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Abstract

Accumulating evidence suggests there is an alternative insulin transporter besides the insulin 

receptor at the blood-brain barrier (BBB), responsible for shuttling insulin from the circulation 

into the brain. In this review, we summarize key features of the BBB and what makes it unique 

compared to other capillary beds; summarize what we know about insulin BBB transport; provide 

an extensive list of diseases, physiological states, and serum factors tested in modifying insulin 

BBB transport; and lastly, highlight potential alternative transport systems that may be involved 

in or have already been tested in mediating insulin BBB transport. Identifying the transport 

system for insulin at the BBB would aide in controlling central nervous system (CNS) insulin 

levels in multiple diseases and conditions including Alzheimer’s disease (AD) and obesity, where 

availability of insulin to the CNS is limited.
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Introduction

The ability of insulin to act within the brain has been known since the early 20th century [1, 

2]. However, as blood substrate entry into the brain is regulated by the blood-brain barrier 

(BBB) interface, evidence of insulin crossing the brain barriers was identified decades 

later [3, 4]. It is now well recognized that the majority of insulin acting within the brain 

crosses the BBB via a saturable, receptor-mediated transport system that is affected by 

*Corresponding author: Elizabeth M. Rhea, Mailing address: 1660 S. Columbian Way, Seattle, WA 98108, USA. meredime@uw.edu.
Authors’ contributions: EMR designed the outline of the review. All authors contributed to the writing of the manuscript and 
reviewed the final version.

Conflicts of interest: The authors declare there are no conflicts of interest.

HHS Public Access
Author manuscript
Aging Pathobiol Ther. Author manuscript; available in PMC 2023 January 13.

Published in final edited form as:
Aging Pathobiol Ther. 2022 ; 4(4): 100–108. doi:10.31491/apt.2022.12.100.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



various physiological states [5, 6]. Once present within the brain, it is assumed insulin must 

navigate the brain parenchyma to reach various cell types to act as a ligand by binding 

its receptors, including the insulin receptor, insulin-like growth factor 1 receptor (IGF-1R), 

and hybrids of the two, activating intracellular signaling cascades. Insulin signaling within 

the central nervous system (CNS) is important not only for regulation of metabolism 

but also cognition. CNS insulin signaling can become dysfunctional with age and in 

neurodegenerative diseases such as Alzheimer’s disease [7] and insulin BBB interactions are 

impaired [7–9]. BBB transport of insulin could be a regulator of CNS insulin signaling since 

it is one of the mediators of CNS insulin levels [7]. Additionally, insulin interactions with 

the BBB are impaired in obesity [10, 11]. Without sufficient ligand or receptor signaling, 

insulin functions within the CNS become impaired. Therefore, understanding more about 

the transport system and interactions at the BBB for insulin will aid in combating such 

deficiency in aging, Alzheimer’s disease, and obesity.

Blood-brain barrier (BBB)

Components of the BBB

Conceptually, the BBB can be thought of as those structures which inhibit or otherwise 

regulate the exchange of substances between the CNS and blood. These barriers 

include the vascular BBB, the choroid plexus, the tanycytic barrier located between the 

circumventricular organs and adjacent brain tissue, the meningeal barrier, and the barriers of 

the cranial nerves such as the blood-retinal barrier [12]. Likely, all these barriers participate 

in insulin/CNS interactions, but it is the vascular BBB that has been most studied in this 

regard.

The physical wall that forms the BBB is comprised of brain endothelial cells (BECs) and 

occurs in the arteriolar, capillary, and venule portions of the cerebral vasculature [13]. These 

cells are in constant communication with other cells of CNS, forming the neurovascular 

unit (NVU). The NVU includes microglia, pericytes, astrocytes, neurons, and mast cells, 

but it is the astrocytes and pericytes which have received the most attention in regard to 

their interactions with the BBB. Pericytes are anatomically connected by gap junctions with 

the BEC. Astrocytes form a sheath around the BBB capillaries and are separated from the 

abluminal surface of the BEC by the basement membranes. It is the pericytes and astrocytes 

which induce the BECs to express BBB characteristics, including the formation of tight 

junctions and the loss of fenestrae and micropinocytosis [14]. The cells of the NVU also 

modulate other BBB functions, such as cytokine secretions and transporter functions [14].

