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Abstract

Antimicrobial-resistance (AMR) genes can be transferred between microbial cells via horizontal gene transfer (HGT), which 
involves mobile and integrative elements such as plasmids, bacteriophages, transposons, integrons and pathogenicity islands. 
Bacteriophages are found in abundance in the microbial world, but their role in virulence and AMR has not fully been eluci-
dated in the Enterobacterales. With short-read sequencing paving the way to systematic high-throughput AMR gene detection, 
long-read sequencing technologies now enable us to establish how such genes are structurally connected into meaningful 
genomic units, raising questions about how they might cooperate to achieve their biological function. Here, we describe a 
novel ~98 kbp circular P1-bacteriophage-like plasmid termed ph681355 isolated from a clinical Salmonella enterica serovar 
Typhi isolate. It carries bla

CTX-M-15
, an IncY plasmid replicon (repY gene) and the ISEcP1 mobile element and is, to our knowledge, 

the first reported P1-bacteriophage-like plasmid (phage-plasmid) in S. enterica Typhi. We compared ph681355 to two previ-
ously described phage-plasmids, pSJ46 from S. enterica serovar Indiana and pMCR-1-P3 from Escherichia coli, and found high 
nucleotide similarity across the backbone. However, we saw low ph681355 backbone similarity to plasmid p60006 associated 
with the extensively drug-resistant S. enterica Typhi outbreak isolate in Pakistan, providing evidence of an alternative route 
for bla

CTX-M-15
 transmission. Our discovery highlights the importance of utilizing long-read sequencing in interrogating bacte-

rial genomic architecture to fully understand AMR mechanisms and their clinical relevance. It also raises questions regarding 
how widespread bacteriophage-mediated HGT might be, suggesting that the resulting genomic plasticity might be higher than 
previously thought.

Data Summary
All fastq files and assemblies were submitted to the National Center for Biotechnology Information (NCBI). All data can be 
found under BioProject PRJNA248792 – https://www.ncbi.nlm.nih.gov/bioproject/PRJNA248792. Strain-specific details can be 
found in Methods under data deposition.
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Introduction
Salmonella enterica subspecies enterica serovar Typhi is the causative agent of typhoid fever and is associated with an estimated 
11 million infections and 116 000 deaths globally each year [1]. The majority of this disease burden is concentrated in South Asia 
and other low to middle income countries (LMICs) [1].

Growing rates and spread of antimicrobial resistance (AMR) pose a threat to the effective empirical treatment and control of 
typhoid fever. Third-generation cephalosporins (extended spectrum β-lactams) are frequently used in the treatment of typhoid 
fever. The emergence and spread of extensively drug-resistant (XDR) S. enterica Typhi in Pakistan, and now globally, is a public-
health concern as it has left azithromycin (one of the last oral antibiotics available) and meropenem (carbapenem) as the only 
options available for treatment [2–8] (https://emergency.cdc.gov/han/2021/han00439.asp).

Resistance to cephalosporins is principally mediated by acquisition of a plasmid carrying extended-spectrum β-lactamase (ESBL) 
genes, the most prevalent of which are the CTX-M type ESBLs [9]. Recently blaCTX-M-15 and blaCTX-M-55 present on a transmissible 
~84 kbp IncY incompatibility group plasmid (p60006) were shown to be associated with extended-spectrum β-lactam resistance 
in XDR outbreak S. enterica Typhi isolates from Pakistan [2, 3]. We are also now observing chromosomal integration of ESBL 
genes and the loss of the IncY plasmid in these XDR S. enterica Typhi isolates, demonstrating evolution of the AMR drug region 
throughout the outbreak [3].

Mobile and integrative genetic elements, including plasmids, bacteriophages, transposons, integrons and pathogenic islands, 
are important vehicles of horizontal gene transfer (HGT) enabling transmission of genetic information between bacteria [10]. 
Plasmids are considered the most common and important genetic element to spread ESBLs between bacterial strains, but studies 
have shown the mobilization or transfer of AMR genes by bacteriophages in various bacterial species, including Escherichia 
coli and non-typhoidal Salmonella (NTS) [11–15], and reported a mcr-1 gene in E. coli and a blaCTX-M-27 gene in NTS present on 
bacteriophage-like IncY elements (phage-plasmid) that were 97 and 104 kbp in size, respectively. In another report [13], a 115 
kbp circular P1-like bacteriophage harbouring a blaSHV-12 element in E. coli was characterized. P1-like bacteriophages are known 
to replicate in their host as independent low copy number plasmid-like elements [13].

