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Abstract

Random effects (RE) models have been widely used to study the contextual effects of structures

such as neighborhood or school. The RE approach has recently been applied to age-period-

cohort (APC) models that are unidentified because the predictors are exactly linearly dependent.

However, it has not been fully understood how the RE specification identifies these otherwise

unidentified APC models. We address this challenge by first making explicit that RE-APC models

have greater—not less—rank deficiency than the traditional fixed-effects model, followed by two

empirical examples. We then provide intuition and a mathematical proof to explain that for APC

models with one RE, treating one effect as an RE is equivalent to constraining the estimates of

that effect’s linear component and the random intercept to be zero. For APC models with two

RE’s, the effective constraints implied by the model depend on the true (i.e., in the data-generating

mechanism) non-linear components of the effects that are modeled as RE’s, so that the estimated

linear components of the RE’s are determined by the true non-linear components of those effects.

In conclusion, RE-APC models impose arbitrary though highly obscure constraints and thus do

not differ qualitatively from other constrained APC estimators.
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1. Introduction

In a statistical model, the effects of a predictor can be modeled as either random or fixed,

depending on the researcher’s goal, the study design, and the data structure. A random effect

(RE) model1 is useful when it captures otherwise unexplained variation associated with

context and environment and thus permits estimates of both group-level and individual-level

characteristics to be more accurate and efficient (Gelman and Hill 2007; Raudenbush and

Bryk 2002).

Please direct correspondence to Liying Luo, 202 Oswald Tower, University Park, PA 16802 or liyingluo@psu.edu.
1Certain random effect models are also called mixed effects models, multilevel models, or hierarchical models.

HHS Public Access
Author manuscript
Sociol Methodol. Author manuscript; available in PMC 2023 January 13.

Published in final edited form as:
Sociol Methodol. 2020 August ; 50(1): 276–317. doi:10.1177/0081175020903348.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The RE approach has recently been applied to age-period-cohort (APC) models (see, e.g.,

Yang and Land 2006, 2008), in which researchers attempt to estimate the association

between the outcome and a person’s age (A), the time period (P), and the person’s birth

cohort (C), respectively. It is well-known that because the three predictors A, P, and C are

exactly linearly dependent, APC models are not identified, meaning that no unique set of

estimates fits the data best (Fienberg and Mason 1979; Mason and Fienberg 1985; Rodgers

1982). The consensus among methodologists is that one should rely on theory to choose one

solution from the infinitely many solutions to the estimating equation (Fienberg 2013; Luo

2013b, 2013a; Luo et al. 2016; O’Brien 2013, 2017).

Contrary to this conventional wisdom, some have noted that modeling one or more of the

predictors as an RE identifies the otherwise unidentified APC model without appearing to

require the researcher to impose a constraint. For example, a series of articles has stated that

when modeling the P and C effects as random effects, APC models become identifiable,

that is, a researcher obtains uniquely-defined estimates for A, P, and C effects that reveal

the underlying aging, social change, and cohort process. This method has subsequently

been applied to a variety of topics including mortality (Masters, Hummer, and Powers

2012), happiness (Yang 2008), social trust (Gauchat 2012; Robinson and Jackson 2001;

Schwadel 2010), gender attitudes (Shu and Zhu 2012), voting (Smets and Neundorf 2014),

and environmental spending (Pampel and Hunter 2012).

Methodologists have begun to raise questions about the RE approach to the APC problem.

For example, Bell and Jones (2018) showed that the data structure (e.g., the number of A,

P, and C categories included in the data) affects the estimates from the RE-APC models

markedly. For another example, O’Brien (2017) conjectured that assuming the effect of A,

P, or C to be random produces a result similar to constraining that effect’s linear trend to be

near zero.

However, besides the above observations, more methodological studies are needed about

how exactly the RE specification identifies APC models. The present paper contributes to

this literature in three important ways. First, we clarify that APC models with one RE

(hereafter 1-RE-APC models) in fact impose multiple constraints, not just one constraint as

in traditional FE-APC models, but one on the linear component and another on the intercept

(or level) estimate of the effect that is considered random in the model.