The BBB is also in communication with the circulating immune cells and, by way of 

secretions into blood, with the peripheral tissues. This communication can also affect 

various functions of the BBB. For example, lipopolysaccharide, a fragment of the cell wall 

of gram-negative bacteria that is a potent stimulator of the innate immune system, increases 

insulin transport across the BBB by inducing nitric oxide release from immune cells [15, 

16].
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Roles of the BBB

The most widely appreciated role of the BBB and for which it was named is that of limiting 

the unregulated leakage of substances from blood into the CNS. Unlike other capillary beds, 

that of the CNS has greatly reduced transcytosis, few fenestrations, and adjacent BEC cell 

membranes are cemented together by tight junctions [17]. Thus, paracellular (between cells) 

and transcellular (across a cell) leakage is essentially absent in the healthy BBB so that no 

ultrafiltrate is produced by the capillary bed of the CNS. This lack of an ultrafiltrate protects 

brain tissue from blood-borne substances, both endogenous and xeno-biotic, which would be 

toxic to those tissues. The physical barrier is reinforced for some substances by the presence 

of brain-to-blood efflux systems which prevent circulating substances from entering or 

remaining in brain tissue. For example, the anti-helminthic ivermectin is prevented from 

entering the CNS by the brain-to-blood transporter p-glycoprotein (Pgp) [18]. In animals 

that do not express Pgp at their BBB, ivermectin is a potent neurotoxin [19]. The BBB can 

also be an enzymatic barrier, digesting substances such as the monoamines which could 

otherwise enter the brain from the circulation [20]. Insulin degrading enzyme (IDE) protein 

and mRNA is present in BECs, less than [21] and similar to levels present in neurons [22], 

respectively, regulating intracellular insulin levels.

The lack of an ultrafiltrate may protect the CNS from circulating toxins, but the ultrafiltrate 

is the major route by which most tissues receive their nourishment from the blood. Thus, 

the BBB has other mechanisms to provide the CNS with nutrients. The most prominent 

of these are the transport mechanisms. The BBB contains many transporters, and it is 

likely there are still more to be discovered. These transporters deliver to the brain the 

glucose, amino acids, free fatty acids, vitamins, and other nutrients needed by the brain. The 

transporters of the BBB also play a homeostatic role for the CNS by regulating electrolyte 

balance [23], bicarbonate levels [24], and as exemplified by Pgp eliminating from the 

CNS both endogenous and exogenous toxins [25]. The BBB also participates in brain-body 

communication by regulating the transport of various informational molecules, including 

insulin.

Types of transport systems at the BBB

Transport systems located in cell membranes can be categorized in various ways. 

Pharmacokinetically, transporters demonstrate saturation and biochemically, are typically 

transmembrane glycoproteins. Some BBB transporters, such as the glucose transporter 1 

(GLUT-1) which transports glucose across the BBB, use facilitated diffusion [26, 27]. 

Facilitated diffusion systems are energy independent and transport substances bidirectionally 

from the side of higher concentration to the side of lower concentration. Active transporters 

require energy or an electrochemical gradient to function, can be unidirectional, and can 

transport substances against a concentration gradient. Facilitated diffusion systems can be 

channels or carriers (GLUT-1 is a carrier), but active transporters are carriers. Carriers 

typically open and close so that they can be open to one environment and closed to the other, 

whereas channels when active, are open simultaneously to the extracellular and intracellular 

environments. Carriers also tend to have highly selective binding sites so that they transport 

a specific ligand or class of ligands and follow Michaelis-Menten kinetics (GLUT-1 is 

specific for hexoses). Some channels can undergo conformational changes and so become 
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inactive (closed to both environments), whereas pores are channels that are always open and 

active. Channels and carriers typically transport substances into or out of the cytoplasm, 

therefore, transcellular transport as occurs at the BBB would depend on a set of transporters 

located at both the luminal and abluminal cell membranes. These strict definitions from 

cellular biology [28, 29] are not always appropriately applied in the BBB literature. For 

example, the term “active” is often used to refer to any saturable transport system, whereas it 

should be reserved to refer only to energy-requiring carriers.