Recent advances in sequencing technologies, especially long-read sequencing, now enable us to identify and characterize novel 
bacteriophage/plasmid-like elements, as well as look at their genetic diversity [16–18]. Long-read sequencing has also enabled the 
ability to characterize the genetic architecture of individual mobile integrative elements harbouring AMR determinants [19–23], 
which is essential in order to characterize the precise biological mechanisms underpinning HGT mechanisms.

In this study, we describe a circular P1-bacteriophage-like plasmid (phage-plasmid) harbouring a blaCTX-M-15 gene and IncY plasmid 
replicon (repY) isolated from a clinical S. enterica Typhi isolate from a traveller returning to the UK from Iraq. To the best of 
our knowledge, this is the first time such a genomic element, and the implications of its presence towards AMR acquisition and 
maintenance, have been described for S. enterica Typhi. That is especially relevant due to the current heavy burden of the disease, 
and the pathogenic potential that S. enterica Typhi strains carrying AMR might present in the future.

Methods
Strain selection and details
A laboratory-confirmed S. enterica Typhi isolate termed 681 355 was referred to the Gastrointestinal Bacterial Reference Unit 
(GBRU), UK Health Security Agency (UKHSA) [formally Public Health England (PHE)] in January 2019. This isolate was from 
a traveller returning to the UK from Iraq. Epidemiological information and phylogenetic analysis of this isolate have previously 

Impact Statement

Whole-genome sequencing has revolutionized the way we identify and characterize antimicrobial-resistance (AMR) genes and 
regions/elements in pathogens. Illumina sequencing coupled with Nanopore sequencing and careful data curation allows the 
mining of pathogen genomes to detect, characterize and track novel mobile elements involved in AMR transmission. In this 
study, we have identified a circular P1-bacteriophage-like plasmid (termed phage-plasmid) harbouring a bla

CTX-M-15
 gene confer-

ring extended-spectrum β-lactamase resistance in Salmonella enterica serovar Typhi. It is the first time, to our knowledge, that 
such a DNA element has been described in this organism. There is increasing evidence from the literature to show that the 
horizontal spread of AMR genes mediated by bacteriophages and bacteriophage-like plasmid elements is much more common 
than previously envisioned. This current study shows the potential ability of using Nanopore sequencing for the detection and 
characterization of these elements, highlighting the importance of including long-read sequence data for the screening and 
surveillance of mechanisms involved in AMR transmission. Understanding AMR carriage and transmission patterns provides 
information to support appropriate clinical management and inform implementation of public-health control measures.

https://emergency.cdc.gov/han/2021/han00439.asp


3

Greig et al., Microbial Genomics 2022;8:000913

been described by Godbole et al. [24]. Ethical approval for the detection of gastrointestinal bacterial pathogens from faecal 
specimens, or the identification, characterization and typing of cultures of gastrointestinal pathogens, submitted to GBRU is not 
required as it is covered by UKHSA’s surveillance mandate.

Antimicrobial-susceptibility testing
Antimicrobial-susceptibility testing was performed on this isolate as described by Chattaway et al. [25]. Minimum inhibitory 
concentrations (MICs) were determined by agar dilution using Mueller–Hinton agar for the standard panel of antibiotics recom-
mended for Salmonella spp. by the European Committee on Antimicrobial Susceptibility Testing (EUCAST); breakpoints and 
screening concentration criteria were used for interpretation of results as described by EUCAST (2020; https://www.eucast.org/).

DNA extraction, library preparation, Illumina sequencing and data processing
Genomic DNA was extracted from S. enterica Typhi culture using the QIAsymphony system (Qiagen). The sequencing library 
was prepared using the Nextera XP kit (Illumina) for sequencing on the HiSeq 2500 instrument (Illumina), run with the fast 
protocol. fastq reads were processed using Trimmomatic v0.27 [26] to remove bases with a Phred score of <30 from the leading 
and trailing ends, with reads <50 bp after quality trimming discarded.