Second, following an empirical demonstration and some intuition, we provide a

mathematical proof that the 1-RE-APC model constrains the estimated linear component

of the random effect to be zero. This sharpens the observation made by O’Brien (2017)

and noted above. Although previous research has noted the problems in 1-RE-APC models,

there has been no formal exposition about why they necessarily impose such constraints.

We address this gap in the literature by providing a much-needed elaboration. We also

provide exemplary R code in Appendix A so that interested readers can see the results for

themselves.

Third, we clarify misunderstandings about the constraints in APC models with two RE’s

(hereafter 2-RE-APC models). 2-RE-APC models may appear to impose constraints on the
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two RE’s similar to the constraint that 1-RE-APC models imposes on one effect, but we

show that in fact a 2-RE-APC model imposes a different type of constraint that depends

on the size of the non-linear components of the true effects that have been modeled as

random. This constraint is in addition to Bell and Jones’s (2018) observation about the

model’s dependence on the number of levels that each effect has. Although such constraints

do not have a simple closed-form expression, we document the dependence of a 2-RE-APC

model’s constraints on the true non-linear components of the effects modeled as random and

explain how this dependence works.

The paper is organized as follows. We begin by comparing a traditional FE-APC model

and an RE-APC model to show the additional rank deficiency in the latter. Next, we

provide empirical examples in which the RE-APC model results are highly sensitive to the

choice of effects that are modeled as random. We then provide an intuitive explanation and

a mathematical proof of how and why 1-RE-APC models constrain the random effect’s

estimated linear and intercept components to be zero. For 2-RE-APC models, we document

and explain how the estimated A, P, and C effects depend on the size of the non-linear

components of the effects modeled as random. We conclude that the RE-APC specification

does in fact impose constraints, albeit obscure ones, and thus is qualitatively no different

from other constrained estimators.

2. FE- and RE-APC Models: Rank Deficiency and Estimation Procedure

To provide context and define notation for a later explanation about how an RE-APC model

adds constraints implicitly, we begin with the traditional FE-only APC model, show how the

design matrix changes when some effects are modeled as random, and then introduce the

machinery that produces estimates for an RE model.

2.1 The Traditional FE-APC Model

In traditional APC analyses, the A, P, and C effects are all modeled as FE’s. The standard

matrix form of an FE-APC model is:

y = Xβ + ε, (1)

where y is a vector of outcomes; X is the design matrix for the FE’s; β is the vector of FE

coefficients; and ε denotes normally distributed random errors with mean 0 and variance

σe2. To illustrate what X looks like, suppose that one models a dataset with three categorical

predictors A, P, and C and suppose that A and P have three groups each so that C has five

groups, denoted as a = 3, p = 3, and c = 5, respectively. For each A-P combination, there is

one observation, so the total number of observations in the dataset is nine. Table 1 gives the

design matrix X for an FE-only APC model. If more A, P, and C categories or more than

one observation in each A-P combination are included, Table 1 can be expanded, with a new

category or new observations implying additional columns or rows respectively in the matrix

X. The predictors can be treated as if they are continuous predictors, which does not affect

the discussion subsequently.
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With the last group omitted for A, P, and C each, the FE design matrix X consists of nine

columns. However, X has only eight linearly independent columns, so it is one less than full

rank. As a result, X’X is not invertible and the FE-APC model is unidentified, that is, no

uniquely-defined solution exists because an infinite number of solutions give identical fits to

the data.

The identification problem can be more accurately characterized by breaking the effects of

A, P, and C into linear and non-linear (curvature or deviations from linearity) components.

It has been known at least since Holford (1983) that the linear components of the A, P,

and C effects are exactly dependent and thus cannot be estimated without constraints while

non-linear A, P, and C effects are identified and thus can be estimated without constraints.

Specifically, the linear dependency among A, P, and C implies that there is a non-zero vector

b0 such that the product of the design matrix and b0 equals zero:

Xb0 = 0. (2)

In other words, b0 represents the null space of the design matrix X, which has dimension

equal to one. Kupper and colleagues (1985) provided a closed-form representation for b0,

making it clear why the linear components of A, P, and C effects are unidentified.