Receptor-mediated refers to a binding site for the ligand on the transporter and is a 

hallmark of carriers. Carrier-mediated and receptor-mediated transport are not generally 

distinguishable terms. Receptor-mediated endocytosis refers to the internalization into the 

cell cytoplasm of the carrier protein with its ligand within a vesicle formed by the cell 

membrane. Those endosomes can be routed to various cellular structures, including back to 

the cell membrane. The term receptor-mediated endocytosis is often, but not always, used 

specifically to refer to endocytosis involving clathrin [30]. Clathrin-independent endocytic 

mechanisms include potocytosis (internalization of caveolae), adsorptive transcytosis, 

pinocytosis and phagocytosis.

Transcytosis occurs when the endosome moves from one membrane of a polarized cell to the 

other (e.g., from apical to basal or luminal to abluminal). Transcytosis, therefore, requires 

that a cell have distinctive regions to its membrane as in the case of barrier cells. The BBB 

field tends to label any transport of a large molecule as receptor-mediated transcytosis, even 

when there is no evidence of involvement of vesicles or clathrin. The assumption is that 

vesicles are required to move larger substances, but enzymes and cytokines can be exported 

via carriers, as exemplified by interleukin 2 (IL-2) and Pgp [31]. Transport of insulin across 

the BBB is assumed to be clathrin-dependent but has not been directly tested in vivo. Insulin 

endocytosis is clathrin dependent for most cells [32], including peripheral endothelial cells 

[33] but caveolin-1 has also been shown to be involved in insulin uptake [34]. Insulin 

transcytosis across the retinal vascular endothelial cells is clathrin-dependent [35]. We 

recently showed insulin binding to isolated brain microvessels is clathrin-dependent [36]. 

We further went on to show transport across the BBB may be regionally mediated, involving 

caveolin-1 in the hypothalamus. This shows insulin transport across the various vascular 

beds can involve different processes.

Insulin BBB Transport

As established above, it is now well acknowledged that insulin can directly cross the BBB. 

This occurs in a saturable, specific, receptor-mediated process [37]. Saturability has been 

demonstrated by the nonlinear relation between CSF and blood levels of insulin [38–41], 

brain tissue and blood levels of insulin [41, 42], and by the inhibition of the rate of 

radioactive insulin transport across the BBB by unlabeled insulin [37, 43]. The transporter 

for insulin seems to be specific for it as no other ligands have to date been found, although 

substances have been found that modulate transporter activity (Table 1). The saturable, 

specific nature of the transport system which follows Michaelis-Menton kinetics suggests 

that it is receptor-mediated. The transport system is similar across species as human and 

rat insulin both cross the murine BBB [44], unlabeled human insulin is able to inhibit the 
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blood to brain passage of radioactive rat insulin [37], and insulin BBB transport has been 

observed in dogs [38, 40, 41] and humans [45]. There is great variability in the insulin 

transport system throughout the brain as some regions have extremely fast transport [46]. 

Lastly, inactive insulin, either via freeze/thaw or heat-denatured methods, is unable to cross 

the BBB [10, 47]. Therefore, structural changes of insulin, such as deamidation, are likely 

necessary for recognition by the insulin transporter.

Over the years, insulin BBB transport has been investigated using various techniques. 