Genotyping and in silico AMR typing
Sequence type (ST) and serovar were determined from reads using most (v1.0) as described by Tewolde et al. [27] and eBURST 
group (eBG) as described by Achtman et al. [28].

Resistance genes for the S. enterica Typhi isolate used in the study were detected using GeneFinder (https://github.com/phe-bioinformatics/​
gene_finder), a customized algorithm that uses Bowtie2 (v2.3.5.1) [29] to align reads to a set of reference sequences, and SAMtools (v1.8) 
[30], to generate an mpileup file, as previously described [31]. Briefly, the data are parsed based on read coverage of the query sequence 
(100 %), consensus base-call on variation (>85 %) and the nucleotide identity (>90 %) to determine the presence of the reference sequence 
or nucleotide variation within that sequence. β-Lactamase variants were determined with 100 % identity using the reference sequences 
downloaded from ResFinder [32] or the National Center for Biotechnology Information (NCBI) β-lactamase data resources (https://
www.ncbi.nlm.nih.gov/pathogens/beta-lactamase-data-resources). Known acquired resistance genes and resistance-conferring mutations 
relevant to β-lactams, fluroquinolones, aminoglycosides, chloramphenicol, macrolides, sulphonamides, tetracyclines, trimethoprim, 
rifamycins and fosfomycin were included in the analysis [33, 34].

DNA extraction, library preparation, Nanopore sequencing and data processing
High-molecular mass DNA was extracted from S. enterica Typhi isolate 681 355 using the Fire Monkey HMW DNA extraction kit 
(RevoluGen) and DNA concentration was determined via Qubit (Thermofisher Scientific), as previously described [23]. Library 
preparation was performed using the rapid barcoding kit (SQK-RBK004) (Oxford Nanopore Technologies). The prepared library 
was loaded onto a FLO-MIN106 R9.4.1 flow cell (Oxford Nanopore Technologies) and sequenced using the MinION system 
(Oxford Nanopore Technologies) for 72 h.

Data produced in a raw FAST5 format was basecalled using Guppy v3.2.6 Fast model (Oxford Nanopore Technologies) into fastq 
format. Read de-multiplexing, quality control, trimming and filtering were completed as described elsewhere [35] with the only 
modification being bases=490 Mbp, to generate approximately 100× coverage of a Salmonella genome (approximately 4.9 Mbp).

De novo assembly, correction, re-orientation and annotation
The filtered Nanopore fastq file with the 100× coverage of longest reads was assembled using Flye v2.8 [36] with default 
parameters enabled. Correction (polishing) of the assembly was performed in a modified two-step process described previously 
[35, 37]. Firstly, Pilon v1.22 [38] was used with Illumina fastq reads as the query dataset with the use of bwa v0.7.17 [39] and 
SAMtools v1.7 [30]. Secondly, Racon v1.3.3, [40] also using bwa v0.7.17 [39] and SAMtools v1.7 [30], was used again with the 
Illumina fastq reads. As the chromosome was circular and closed, it was re-orientated to start at the dnaA gene (GenBank 
accession no. NC_000913) from E. coli K-12, using the --fixstart parameter in Circlator v1.5.5 [41]. Prokka v1.13 [42] was used 
to annotate the final assembly.

In silico plasmid typing and comparison of ph681355 and replicon to publicly available sequences
The plasmid replicon was identified for each non-chromosomal contig within the final assembly using PlasmidFinder v2.1 
[43] with the Enterobacteriaceae, minimum identity=90 % and minimum coverage=90 % parameters set. brig [44] was used to 
compare ph681355 to the blaCTX-M-27 S. enterica serovar Indiana Chinese SJ46 phage-plasmid (GenBank accession no. NC_031129), 
E. coli bacteriophage P1 (accession no. AF234172), the mcr-1 E. coli phage-plasmid (accession no. KX880944) and plasmid 
p60006 (accession no. LT906492) isolated from a Pakistan XDR S. enterica Typhi outbreak isolate that also harboured blaCTX-M-15. 
Parameters used included -perc_identity=90 and -e value=1×10-10. The coding sequences (CDSs) were annotated using Prokka 

https://www.eucast.org/
https://github.com/phe-bioinformatics/gene_finder
https://github.com/phe-bioinformatics/gene_finder
https://www.ncbi.nlm.nih.gov/pathogens/beta-lactamase-data-resources
https://www.ncbi.nlm.nih.gov/pathogens/beta-lactamase-data-resources
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v1.13 [42] as stated in the previous section, with AF234172 acting as a reference for CDS and gene annotation. The repY genes 
from the above plasmids were compared to the repY gene from ph681355 also using blastn [45].

