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Automatic segmentation 
of bladder cancer on MRI using 
a convolutional neural network 
and reproducibility of radiomics 
features: a two‑center study
Yusaku Moribata 1,2,3, Yasuhisa Kurata 1*, Mizuho Nishio 1, Aki Kido 1, Satoshi Otani 1, 
Yuki Himoto 1, Naoko Nishio 4, Akihiro Furuta 4, Hiroyuki Onishi 5, Kimihiko Masui 6, 
Takashi Kobayashi 6 & Yuji Nakamoto 1

This study aimed to develop a versatile automatic segmentation model of bladder cancer (BC) on 
MRI using a convolutional neural network and investigate the robustness of radiomics features 
automatically extracted from apparent diffusion coefficient (ADC) maps. This two-center retrospective 
study used multi-vendor MR units and included 170 patients with BC, of whom 140 were assigned to 
training datasets for the modified U-net model with five-fold cross-validation and 30 to test datasets 
for assessment of segmentation performance and reproducibility of automatically extracted radiomics 
features. For model input data, diffusion-weighted images with b = 0 and 1000 s/mm2, ADC maps, 
and multi-sequence images (b0-b1000-ADC maps) were used. Segmentation accuracy was compared 
between ours and existing models. The reproducibility of radiomics features on ADC maps was 
evaluated using intraclass correlation coefficient. The model with multi-sequence images achieved the 
highest Dice similarity coefficient (DSC) with five-fold cross-validation (mean DSC = 0.83 and 0.79 for 
the training and validation datasets, respectively). The median (interquartile range) DSC of the test 
dataset model was 0.81 (0.70–0.88). Radiomics features extracted from manually and automatically 
segmented BC exhibited good reproducibility. Thus, our U-net model performed highly accurate 
segmentation of BC, and radiomics features extracted from the automatic segmentation results 
exhibited high reproducibility.

Bladder cancer (BC) is the tenth most common malignancy worldwide, with an increasing mortality rate1. 
There are various treatment options for BC depending on the clinical staging, including transurethral resec-
tion of bladder tumor (TURBT), intravesical therapy, total cystectomy, radiation therapy, chemotherapy, and 
immunotherapy2. Although TURBT provides pathological information on the local staging of BC, the quality of 
TURBT depends on the expertise of the urologist. Consequently, MRI is now an essential tool for the preoperative 
local staging of BC, including the recently released Vesical Imaging Reporting and Data System (VI-RADS)3–5.

Medical image analysis using radiomics approaches has garnered increasing attention in recent years. Radiom-
ics extracts and analyzes large amounts of advanced quantitative imaging features with the goal of objective diag-
nostic imaging. Several studies have employed radiomics to predict BC staging, including muscle invasion6–10. 
For this type of research, tumor segmentation is necessary; however, manual segmentation is labor-intensive, 
time-consuming, and lacks objectivity. Thus, highly accurate automatic tumor segmentation is necessary to create 
regions of interest (ROIs) with less effort and conduct radiomics studies on a large scale.

OPEN

1Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 
Shogoin Kawahara‑cho, Sakyo‑ku, Kyoto  606‑8507, Japan. 2Preemptive Medicine and Lifestyle‑Related Disease 
Research Center, Kyoto University Hospital, Kyoto, Japan. 3Department of Diagnostic Radiology, Shiga General 
Hospital, Moriyama, Japan. 4Department of Radiology, Osaka Red Cross Hospital, Osaka, Japan. 5Department of 
Urology, Osaka Red Cross Hospital, Osaka, Japan. 6Department of Urology, Kyoto University Graduate School of 
Medicine, Kyoto, Japan. *email: y.kurata.36.0@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-27883-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |          (2023) 13:628  | https://doi.org/10.1038/s41598-023-27883-y

www.nature.com/scientificreports/

Various methods for BC segmentation have been reported. Segmentation with convolutional neural network 
(CNN)-based methods has recently received growing attention11–18. U-net is a model for automatic segmenta-
tion that was initially developed for biomedical science and has emerged as a popular method of CNN-based 
segmentation of medical images19. Several studies of automated segmentation of BC on MRI using CNN-based 
methods have been reported. However, these studies were conducted at a single institution with a small number 
of cases and, therefore, lacked sufficient generalizability for clinical application14–18. To overcome these limita-
tions, it is necessary to conduct research with a larger number of MR images of patients with BC obtained using 
multi-vendor MR scanners at multiple institutes. Furthermore, the robustness of radiomics features extracted 
using automatic segmentation is important for performing texture analysis with automatically acquired ROIs.