However, due to the small amounts of insulin transported across the BBB, there can be 

technical difficulties in some of the techniques. The ability to measure low amounts of 

immunoactive insulin present in brain compared to blood, and the need to inject high insulin 

concentrations of immunofluorescent tracer are some examples. Therefore, radioactivity is a 

great alternative to measuring pharmacokinetics of insulin transport. By investigating insulin 

BBB transport, independent researchers have identified this transport system is impacted by 

metabolic changes, during development and pregnancy, and even by exercise, Alzheimer’s 

disease, and inflammation. There have also been factors and/or states that have had no effect 

on insulin transport. Most surprisingly, the loss or inhibition of the BEC insulin receptor had 

no effect on insulin transport [43, 48–50]. We have summarized this literature in Table 1 and 

refer readers to the specific references mentioned for each factor/disease state/intervention 

investigated.

The insulin receptor was long thought to serve as the protein responsible for insulin transport 

across the BBB, shuttling insulin from the circulation, across the BEC, and releasing it into 

the brain parenchyma. S961 is a potent, selective antagonist for the insulin receptor, but 

not IGF-1R or hybrid receptors [70], and has regularly been used to investigate the role of 

the insulin receptor in various processes, including transport. However, we recently showed 

that loss or inhibition of the insulin receptor in BECs in mice did not affect the transport 

rate of insulin across the BBB [43]. Since then, others have supported this finding, showing 

inhibition of the BEC insulin receptor did not impact insulin transport in an in vitro model 

[50] and in mice [48]. In an exciting new paper describing a novel, in vivo insulin PET 

tracer, co-administration of S961 also had no effect on brain insulin uptake in mice [49]. 

These data suggest there is another protein(s) responsible for transporting insulin across the 

BEC. However, to date, identification of this protein is unknown.

Alternatives for the insulin transporter

The involvement of another protein besides the insulin receptor for transporting insulin 

across the BBB makes evolutionary and physiological sense. Receptors and transporters 

are not static but modulated and regulated by a variety of factors. Separate receptor 

and transporter proteins would permit independent regulation of the effects of insulin on 

BEC functions and on brain activities. As the receptor is involved in many intracellular 

signaling cascades and acts as a tyrosine kinase, it further supports the primary role to 

be a signaling protein rather than a transporter. Recent proteomic studies of immortalized 

BECs support how critical the insulin receptor is in BECs, necessary for a multitude of 

functions, including regulation of a variety of BBB transporters, the transferrin receptor, 

and the tight junction protein claudin-5 [71]. A separate transporter would allow for insulin 
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transport across the BEC, while also allowing critical intracellular signaling events via the 

receptor. Endothelial cell intracellular insulin signaling is a critical metabolic event. There 

is evidence in other receptor/transport systems supporting different proteins to accomplish 

these two independent events, as described next. We also discuss other alternatives for the 

insulin transporter that have been hypothesized.

Evidence for alternative transporters to canonical receptors at the BBB

Insulin binding to the luminal surface of BECs has two fates. It may activate the intracellular 

machinery that affects cellular functions (here termed the signaling receptor) or it may be 

transported across the BBB (here termed the transporter binding site). Binding to either 

the signaling receptor or the transporter binding site results in insulin endocytosis and 

exocytosis. In the case of signaling receptor binding, the exocytosis is at the luminal 

membrane of the BEC and in the case of transporter binding site, the exocytosis is to the 

abluminal membrane of the BEC. The question arises as to whether the protein forming the 

signaling receptor is the same protein as the transporter binding site. As we have previously 

reviewed [72], it seems that the usual situation is that the signaling receptor protein and 

the BBB transporter binding site are usually different proteins, as exemplified by prolactin 

[73], epidermal growth factor, Tyr-MIF-1, the enkephalins, pituitary adenylate cyclase 

activating polypeptide, and thyroid hormones. Our data argues that a similar dichotomy 

exists for insulin. We found that the insulin antagonist S961 binds avidly to the BEC, but 

is not transported across the BBB [43]. This means that the transporter binding site differs 

sufficiently from the signaling receptor as to not recognize S961 as a ligand. We also found 

that S961 largely blocked the ability of radioactive insulin to bind to BECs, but not its ability 

to cross the BBB. Finally, mice with loss of the signaling receptor in BECs demonstrated 

poor binding to BECs, but unimpaired transport activity. These studies are consistent with 

the insulin signaling receptor and the transporter binding site being different proteins.

