expressed across the cortex, choice signals might reflect long-range
axon-terminal activations and /or depolarizations in apical dendritic
trees rather than somatic firing”’. Concurrent imaging and electro-
physiological recordings across layers would clarify this point.

Our study relied on correlative measures; therefore, loss- and
gain-of-function perturbative experiments will be necessary to estab-
lish causality. Of particular interest would be the inactivation of lateral
visual areas in view of the observed ventral-stream prominence. Fur-
thermore, patterned optogenetic methodologies with single-cell
resolution might enable the stimulation of the individual neurons
that most significantly carry choice-relevant information in these
regions to examine their causal contributions to the animals’ choices.

Our study focused on features of choice signals that were stable
and consistent relative to the temporal structure imposed by our
task design. However, it is very likely that other task-uninstructed
components (e.g., motor, attentional, decisional) might exists, and
more in general, components that do not bear a systematic temporal
relation with the trial structure, and therefore characterized by a large
trial-to-trial timing variability within and across trials. Our temporal
alignment and trial-averaging procedure would average-out these
components, thus reducing the effective degrees of freedom of the
representations. In summary, broadly distributed decision signals,
with a representational dynamic consistent with decision-making
computations underlying our visually guided perceptual task, repre-
sent a computational substrate capable of modulating early sensory
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processing and sensory to decision transformations. These modula-
tions, depend on the underlying decision-making process and might
involve probabilistic-inference computations in changeable agent-
environment interactions’®.

Methods

Experimental procedures

Details of the experimental procedures (surgeries, behavioral training,
recordings of body and eye movements, imaging methods, and pre-
processing of fluorescence data) have been described in Abdolrah-
mani and collaborators?. We summarize them here in brief.

Surgeries

All surgical and experimental procedures were approved by the Sup-
port Unit for Animal Resources Development of RIKEN CBS. The
transgenic mice used in this work were Thyl-GCaMP6f mice (n=7, 6
male 1 female). For all reported results, the number of valid sessions
per animal ranged from 11 to 35, with a minimum and maximum
number of trials per animal of 2000 to 5000. The Animals were
implanted with cranial posts for head fixation and a round chamber
consisting of two overlapping glass coverslips (6 mm diameter) for
optical access to neural recordings.

Behavioral training

Animals were trained on a 2AFC orientation discrimination task fol-
lowing the iterative protocol presented in”. The final stage of the task
consisted of two oriented Gabor patches shown to the left and right
side of a screen positioned in front of the animals at + 35° eccentricity
relative to the body’s midline. Mice had to report which of the two
stimuli matched a target orientation (vertical, n=5; horizontal, n=2).
The smallest orientation difference was 9° except for one animal where
it was 3°. The largest difference—the easiest discrimination—was + 90°.
Animals signaled their choice by rotating a rubber wheel with their
front paws, which shifted stimuli horizontally on the screen. Every trial
consisted of an open-loop period (OL: 1.5s) starting after stimulus
onset, during which wheel rotations did not produce any stimulus
movement, and a closed-loop period (CL) starting after the end of the
OL and lasting 0-10ss, followed by an inter-trial interval (ITI: 3-5s
randomized). For a response to be correct, the target stimulus had to
be shifted to the center of the screen, which led to the animal being
rewarded with 4 uL of water. Incorrect responses were discouraged
with a prolonged (10 s) inter-trial interval and a flickering checker-
board stimulus (2 Hz). If no response was made within 10 s (time-out
trials), neither reward nor discouragement was given. Animals were
imaged after exceeding a performance threshold of 75% correct rate
for 5-10 consecutive sessions. To work with a coherent behavioral
dataset, we excluded sessions with exceedingly large fractions for
time-outs (=20%) or with average performance below 60%. We
recorded cortical responses, wheel rotations, and eye/pupil videos
from a 1s pre-stimulus period until the end of the trial.

Saccades, pupil area, and body movements

We monitored the contralateral eye using a CMOS camera. Automatic
tracking of the pupil position was done with custom software
(MATLAB r2020a, Mathworks®). We confirmed the accuracy of pupil
tracking by visually observing hundreds of trials. Saccade detection
was achieved by applying an adaptive elliptic thresholding algorithm
to saccade velocities (as detailed in ref. >°). We discarded saccades that
lasted <60 ms and were smaller than 1.5°. We extracted the time,
magnitude, duration, velocity, start and landing positions of each
saccade. We calculated the average pupil area for each imaging session
by averaging area values across all trials within the session. Pupil area
amplitudes in every trial were z-scored, centering values relative to the
session mean.