This study thus aimed to conduct a modified U-Net automatic segmentation of BC with high generalization 
performance on two-center, multi-vendor MR images using a CNN, an approach that has never been attempted 
before. In addition, we investigated the reproducibility of radiomics features extracted from manually and auto-
matically segmented BC.

Materials and methods
This two-center retrospective study was approved, and the need for written informed consent was waived, because 
of the retrospective study design, by the Ethics Committee of Kyoto University Graduate School and Faculty of 
Medicine and the Medical Ethics Committee of Osaka Red Cross Hospital (R2695 and J-0202, respectively). All 
methods were conducted in accordance with the Declaration of Helsinki.

Patients.  This study included consecutive patients with pathologically proven BC who underwent preopera-
tive bladder MRI at Kyoto University Hospital and Osaka Red Cross Hospital between January 2016 and June 
2020. Pathological diagnosis of BC was confirmed by TURBT or cystectomy. Exclusion criteria were (1) prior 
treatment for BC within 6 months, including TURBT and intravesical therapy, (2) tumors with uncertain T stage 
according to the European Association of Urology guidelines20, (3) insufficient MR images, (4) artificial devices, 
(5) severe artifacts, and (6) no detectable tumor on MRI. A final total of 170 patients enrolled in this study were 
randomly divided into two datasets: a training dataset of 140 patients and a test dataset of 30 patients (Fig. 1). 
Two board-certified radiologists (Y.M. and N.N. with 12 and 10 years of experience in urogenital radiology, 
respectively) searched the clinical and pathological records for age, sex, histological grade, and the presence of 
muscle invasion. The presence of muscle invasion was determined based on the European Association of Urol-
ogy guidelines20.

MRI protocol.  MR images were obtained using a 1.5-T or 3-T scanner with a phased-array coil. The follow-
ing MR scanners were used: Skyra, Prisma, Avanto (Siemens Healthineers), Achieva, Ingenia, Intera (Philips 
Healthcare), and SIGNA EXCITE (GE Healthcare). At a minimum, each study included axial T2-weighted 
images (T2WIs), axial T1-weighted images (T1WIs), and axial diffusion-weighted images (DWIs). The b-values 
applied to DWI were as follows: b = 0, 1000 s/mm2; b = 0, 500, 1000 s/mm2; and b = 0, 100, 500, 1000 s/mm2. 
Apparent diffusion coefficient (ADC) maps were automatically constructed with a mono-exponential decay 
model, using all b-values. Axial DWIs with b = 0 and 1000  s/mm2 and axial ADC maps were used as input 
sources for subsequent analyses. The MR scanners and their corresponding number of patients and DWI param-
eters are shown in Supplementary Table. The matrix size of DWI and ADC maps was 110–192 × 80–128.

Image annotation and processing.  A board-certified radiologist with 12 years of experience in urogeni-
tal radiology (Y.M.) manually segmented BCs on each slice of axial DWIs with b = 1000 s/mm2 using 3D Slicer 
(https://​www.​slicer.​org) with reference to MR images of other sequences and pathological reports. Another 
board-certified radiologist with 12 years of experience (Y.K.) verified the ROIs for all cases. The labeled ROIs 
were regarded as the reference standard for tumor segmentation.

Figure 1.   Flow chart of patient selection. KUHP Kyoto University Hospital, ORC Osaka Red Cross Hospital, 
TURBT transurethral resection of bladder tumor.

https://www.slicer.org
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Axial DWIs were resized to 128 × 128 pixels. MR signal intensities (SIs) were normalized according to the 
following Eq. (1):

where normalized_SI, mean_SI, and SD_SI denote the normalized SI, mean SI of the images, and standard 
deviation (SD) of the SI of the images, respectively.