Insulin-like growth factor-1 receptor (IGF-1R)

Could IGF-1R be insulin’s transporter binding site? Insulin and IGF-1 each bind to the 

other’s receptors, although much less avidly. IGF-1R is expressed at the BBB and choroid 

plexus [74]. IGF-1 crosses the BBB and inhibits the transport of radioactive insulin transport 

across the BBB, just as insulin inhibits the transport of radioactive IGF-1 [62, 75]. Both 

insulin and IGF-1 transport are reduced in obese animals and affected by triglycerides 

[10, 76]. However, cross inhibition studies suggest that there is a separate insulin-favoring 

transporter and an IGF-1-favoring transporter [62, 77]. Regulation of the two transporters 

also differ, as triglycerides increase insulin transport across the BBB but inhibit transport of 

IGF-1 [10, 76]. Furthermore, evidence suggests that IGF-1R does not transport IGF-1 across 

the BBB [78], but that low-density lipoprotein receptor-related protein (LRP)-1 is involved 

at the vascular BBB and LRP-2 at the choroid plexus [76, 79]. Therefore, IGF-1R is not a 

candidate for being the BBB insulin transport protein.

Low-density lipoprotein receptor-related proteins (LRP)

The LRP family of proteins are structurally similar but participate in a wide range of 

physiological processes including lipid metabolism, neurodevelopment, and transport of 

nutrients [80]. Megalin, also known as LRP-2, is the largest sized protein in the family 

Banks et al. Page 6

Aging Pathobiol Ther. Author manuscript; available in PMC 2023 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and can bind a wide variety of ligands. While it can play a role in reabsorption of various 

molecules in the proximal renal tubule, including insulin [81], it can also act as a cell 

signaling transducer within the CNS [80, 82]. LRP-8, also referred to as apolipoprotein 

E receptor 2 (apoER2), has been recognized as a signal transducer critical in brain 

development [83]. Both of these have been suggested to play a role in insulin transport 

in peripheral systems.

LRP-2/Megalin can regulate insulin transport in kidney proximal tubule cells [81] and can 

take up other hormones as well, including leptin [84] and IGF-1 [85]. Receptor-associated 

protein (RAP) is a 39 kDa protein that is a natural inhibitor of ligand binding to LRP-2. 

We used this non-specific inhibitor of LRP-2, RAP, and reported insulin BBB transport was 

unchanged [43]. However, Orlando et al has also reported that RAP does not affect insulin 

binding to proximal tubule cells, compared to excess, unlabeled insulin [81]. Therefore, a 

more specific inhibitor of LRP-2 would aid in fully identifying a role for LRP-2 in insulin 

BBB transport. Further evidence suggests leptin is also not transported across the BBB via 

LRP-2 [86], despite its role in transport at the choroid plexus [87]. IGF-1 is also transported 

across the choroid plexus by LRP-2 [85].

LRP-8/ApoER2 is not only a receptor for apoE but also acts as the primary receptor 

for the critical brain development protein Reelin [83]. ApoER2 is involved in long-term 

potentiation, learning, and memory. In the last few years, due to the AD risk gene allele, 

ApoE4, the role for ApoER2 in AD has begun to be explored. Post-translational proteolytic 

cleavage of ApoER2 [88] and pre-translational splicing [89] is dysfunctional in AD. 

Additionally, the risk allele ApoE4 impairs the trafficking of the insulin receptor, resulting 

in decreased insulin signaling [90]. How ApoER2 may fit into this pathway remains to be 

determined.