Wheel detection

We recorded wheel rotations with a rotary encoder attached to the
wheel and flagged as potential wheel movements the time points when
the velocity had a zero-crossing (i.e., a sign change) and deviated from
zero above a fixed threshold (20°).

Imaging

Mice were placed under a dual cage THT macroscope (Brainvision
Inc.) for wide-field imaging in tandem-lens epifluorescence config-
uration using two AF NIKKOR 50 mmf/1.4D lenses. We imaged
GCaMPéf fluorescent signals using continuous illumination and a
CMOS camera (PCO Edge 5.5) with acquisition speeds of either 30 or
50 fps. lllumination consisted of a 465nm centered LED (LEX-2,
Brainvision Inc.), a 475nm bandpass filter (Edmund Optics BP
475x%25nm OD4 ¢ =50 mm) and two dichroic mirrors with 506 nm
and 458 nm cutoff frequencies, respectively (Semrock FF506-Di03
50 x 70 mm, FF458-DFi02 50 x 70 mm). Fluorescence light path tra-
velled through the two dichroic mirrors (458 and 506 nm respec-
tively) and a 525 nm bandpass filter (Edmund Optics, BP 525 x 25 nm
OD4 ¢ = 50 mm).

Pre-processing of fluorescence data

GCaMP data was registered automatically using Fourier-based subpixel
registration””. To compute relative fluorescence responses, we calcu-
lated a grand-average scalar Fo"/ =</, >, , ., with I}/, . representing the
XYT image tensor in trial i, session j. We then used this scalar to nor-
malize the raw data tensor FYY, , = (I}, . — Fo"/)/F". The data for each
trial were then band-pass filtered (0.1-8 Hz). Each tensor was com-
pressed with spatial binning (130 x 130 um? with 50% overlap). Trial data

recorded at 50 fps was further downsampled to 30 fps.

Hemodynamic correction of fluorescence data

In recordings to control for the hemodynamic signal, we followed a
previously reported methodology***°. Briefly, cortical tissue was illu-
minated at 60Hz with 15ms exposure by interleaving shutter-
controlled blue and violet LEDs. Blue light path consisted of a
465 nm centered LED (LEX-2, Brainvision Inc.), a475 nm bandpass filter
(Edmund Optics BP 475x25nm OD4 ¢=50mm) and two dichroic
mirrors with 506 and 458 nm cutoff frequencies, respectively (Sem-
rock FF506-Di03 50 x 70 mm, FF458-DFi02 50 x 70 mm). The violet
path consisted of a 405nm centered LED (Thorlabs M405L2 and
LEDDIB driver), a 425nm bandpass filter (Edmund Options BP
425%x25mm OD4 ¢=25mm), a collimator (Thorlabs COP5-A) and
joined the blue LED path at the second dichroic mirror. Fluorescence
light path travelled through the two dichroic mirrors (458 and 506 nm
respectively) and a 525nm bandpass filter (Edmund Optics, BP
525x%25nm OD4 ¢ =50 mm) and was captured with a PCO Edge 5.5
CMOS camera with cameralink interface. Camera acquisition was
synchronized to the LED illumination via a custom Arduino-controlled
software. Frame exposure lasted 12 ms starting 2 ms after opening
each LED shutter.

Continuously acquired imaging data was then split into blue and
violet channels and registered independently to account for motion
artifacts. For every pixel blue and violet data was independently trans-
formed to a relative fluorescence signal, & = (F — aF — b)/b, where F is
the original data and a and b coefficients are obtained by linear fitting
each timeseries, i.e., F(t) ~at — b. Afterwards, for each pixel, violet AF—F
signal was low-pass filtered (6™ order IIR filter with cutoff at 5Hz) and
linearly fitted to the blue 4 signal: the hemodynamic-corrected 4% signal
was obtained as & corr = 4F blue — (c4E violet +d), where ¢ and d are
the coefficients from linearly fitting the low-pass filtered 4F violet to the
&F blue signal, i.e., 4 blue(t) ~ c4E violet(t) — d. Finally, 4 corr was low-
pass filtered (6™ order IR filter with cutoff at 8Hz) and spatially
downsampled such that every pixel measured 50 x 50 um?.
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Retinotopies

We used a standard frequency-based method (Kalatsky and Stryker,
Neuron 2003) with slowly moving horizontal and vertical flickering
bars and corrections for spherical projections®. Visual area segmen-
tation was performed based on azimuth and elevation gradient
inversions. Retinotopic maps were derived under light anesthesia
(Isoflurane) with the animal midline pointing to the right edge of the
monitor (IlYAMA Prolite LE4041UHS 40”) and the animal’s left eye at a
distance of 35 cm from the center of the screen.