Detection and characterization of ph681355 structural variation
To determine whether multiple isoforms were present within the Nanopore reads, the Nanopore fastq reads for the sample 
were aligned to the finalized assembly using Minimap2 v2.17 [46] and SAMtools v0.7.17 [30]. The alignment was visualized 
using Integrative Genomics Viewer (igv) v2.12.3 [47] and the breakpoints of each isoform were identified. Once breakpoints 
were identified relative to each isoform, those positions were used with SAMtools v0.7.17 [30] to isolate reads that aligned and 
spanned across both ends of each breakpoint (i.e. spanned the homologous region in question). Any reads that aligned across a 
given set of breakpoints had to share the same size as it existed in the fastq file, and not be clipped within the alignment, to be 
considered. From here, the relative proportions of reads aligning to each isoform were calculated.

Data deposition
Illumina and Nanopore fastq files and polished assembly for S. enterica Typhi isolate 681 355 are available from the NCBI under 
BioProject PRJNA248792. The SRA (sequence read archive) accession numbers are as follows: Illumina fastq – SRR8554071; 
Nanopore fastq – SRR16296518. The GenBank accession numbers are CP083411 for the chromosome and CP083412 for 
ph681355 (phage-plasmid).

Results
Sample 681355 genome statistics and genotyping
Isolate 681 355 was confirmed to be S. enterica Typhi ST1, a member of serovar Typhi eBURST group 13 (eBG13). Previous 
phylogenetic analysis confirmed that this strain sat within the dominant global H58 haplotype, but it did not cluster with the 
recent XDR S. enterica Typhi outbreak strains in Pakistan [2, 24]. Nanopore sequencing and processing produced a final genome 
of two contigs, one chromosome (4 782 729 kbp) and one of 98 174 kbp (ph681355).

Phenotypic and genotypic resistance to extended-spectrum β-lactam
S. enterica Typhi isolate 681 355 was found to have minimum inhibitory concentrations (MICs) to the following antimicrobials 
(in µg µl−1): amoxicillin [>128 (R)], ciprofloxacin [0.06 (R)], ceftriaxone [>64 (R)], cotrimoxazole [1 (S)], ertapenem [0.25 (S)] 
and azithromycin [<2 (S)] as observed by Chattaway et al. [25]. Genotypic mapping of AMR determinants did not reveal the 
presence of carbapenem, fosfomycin and azithromycin resistance, but showed the presence of blaCTX-M-15, a point mutation in 
gyrA [83:S-F] and IncY plasmid replicon (repY) genes.

Characterization and comparison of ph681355
ph681355 is ~98 kbp in size. The ph681355 contig was annotated to contain 118 CDSs, of which 8 (7 %) are maintenance genes 
(Fig. 1). A 3.5 kbp ISEcpl-blaCTX-M-15-tnpA gene resistance cassette was confirmed to be present on ph681355. Plasmid typing 
using PlasmidFinder determined the replicon type to be IncY plasmid (repY) (Fig. 1). The repY gene from ph681355 matched 
bacteriophage P1 (GenBank accession no. AF234172), phage-plasmid PMCR-1-P3 (accession no. KX880944) and plasmid 
p60006 (accession no. LT906492) repY genes 100, 88 and 100 % at the nucleotide level, respectively. Notably, repY is absent from 
phage-plasmid SJ46 (NC_031129) from the S. enterica serovar Indiana isolate from China.