Amino Acid Transporter Involvement

Amino acids are transported across the BBB involving both facilitative systems and active 

transporters. Some of these transporters are selective for a single substrate or group 

of substrates while others are non-selective [91]. Recently, it was identified in a high-

throughput screen that the amino acid transporter, SLC7A1, also known as CAT-1, could 

regulate leptin transport across an iPSC- derived BEC model [92]. This raises as a possibility 

that the same, or another amino acid transporter, could regulate insulin transport across the 

BBB. Transport of amino acids could modify transporter expression, activity, and cellular 

distribution. Additionally, it is possible that the amino acid itself could aid as a co-factor for 

the insulin transporter. While insulin is known to impact amino acid transport, either directly 

or indirectly [5], the converse is less well established. The amino acid-derived hormone 

norepinephrine did not affect insulin BBB transport contrary to a 2–3 fold increase of leptin 

BBB transport [64]. In an in vitro co-culture model of astrocytes and brain endothelial cells, 

L-glutamate enhances insulin transcytosis [47]. L-arginine, in the presence of LPS, also 

enhances insulin BBB transport [15]. L-arginine is a nitric oxide precursor and nitric oxide 

has been shown to regulate insulin BBB transport, as discussed next.
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Involvement of Nitric Oxide Synthase (NOS)

Nitric oxide is a common secondary messenger that helps orchestrate multiple signaling 

pathways. Synthesis of nitric oxide from L-arginine is primarily converted by NOS, present 

in multiple different cell types. One of the more common roles is to act as a vasodilator, 

relaxing the smooth muscle cells around the blood vessels. In the brain, there are three 

main NOS enzymes: endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS 

(iNOS). NOS and nitric oxide have an important role at the BBB, regulating its structure and 

function. Under inflammatory-stimulated conditions in vivo, NOS inhibitors enhance insulin 

BBB transport, specifically nitric oxide coming from nNOS [15]. In an in vitro co-culture 

model, astrocytic inhibition of NOS decreases insulin transcytosis [47]. This suggests the 

source of the nitric oxide stimulation can regulate insulin transport. The transport system 

is also suspected to involve calcium signaling as pre-treating astrocytes with a calcium 

donor enhanced insulin transport across a BEC model [47]. As these second messengers 

are complex, further investigation on the interaction and the NVU cell types involved in 

regulating insulin BBB transport are warranted.

Conclusions

We have presented evidence that the insulin transport system at the BBB involves a protein 

other than the insulin receptor. Identification of this transport system will be critical in 

treating diseases with deficient CNS insulin signaling, such as Alzheimer’s disease or 

dysregulated metabolism, as insulin availability could be a contributing factor to such a 

deficiency. While there are ways to deliver exogenous insulin to the CNS, such as via 

intranasal insulin [93], that have proven to be beneficial, preventing and/or restoring the 

endogenous insulin BBB transport system would likely be more effective and potentially 

even prevent a deficiency in the first place. Insulin clearly has multiple impacts not only 

within the CNS but also in regulating BBB function, that any slight modification of this 

signaling has downstream detrimental effects. Whether this transport system is unique 

to the BBB or is similar to other peripheral endothelial beds remains to be determined. 

Leveraging multiple genetic data sets could hopefully shed light on potential targets for the 

transport system, but proteomic data will also be necessary. In a recent proteomics study, 

protein levels of the insulin receptor were detected at similar levels between rat microvessels 

isolated from various regions including white matter, cortical grey matter, and spinal cord 

[94]. While protein expression level does not necessarily translate to activity of a transporter, 

equivalent expression of the insulin receptor across brain regions does not support the 

high variability of insulin transport rate across brain regions. Additionally, if the transport 

system involves co-factors, the identification of the transporter could prove to be even more 

difficult. It is likely the abundance of the transporter(s) within BECs is low, given the 

limited entry of insulin into the CNS, which will further add to the difficulty. Despite these 

difficulties, recent technological advances in microvessel isolation, omics-based discovery 

approaches, and cell culture screening tools will help elucidate the transport system for 

insulin.
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Table 1.