Alignment to the Allen mouse brain common coordinate
framework

Imaging data from each animal was aligned to the Allen Mouse Brain
Common Coordinate Framework (CCF) following the approach
described by Waters®. In brief, we extracted the centroids of areas V1,
RL and PM, using them to create a triangle that we aligned to the one
from the Allen CCF. We did so by first making the V1 vertices coincide
and then rotated and scaled the triangle to minimize the distance
between the other vertices while maintaining the original angles.

Data processing

LocaNMF. LocaNMF analysis was conducted following the methods
described by Saxena et al.**. Imaging data across all trials and sessions
was first concatenated and its dimensionality reduced using singular-
value decomposition (SVD) up to 99% of the original variance.
LocaNMF was initialized using 10 regions based on the Allen CCF and
centered on V1 (VISp), PM (VISpm), AM (VISam), A (VISa), SSt (SSp-tr),
RL (VISrl), SSb (SSp-bfd), AL (VISal), L (VISI and VISIi), and RS (RSPagl
and RSPd) (Supplementary Fig. 1), with regions extending beyond
retinotopically-defined area boundaries. For each region, a spatial
mask was created by setting a distance D=1 within the region
boundaries and an exponential decrease (to zero) for pixels outside
the boundary. The localization penalty for each pixel was 1-D (Sup-
plementary Fig. 1a). LocaNMF rank line search was run for these 10
regions with a localization threshold of 75% and total explained var-
iance of 99%, resulting on average in approximately 200 components
per animal (an example decomposition is shown in Supplementary
Fig. 2). After decomposition, temporal components were split back
into the original trial structure. More formally, LocaNMF produced a
decomposition tensor F% , .~ 5" A, C} , for trial i, where A, , ; is the
spatial part of component kXand Ci. is its temporal part. Since
locaNMF is based on NMF, components originating from a given
region are not orthogonal to each other. However, components ori-
ginating in different regions had minimal overlap due to the initi-
alization process mentioned above. The spatial components of the
decomposition were significantly localized and could be mapped onto
the original seeding region. The temporal component captured the
unique trial-to-trial variability, and all subsequent analyses in the time
domain were conducted using only the temporal C, of locaNMF
components. Analysis of components’ role were always performed on
a per-area basis (i.e., using all components of a given area), rather than
on single components. The total explained variance (EV) of a partial
decomposition was computed, for each pixel, by computing the var-
iance of 0%(3>"4.sAxkCr.),» where S is a subset of components, and
where all trials have been concatenated to produce C;,. The total
variance is then summed across all pixels and compared with the
variance of the original F, . signal.

State axis definition

We defined a global state axis as a one-dimensional projection of
locaNMF temporal components C(¢) that maximized the weighted
distance between the trajectories of two trial groups A and B (bold
letters indicate vectors). For each group, we defined trial-averaged

trajectories <A(t)> and <B(t)> and defined S(¢)=|| % ||, where

L2, +03

04p(t) = /%a% +o2,) is the pooled standard deviation between the two
groups. State axis projections for the i-th trial were then obtained by
the dot product Pi(t)=S(t) - C(t), where Ci(¢t) are the trial-averaged
temporal locaNMF components of trial i. Because there is no mean-
centering in time of the components, i.e., <Ci(tj)>i # 0, activity changes
across all areas can cause co-fluctuations in the projected trajectories.
Mean-centering of projections was performed on 3D representations
for visualization purposes (Fig. 3j, Fig. 5g). Discriminability between
<P2(t)>7<PfB(t)>

Op,pg0) 7
that is the difference between the averaged projections of groups A
and B, divided by their pooled standard deviation. To validate state
axes projections and discriminability we performed five-fold cross
validation: state axes were defined using only 20% of the trials of each
group and projections and d’ were computed on the remaining trials.
To compute and validate the state axes, both groups A and B always
had the same number of trials (i.e., the number of trials in the smallest
group and a random set of the same size from the other group). The
number of trials used to define all the state axis used in the manuscript
are shown in Supplementary Table 2.

the original A and B groups was then computed as d’ =

Area-specific state axes

We defined state axes for each of the 10 areas by only using the subset
of locaNMF components wa that originated from that area. This was
akin to first projecting onto the subspace defined by the components
of a particular area, and then obtaining the associated state axis.