U‑net architecture.  The architecture of our U-net-based model for the segmentation of BC is presented 
in Fig. 2. Our model was composed of five layers, which was deeper than the original U-net composed of four 
layers. For training the model, we employed the Adam optimizer as the optimizer with the cost function of Dice 
loss. The epochs, batch size, and initial learning were set to 30, 56, and 0.001, respectively. During the training, 
we performed five-fold cross-validation using 80% of the patients for training and 20% for validation.

To evaluate the impact of input image type on training effectiveness, we used single-sequence images (b0 
images, b1000 images, or ADC maps) and multi-sequence images (b0 images + b1000 images + ADC maps) as 
input data and compared their segmentation performance. When using single-sequence images, one of the b0 
images, b1000 images, or ADC maps was input to all of the triple channels. When using multi-sequences, the 
three sequence images were input to each of the triple channels. The input data type with the highest accuracy in 
the training dataset was evaluated using the test dataset. In addition, we compared the segmentation performance 
of our U-Net model with previously reported segmentation networks, such as original U-Net, attention U-Net, 
UNet++, U2-Net, and TransUNet19,21–24.

Segmentation accuracy.  Segmentation accuracy was evaluated with the metric of Dice similarity coef-
ficient (DSC), which was defined using Eq. (2), as follows:

where |T| and |P| represent the count of voxels for the true manual segmentation (reference standard) and 
predicted segmentation results, respectively, and |T ∩ P| denotes the count of voxels for which BC is accurately 
segmented (true positive).

Model training.  Our U-net model was built and trained with Tensorflow (version 2.5.0) on a Linux worksta-
tion (Ubuntu version 18.04) with an NVIDIA GeForce RTX3090 graphics processing unit with 24 GB memory.

Performance evaluation of the test dataset.  After building our U-net models using the training data-
set, segmentation performance was evaluated using the test dataset. For the segmentation of BC in the test data-
set, we employed an ensemble model composed of the five models created during the cross-validation process. 

(1)normalized_SI =
SI −mean_SI

12× SD_SI

(2)DSC =
2|T ∩ P|

|T| + |P|

Figure 2.   U-Net architecture. Conv convolution, BN batch normalization, ReLU rectified linear unit.
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The area predicted as BC in three or more of the five models was defined as the predicted BC. The ensemble 
method to predict the BC on the test dataset is presented in Fig. 3.

Extraction of radiomics features.  To evaluate the reproducibility of the radiomics features extracted 
from ADC maps, we compared the features calculated from manually and automatically segmented BC by our 
U-net model. The radiomics features were calculated using PyRadiomics (version 3.0.1). Basically, we used the 
default setting of PyRadiomics except for binwidth (= 0.005) and voxel array shift (= 1). The calculated radiomics 
features were first-order features (n = 18), shape-based features (n = 14), and high-order features (n = 75). High-
order features included the following: gray-level co-occurrence matrix (GLCM, n = 24), gray-level run length 
matrix (GLRLM, n = 16), gray-level size zone matrix (GLSZM, n = 16), neighboring gray tone difference matrix 
(NGTDM, n = 5), and gray-level dependence matrix (GLDM, n = 14). The details of the radiomics features are 
available online for reference (https://​pyrad​iomics.​readt​hedocs.​io/​en/​latest/​index.​html).

Statistical analysis.  Clinical characteristics of the patients in the training and test datasets were analyzed 
using JMP Pro (version 15.2.0, SAS Institute Inc.). Age was compared using a t test, whereas sex, grade, and 
muscle invasion were compared using a chi-square test. The reproducibility of radiomics features was assessed 
using the intraclass correlation coefficient (ICC 2.1) calculated using pingouin (version 0.3.8)25. ICC values were 
interpreted as poor (< 0.50), moderate (0.50–0.75), good (0.75–0.90), and excellent (> 0.90)26. A p-value less than 
0.05 was regarded as statistically significant.

Results
Clinical characteristics.  The clinical characteristics of the patients assigned to the training and test datasets 
are shown in Table 1. The patient ages ranged from 47 to 94 years (mean, 73.6 years). There was no statistically 
significant difference regarding age, sex, histological grade, or muscle invasion between the training and test 
datasets.

Figure 3.   The ensemble model to predict the area of bladder cancer in the test dataset. ROI region of interest.