Sequence analysis of ph681355 compared to publicly available P1 bacteriophage from E. coli (AF234172), phage-plasmids SJ46 
from S. enterica serovar Indiana (NC_031129) and PMCR-1-P3 from E. coli (KX880944) showed 79.7, 78.0 and 78.5% nucleotide 
similarity, respectively, across the sequenced region (Fig. 1). Hence, ph681355 (like SJ46 and PMCR-1-P3) was characterized as 
a chimeric element termed as phage-plasmid (phage and bacterial genes present). The main region of variation was the absence 
of the 3.5 kbp ISEcpl-blaCTX-M-15-tnpA resistance gene cassette in bacteriophage P1, phage-plasmids SJ46 and PMCR-1-P3 (Fig. 1).

There was only a 4.9 % sequence similarity between ~98 kbp phage-plasmid ph681355 and the ~84 kbp plasmid p60006 (LT906492), 
although the repY plasmid replicon gene and ISEcpl-blaCTX-M-15-tnpA resistance cassette were present in both (Fig. 1). Our analysis 
shows that the ESBL resistance is carried by the same 3.5 kbp ISEcpl-blaCTX-M-15-tnpA resistance gene cassette but that different 
mechanisms are involved in the transmission of ESBL resistance.

Detection and characterization of structural variation on ph681355
When confirming the validity of the ph681355 contig, it was noted that some Nanopore reads were clipped in the alignment at 
the same loci as the mobile genetic element in which the blaCTX-M-15 gene is located (Fig. 2). Artificial (in silico) removal of the 
blaCTX-M-15 mobile genetic element also showed Nanopore reads aligning across this region with the absence of clipping (Fig. 2). 
This suggests that there are two isoforms of the ph681355 within the single Nanopore read set, one set (approximately 40 % of 
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Fig. 1. brig plot of ph681355 as the reference versus PMCR-1-P3 phage-plasmid shown as the blue ring (GenBank accession no. KX880944) – E coli 
plasmid; bacteriophage P1 as the red ring (accession no. AF234172); plasmid p60006 as the green ring (accession no. LT906492) – S. enterica Typhi; 
and finally SJ46 phage-plasmid (accession no. NC_031129) shown as the yellow ring. Also shown are CDSs (genes) on the outer ring, with green 
showing AMR cassette, blue showing plasmid maintenance genes, black showing bacteriophage-associated genes and red showing hypothetical 
proteins.

reads) confirming the presence of the mobile genetic element within ph681355 and a second set (approximately 60 %) aligning 
correctly (with no clipping) suggesting the absence of the mobile genetic element from ph681355.

Discussion
The transmission of ESBL resistance is increasing in Enterobacterales mainly due to the presence of blaCTX-M and blaSHV class genes 
[3, 13–15, 48, 49], and highlighted by the recent XDR S. enterica Typhi outbreak isolates in Pakistan that have subsequently spread 
globally [2, 3, 25, 50]. The blaCTX-M-15 gene responsible for ESBL resistance was present on a ~84 kbp IncY plasmid (p60006). Nair 
et al. [3] showed the rapid evolution of blaCTX-M-15 resistance mechanisms with the loss of the plasmid and the integration of 
blaCTX-M-15 into various regions of the chromosome of XDR S. enterica Typhi isolates.

In this study, a S. enterica Typhi isolate (681355) from a patient returning from Iraq had a blaCTX-M-15 gene present on an extrachro-
mosomal element harbouring a plasmid replication repY gene. Phylogenetic analysis conducted by Godbole et al. [24] showed 
that this Iraqi S. enterica Typhi strain belonged to the global H58 haplotype but did not cluster with the XDR S. enterica Typhi 
outbreak Pakistani isolates [2].

Using Nanopore sequencing data, we identified a ~98 kbp extrachromosomal element (ph681355) that was ~14 kbp larger than 
plasmid p60006 described in the XDR S. enterica Typhi outbreak isolates from Pakistan [2]. ph681355 shared only the repY gene 
and the 3.5 kbp ISEcpl-blaCTX-M-15-tnpA gene cassette with p60006 (Fig. 1).