State axes stability

To assess the stability of state axes, we used our original definition of
the time-dependent state axes, that is, using components from all the
areas, and a “backward” three-frame averaging window (around
100 ms) and then computed its temporal autocorrelation C(S(¢t), S(t')).
For sensory, movement, and sustained attention state axes we chose
the time-independent state axes S = S$(¢*), where t* was chosen from
the largest stability cluster (represented by a gray bar in the respective
figures). For the state axis of choice, we used the original S(¢) to
monitor when choice information first appeared and whether its sig-
nature was unique.

Task-related state axes

Stimulus. For stimulus state-vectors, we used for the first group (A)
trials in the time interval (-0.5 to +0.5s) centered on the stimulus
onset. For group B, since the stimulus was present in all trials, we used
the same trials in the preceding time interval (-1 to Os) as the no-
stimulus condition. Since the preceding ITI was randomized (3-55s),
time-dependent contributions to the signals should be similar across
the two groups.

Contralateral stimulus. We used trials with the left stimulus horizontal
as group A and the trials with the left stimulus vertical as group B
(Supplementary Fig. 4).

Wheel movement. Group A consisted of trials for which the first
movement after stimulus presentation occurred at least 0.5s after
stimulus onset and without any saccade detected in the previous 0.5s.
These trials were aligned to the detected movement onset. Group B
consisted of trials with no movement detected during the first 5 s after
stimulus onset. These trials were aligned with respect to a frame picked
at random within the same time interval.

Saccades. Akin to the definition of wheel movements, Group A con-
sisted of trials for which a saccade after stimulus presentation occur-
red at least 0.5 s after stimulus onset and without any wheel movement
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detected in the previous 0.5 s. These trials were aligned to the detected
saccade time. Group B consisted of trials with no saccade detected
during the first 5 s after stimulus onset. These trials were aligned with
respect to a frame picked at random within the same time interval.

Sustained attention. Sustained attention was measured by changes in
pupil area during the stimulus presentation. We computed pupil area
changes (pA) as the difference between the maximum pupil area
during the open-loop period (i.e., the 1.5s window after stimulus
onset) and the average area 1s before stimulus onset. We labeled as
“high sustained attention” trials (group A) those in the top 33rd per-
centile of the pA distribution and as “low sustained attention” trials
(group B) those in the bottom 33rd percentile. Groups A and B were
always balanced by definition.

Choice. L/R choices in each trial were measured from the direction of
the first movement after stimulus onset. The state axis for group A was
computed from right-choice trials and for group B using left-choice
trials. As for the detection of wheel movements, we restricted the
analysis to trials in which the first movement occurred at least 0.5s
after stimulus onset and with no saccades 0.5s before the detected
movement. Trials were aligned to the time of movement detection.

State axes independence

To determine confidence intervals of the angle formed between
independent state axes (Fig. 4c), we proceeded as follows. For each
animal, we picked at random one of the original state axis, and sam-
pled with repetitions from its components to generate 2000 surrogate
state axis with matched dimensionality. The angle between the original
vector and each of the surrogates was computed, resulting in an angle
ranging from 79° to 89° (2.5% and 97.5% confidence intervals).

Piecewise linear fitting of d’ curves

To fit the time-evolving d’ curves to periods before and after
movement onset, we performed two-slope piecewise linear fitting
using the Shape Language Modeling toolbox (MATLAB Central File
Exchange, John D’Errico, 2021; SLM—shape language modeling;
https://www.mathworks.com/matlabcentral/fileexchange/24443-
slm-shape-language-modeling). This method performs two linear
fitsin a fixed interval with a single knot between them. We chose the
interval —1s before movement onset up to the 95th percentile of
the peak post-movement response amplitude (typically occurring
around 0.3s after movement onset). The position of the knot
determined the slope change time.

Spatial-Distribution Index (SDI). The SDI for a given state axis was
computed as SDI (%)=(n:1:)'f(";',_) —1)-100 where d; refers to the area-
specific state axes d’ scores (i.e., a state axes defined using only the
weights of i-th area), and dy,,, refers to the discriminability of the ori-
ginal state axis (i.e., the state axis defined using all components). Since
the original state axis uses all components across the areas, dg, is an
upper bound of d;. Similarly, each d; contributes sublinearly to dg,,
since correlated activity across areas would not result in higher dis-
criminiability. Hence, SDI measures how much the discriminability can
increase when using all areas vs just the one with the largest d’. The SDI
plays a similar role to deviance-explained in statistical models, as it
measures the relative contribution of a small model (single area) vs the
full model (all areas). In this definition, SDI = 0% if only 1 area contributes

and (N-1)*100% if all N areas contribute equally and independently.