Table 1.   Patient characteristics. SD standard deviation, MIBC muscle-invasive bladder cancer, NMIBC non-
muscle-invasive bladder cancer.

Training set Test set p-value

Number of patients 140 30

Age (years, mean ± SD) 73.5 ± 8.8 73.9 ± 10.3 0.84

Sex 0.62

 Male 113 23

 Female 27 7

Histological grade 0.97

 High 112 24

 Low 24 6

 Others 4 0

Muscle invasion 0.98

 MIBC 51 11

 NMIBC 89 19

https://pyradiomics.readthedocs.io/en/latest/index.html
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Segmentation performance in the training and test datasets.  The mean DSCs with different 
sequences as input data for five-fold cross-validation are shown in Table  2. Our U-Net model with multi-
sequence images (b0 images, b1000 images, and ADC maps for triple channels) achieved the highest mean DSC 
of 0.83 and 0.79 in the training and validation datasets, respectively. Consequently, we decided to adopt multi-
sequence images as the input data for the final model. The mean DSCs for the validation dataset of five-fold 
cross-validation with multiple-sequence images using original U-Net, attention U-Net, UNet++, U2-Net, and 
TransUNet were 0.75, 0.74, 0.46, 0.69, and 0.75, respectively. These DSCs were lower than those for our modified 
U-Net model.

The median DSC of the final model with multi-sequence images for the test dataset was 0.81 (interquartile 
range, 0.70–0.88). Representative cases of automatic segmentation for the test dataset are presented in Fig. 4.

Reproducibility of radiomics features.  The ICC values of the radiomics features derived from manu-
ally and automatically segmented BC are presented in Fig. 5. Good to excellent reproducibility was confirmed 
(ICC, 0.75–0.98) regarding first-order and shape-based features except for kurtosis, mean absolute deviation, 
robust mean absolute deviation, variance, elongation, flatness, major axis length, maximum 3D diameter, and 
sphericity (ICC, 0.39–0.73). Among the higher-order features, 61/75 features demonstrated good to excellent 
reproducibility (ICC, 0.76–1.00). All features with good to excellent ICC returned a significant p-value < 0.05 for 
the ICC analysis. The ICC values for each feature group are summarized in Table 3. All of the median ICCs of 
the radiomics feature groups showed good reliability (ICC, 0.83–0.86).

Table 2.   Dice similarity coefficient with different sequences as input data for cross-validation. Data are 
presented as the mean and range of five cross-validation models. ADC apparent diffusion coefficient map, DSC 
dice similarity coefficient.

Training Validation

b0 0.69 (0.64–0.75) 0.37 (0.29–0.46)

b1000 0.79 (0.77–0.80) 0.64 (0.37–0.75)

ADC 0.78 (0.76–0.81) 0.66 (0.59–0.71)

b0 + b1000 + ADC 0.83 (0.81–0.84) 0.79 (0.78–0.81)

Figure 4.   Two representative cases of automatic segmentation of bladder cancer in the test dataset (case 1 
(A); case 2 (B)). (a) Diffusion weighted image with b = 0 s/mm2, (b) diffusion weighted image with b = 1000 s/
mm2, (c) apparent diffusion coefficient map, (d) results of automatic segmentation overlayed on diffusion 
weighted image with b = 0 s/mm2, (e) manual region of interest for the reference standard. The large tumor was 
almost perfectly segmented in case 1 (Dice similarity coefficient = 0.95), and the two distant tumors were well 
segmented in case 2 (Dice similarity coefficient = 0.82).



6

Vol:.(1234567890)

Scientific Reports |          (2023) 13:628  | https://doi.org/10.1038/s41598-023-27883-y

www.nature.com/scientificreports/

Discussion
In this two-center study, we developed the automatic segmentation model of BC on multi-vendor MR images 
using a CNN. The model with multi-sequence MR images exhibited higher segmentation performance compared 
to that of the single-sequence models. Our final model demonstrated high segmentation performance with a 
median DSC of 0.81 for the test dataset. Radiomics features calculated from the automatic segmentation results 
by our model showed high reproducibility in terms of first-order, shape-based, and higher-order features.