Multiple modes for the rapid transmission of AMR and virulence genes involving mobile genetic elements have been widely 
described [51, 52]. More recently, studies have used long-read sequence data to demonstrate the involvement of P1- and P7-like 
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Fig. 2. Integrative Genomics Viewer (igv) visualization of the alignment of reads for the region of ph681355 where the bla
CTX-M-15

 is located (top). Also 
showing the same alignment with only reads spanning across the bla

CTX-M-15
 mobile genetic element (middle). Finally, showing the alignment of reads 

with the bla
CTX-M-15

 mobile genetic element removed in silico (bottom). The red line above each part of the figure (top, middle, bottom) indicates the tnpA-
Hypo-bla-Hypo element.
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bacteriophage elements in AMR gene transfer [13–15]. These bacteriophage-like elements (phage-plasmid) have both the 
bacteriophage-like lytic replication (repL) and plasmid replication (rep) genes, which we observed in ph681355 [13–15] (Fig. 1).

However, a phage-plasmid had only been described once in S. enterica serovar Indiana [14] and, hence, to our knowledge 
ph681355 is the first one described in S. enterica Typhi. ph681355 is a chimeric molecule that consists of a bacteriophage 
backbone, a plasmid replicon (rep gene), a drug-resistance region(s)/gene(s) (e.g. a ISEcpl-blaCTX-M-15-tnpA gene cassette) and 
a lysogenized P1 bacteriophage sequence [49] that have resulted from recombination of integrative elements on plasmids and 
prophage (chromosomally integrated, lysogenized bacteriophages) genomes.

Our findings provide supporting increasing evidence of the role played by viral vectors in the vertical and horizontal transfer 
of AMR genes and mobile elements between bacteria [13–15, 49]. Phage-plasmids of sizes between 90 and 120 kbp have been 
described in other Enterobacterales, such as Citrobacter, Enterobacter and Pantoea [17], and it has been suggested that the repY 
replicon in both plasmids and phage-plasmids is associated with strains harbouring ESBL genes [13, 53]. However, the blaCTX-M-27 
gene in the S. enterica serovar Indiana isolate [14] was present on a 104 kbp repA-like phage-plasmid and a blaCTX-M-15 gene was 
present on a 94 kbp IncF1A phage-plasmid in Klebsiella pneumoniae [49]. Phage-plasmids of different compatibility groups can 
be involved in the transmission of additional resistance determinants such as colistin (mcr-1) [15].

Nanopore sequencing provided extra context, revealing two isoforms of the same phage-plasmid structure, with and without a 
blaCTX-M-15 mobile genetic element (Fig. 2). Our observation suggests an ongoing process, whereby AMR genes can be dynamically 
acquired and lost depending on the evolutionary pressures surrounding the phage-plasmid and its host.

We are beginning to detect previously undescribed elements of AMR transmission, such as phage-plasmids, due to our ability 
to assemble complete genomes via long-read sequencing. Understanding the structure of such genomic elements is essential to 
fully elucidate the biological mechanisms of AMR and their clinical relevance. For instance, with long-read sequencing data we 
are now able to detect structural variants within the reads of a single bacterial culture [54]. This is showcased by our observation 
that in a proportion of the culture the blaCTX-M-15 resistance cassette is missing from the phage-plasmid (Fig. 2).

However, technical difficulties arise from genome assembly, which at times requires manual curation to ensure the validity of 
these assemblies for downstream analyses [37, 55, 56]. The same is true for accurate prophage and phage-plasmid detection and 
annotation directly from assemblies. Even from the abundant short-read sequence data (e.g. Illumina) and rapidly increasing 
long-read data, prophages and phage-plasmids sequences can often be missed [56, 57]. This is exacerbated by the number of in 
silico bacteriophage detection tools, which produce differing results from methodologies varying from reference-based detection 
through to machine-learning approaches [56, 58–63].

In conclusion, this study demonstrates the use of modern sequencing and data curation techniques in the successful detection, 
characterization and tracking of novel mobile elements involved in AMR transmission. We show the potential role of phage-
plasmids in the capture and spread of ESBL resistance genes in S. enterica Typhi, in agreement with an increasing body of evidence 
showing the importance of horizontal spread of AMR genes mediated by bacteriophages and phage-plasmids [13]. Our findings 
also demonstrate the utility of long-read sequencing for non-typeable plasmids and phage-plasmids in detection and surveillance 
procedures once adequate sequencing capabilities become available. Future work will include the screening of gastrointestinal 
bacterial pathogens at UKHSA for the presence of repL and other relevant genes to detect the involvement of phage-plasmids in 
the transmission of AMR genes.
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