Impact of disease, physiological states, and serum factors on insulin BBB transport.

Study Disease/Intervention Model Model Summary Reference

Metabolic factors

1 Diabetes- induced streptozotocin (ip) Mouse ↑ [51]

2 Diabetes- induced alloxin (iv) Mouse ↑ [51]

3 Hyperglycemia (non-diabetic) D-glucose (ip) Mouse ↔ [51]

4 Obesity high-fat diet Dog ↓ [11]

5 Obesity retired breeders Mouse ↓ [10]

6 Starvation in obesity fasting (48 hr) Mouse ↑ [10]

7 Triglycerides cardiac perfusion Mouse ↑ [10]

Developmental factors

8 Newborn/Infancy newborn, 3 wks Rabbit ↑ [52]

9 Pregnancy late pregnancy, BCSFB Mouse ↓ [53]

10 Pregnancy late pregnancy Rat ↑ [54]

11 Age C57B/6J (12, 24 mo) Mouse ↓ [55]

12 Aging SAMP8 (12 mo) Mouse ↔ [8]

13 Alzheimer’s APP/PS1 (6 mo) Mouse ↑ [56]

14 Alzheimer’s APP/PSN1 (6 mo) Mouse ↑ [49]

15 Alzheimer’s moderate/severe AD, BCSFB Human ↓ [57]

Physiological states

16 Iron Deficiency nutritional iron-deficiency Rat ↑ [58]

17 Exercise voluntary running wheel (24 hrs) Mouse ↑ [59]

Insulin receptor loss

18 Insulin receptor inhibition S961 Mouse, BECs ↓ [47]

19 Insulin receptor loss/inhibition EndoIRKO; S961 Mouse ↔ [43]

20 Insulin receptor inhibition S961 BECs ↔ [50]

21 Insulin receptor inhibition S961 Mouse ↔ [49]

Genetics

22 Young ApoE mice apoE3/apoE4, male/female Mouse ↔ [60]

23 Aged ApoE mice apoE3/apoE4, male/female, HFD Mouse ↓ [61]

Factors/Drugs/Other

24 IGFs IGF-1, IGF-II (perfusion) Mouse ↓ [62]

25 Leptin iv, co-injection Mouse ↔ [37]

26 Aluminum ip Rat ↑ [63]

27 Aluminum ip Mouse ↑ [37]

28 Pgp inhibitor Verapamil iv, co-injection Mouse ↔ [37]

29 Amino Acid Tyrosine, iv, co-injection Mouse ↔ [37]

30 Norepinephrine iv, co-injeciton Mouse ↔ [64]

31 Rapamycin rapamycin (ip, 2 wks) Mouse ↔ [65]

32 Rosiglitazone iv, pre-treatment Mouse ↔ [66]

33 CCK (Cholecystokinin) ip, fasted (16 h) Rat ↑ [67]
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Study Disease/Intervention Model Model Summary Reference

34 Acute estrogen OVX female, male, ip (48 hr) Rat ↔ [68]

35 Chronic estrogen Male, ip (5 wks) Rat ↔ [68]

36 Inflammation LPS, ip (16, 24 h) Mouse ↑ [16]

37 nNOS 3x ip LPS, inhibitor (4 h post) Mouse ↓ [15]

38 iNOS, eNOS 3x ip LPS, inhibitor (4 h post) Mouse ↑ [15]

39 Dexamethasone oral (7 d) Dog ↓ [69]

apoE: apolipoprotein E, BCSFB: blood-cerebrospinal fluid barrier, CCK: Cholecystokinin, EndoIRKO: endothelial insulin receptor knock-out, 
eNOS: endothelial nitric oxide synthase, HFD: high-fat diet, IGF: insulin-growth factor, iNOS: inducible nitric oxide synthase, ip: intraperitoneal, 
iv: intravenous, LPS: lipopolysaccharide, nNOS: neuronal nitric oxide synthase, OVX: ovariectomized, Pgp: p-glycoprotein.
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