Pixel-wise choice decoding. To compute choice-related d’ values for
individual pixels, we proceeded as follows. Using the same groups of
trials described in “Task-related state axes—choice”, at each pixel and
time (relative to movement onset) we computed the mean and variance
of the dF/F distribution for each group. We then computed d’ with the

dF /F (¢)>—<dF [F (¢
usual formula as d /() = <2402

row and jth column of the original dataset. This calculation was
restricted to the pixels that were common across all animals (pixels at
the edges of the imaging window were not present in all animals due to
different alignment transformations to the reference dataset).

, where i,j denotes the i-th

RNN model

The RNN consisted of a single RNN module with N =50 neurons (ReLU
activations), receiving 3 inputs (left stimulus, right stimulus, and
attention level) and producing a binary response as an output for left
or right choices (softmax activation).

Inputs. The input space consisted of a sequence of 25 frames. Stimulus
orientations were mapped to the range of -1 to +1 (corresponding to
-90° to +90°) and were presented after the first 10 frames. The diffi-
culty of a trial was encoded by the absolute difference between the two
stimulus signals. Attention was modeled as a constant binary signal
(0 or 1), already present at the beginning of the trial. A small noise
(normally distributed with amplitude 0.1) was added to the input sig-
nals to improve the robustness of the optimization, but it was irrele-
vant for the psychometric fitting.

Training. For training the network, we generated simulated animal
responses by computing L/R choices, following a psychometric curve
of the form Py (6) = Wﬁ (1 — )+ 4, where @ is the difference between
the two inputs, 1 is the lapse rate, and a controls the slope. We used a
constant 1=0.2 and a=2/90 for low attention and a=5/90 for high
attention. Lapse rate was chosen to match that of a representative
animal. Slopes were chosen to match average performance across
difficulties of a representative animal (67% and 80% for low and high
attention respectively, sampled from a uniform trial difficulty dis-
tribution). To train the network, we used 6400 trials per difficulty level
and chose 13 difficulty levels with angle differences uniformly dis-
tributed from -90° to +90°. We trained the network using a batch
normalization layer and a custom loss function consisting of the
categorical cross entropy at the time of stimulus presentation and at
the last frame. The output was a binary vector with three components
(L,R,N), representing left, right, and no choice conditions. At the time
of stimulus presentation, the vector was set to (0,0,1) and at the trial
end to (1,0,0) or (0,1,0). We included the stimulus presentation time
and no-choice condition in the loss function to prevent the output
drifting before stimulus presentation, following a procedure used by
Mante (Mante et al., Nature 2013). Accuracy during training was
computed using the categorical accuracy at the end of the trial. The
network was implemented with TensorFlow 2.0 and trained using the
Adam optimizer for 25 epochs with a batch size of 640. Note that
training the network with the animal choices made the network robust
to overfitting. We trained 10 different networks (200 for Fig. 5a) by
generating new sets of inputs and randomly initializing the network
weights.

Analysis. We analyzed the output of the RNN in the same way as for the
neural data, but we used the time series of the N =50 neurons instead
of the locaNMF components to define choice and attention state axes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Source data are provided with this paper. Data required to replicate
the findings is available through ZENODO (CBS-NCB/distributedDM:
Public release (vl.1). Zenodo. https://doi.org/10.5281/zenodo.
7435887). Unprocessed raw data is too large for permanent external
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storage and will be made available by the corresponding author upon
reasonable request. Atlas reference data for brain areas alignment
across animal is obtained from The Allen Mouse Common Coordinate
Framework® (CCF) (https:/atlas.brain-map.org/). Source data are
provided with this paper.

Code availability

Code for data processing, analysis and figures is available through
ZENODO (CBS-NCB/distributedDM: Public release (vl.1). Zenodo.
https://doi.org/10.5281/zenodo.7435887). This code was written in
MATLAB (r2020a) and Python (v3.7) with Tensorflow 2.0. Imaging data
was collected using custom software based on PCO SDK (v 1.14), eye-
tracking data was collected using custom software based on Fly-
Capture2 SDK (v8.0), with custom code written in MATLAB (r2020a) to
interface with both acquisition systems using MATLAB Data Acquisi-
tion Toolbox for National Instruments (NI) devices. Acquisition soft-
ware is available upon reasonable request.
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