Figure 5.   Intraclass correlation coefficient (ICC) values for radiomics features obtained by manual and 
automatic segmentation (first-order and shape-based features (A); high-order features (B)). Asterisks indicate 
the features with good to excellent ICC values (ICC > 0.75; orange line). GLCM gray-level co-occurrence matrix, 
GLRLM gray-level run length matrix, GLSZM gray-level size zone matrix, NGTDM neighboring gray tone 
difference matrix, GLDM gray-level dependence matrix.

Table 3.   Median and interquartile range for the intraclass correlation coefficient (ICC) values per feature 
group. GLCM gray-level co-occurrence matrix, GLRLM gray-level run length matrix, GLSZM gray-level size 
zone matrix, NGTDM neighboring gray tone difference matrix, GLDM gray-level dependence matrix.

Features group Number of features Median ICC Interquartile range

First-order features 18 0.83 0.77–0.94

Shape-based features 14 0.85 0.71–0.94

GLCM 24 0.85 0.60–0.88

GLRLM 16 0.84 0.78–0.87

GLSZM 16 0.85 0.80–0.94

NGTDM 5 0.85 0.79–0.86

GLDM 14 0.86 0.81–0.93
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Several single-center studies have performed automatic segmentation of BC, and some of these studies 
reported DSCs higher than 0.815–17. However, machine learning studies conducted at a single site on a small 
number of cases carry the risk of generalization performance degradation due to overfitting27. To resolve this 
problem, we conducted the first study of automatic segmentation of BC with multi-vendor MR scanners at two 
institutes with the largest number of cases to date. This study design increased the generalization performance of 
our segmentation model because it handled MR images of diverse cohorts of patients with BC using diverse MR 
scanners and parameters. Despite the heterogeneity of images collected in our study, our U-net model achieved 
a median DSC of 0.81 for the test dataset. In addition, our model outperformed previously reported segmenta-
tion models, including the original U-Net. These results suggest that our U-net model can be applied to clinical 
practice and large-scale research using a radiomics approach.

This study also reported the effects of differences in input images on segmentation performance. Our U-Net 
model with multi-sequence MR images exhibited superior performance compared to that with single-sequence 
images. A similar study has been conducted on cervical cancer28. In accordance with our findings, the model 
with multi-sequence images of b0 images, b1000 images, and ADC maps exhibited the highest DSC of 0.82.

Most of the radiomics features derived from manually and automatically segmented BC exhibited good to 
excellent reproducibility for first-order, shape-based, and high-order features. To date, the robustness of radiomics 
features of BC has not been reported, but several studies on cervical and endometrial cancers exist28,29. A previous 
study on uterine cervical cancer reported poor reliability of features derived from manually and automatically 
segmented tumor except for first-order features28. A study on uterine endometrial cancer presented good to 
excellent reliability for many of the features but poor reliability for GLCM, GLRLM, and NGTDM29. Although 
direct comparison of BC results with those of other organs is difficult, radiomics features obtained from our 
U-Net model yielded better reliability compared to those in previous reports. Accordingly, our U-Net model 
may facilitate radiomics studies with a large number of BC cases.

There were several limitations in this study. First, we focused on DWIs and did not deal with T2WIs or 
dynamic contrast-enhanced T1WIs. One reason for this was bladder deformation associated with fluctuating 
urine volume in the bladder during scanning. Although using other sequences including T2WIs as input data 
with deformable image registration may have improved segmentation performance, there was a risk of misreg-
istration leading to diminished accuracy of automatic segmentation. Our U-Net-based model performed suf-
ficiently accurate segmentation solely using DWIs and ADC maps possibly because b0 images partially contained 
the information of T2WIs. Second, the cases from the two institutes were mixed and divided into training and 
test datasets, and external validation was not performed. Validation studies including BC cases from other insti-
tutions are warranted to demonstrate the robustness of our segmentation model. Third, the sample size of the 
test dataset might be small for evaluating ICC with sufficient statistical power. However, this was unavoidable, 
given the overall number of patients included in this study.

In conclusion, we developed a U-Net model that could accurately segment BC on MRI obtained with two-
center, multi-vendor scanners. First-order, shape-based, and higher-order radiomics features extracted from the 
automatic segmentation results exhibited high reproducibility.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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