2.2 The RE Approach

We now begin to address the problems with RE-APC models by showing how the design

matrix changes when one or two of the effects are modeled as random. To understand the

implication of an RE specification for APC models, we begin by describing the RE model in

general. The standard matrix form of a simple RE model is

y = W β + Zu + ε, (3)

where y is a vector of outcomes; W and Z are the design matrices for the FE’s and RE’s,

respectively; β is the vector of FE regression coefficients; u = u1, u2, …uj, …, uJ  denotes

the vector of RE’s with each uj modeled as normally distributed around a zero mean, i.e.,

u ∼ i . i . d ⋅ N 0, σu2 ; and ε denotes normally distributed random errors with mean 0 and

variance σe2.

To specify an RE-APC model, the researcher needs to decide (1) how many effects (one or

two) and (2) which effects will be modeled as RE’s. Then the corresponding FE and RE

design matrices, W and Z respectively, can be specified. In the discussion below, without

loss of generality we focus on two RE-APC models: a 1-RE-APC model that treats the C

effect as the sole RE and a 2-RE-APC model that treats P and C effects as RE’s.

Consider the same example as in Section 2.1, with three A groups, three P intervals, and five

C’s. Table 2 gives the design matrix for a 1-RE-APC model that treats the A and P effects

as FE’s and the C effect as the sole RE. The combined design matrix (W ∣ Z), where the

symbol “|” indicates concatenation of the matrices W and Z to create a single matrix, has 10

columns, while the FE design matrix X in Table 1 has nine columns. That is, (W ∣ Z) has one
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more column than X in the columns for the C effects. Like the FE design matrix X, because

of the linear dependence, there are only eight independent columns in (W ∣ Z). That is, the

design matrix (W ∣ Z) for 1-RE-APC models is two less than full rank, in contrast to the FE

design matrix X, which has rank one less than full.

Table 3 gives the design matrix for a 2-RE-APC model that treats the A effect as an FE and

the P and C effects as RE’s. The combined design matrix (W ∣ Z) in Table 3 now has 11

columns, one more than for the 1-RE-APC model above and two more than for the FE-APC

model. This combined design matrix (W ∣ Z) is three less than full rank because there are

still only eight independent columns.

Why do RE-APC models suffer from greater rank deficiency than the FE-APC model? The

redundancy added by making an effect an RE can be understood as follows: for each RE,

add together its design-matrix columns; the result is identical to the design column for the

FE intercept. For example, adding together Table 2‘s columns corresponding to the C effects

γ1 through γ5 gives a vector of 1’s, which is identical to the column corresponding to the

FE intercept, Table 2‘s first column. Similarly, in Table 3 the result from adding together

the columns corresponding to β1 through β5 or corresponding to γ1 through γ5 is also

identical to the FE intercept column. That is, modeling an effect as random adds a redundant

intercept for that effect without affecting the fact that the linear components of the effects

are not identified. This implies that modeling an effect as random creates an even greater

need for constraints than in the FE-only APC model, which requires just one constraint (e.g.,

constraining two age groups to be equal) in addition to the usual constraints that define

the FE parameterization (i.e., the sum-to-zero constraint or declaring one group to be the

reference group).

2.3 Estimating FE- and RE-APC Models

Although as we illustrated above neither the FE- and RE-APC models have a full-rank

design matrix, their rank deficiencies are handled differently in conventional statistical

software such as R, SAS, and STATA. For an FE-APC model fitted as if it were a classical

regression model, the software either gives an error message and does not provide results or

it arbitrarily drops one design matrix column and estimates the resulting model. This occurs

because when the model is estimated by minimizing the residual sum of squares:

(y − Xβ)′(y − Xβ) (4)

the minimizing β is given by

X′X −1X′y, (5)

and the matrix X’X does not have an inverse due to the linear dependence.

By contrast, when at least one effect is modeled as random, in the conventional (i.e.,

non-Bayesian) analysis of this model for outcomes treated as normally distributed, statistical

software provides estimates and inference results for all three of A, P, and C without

complaints. To understand this difference from a FE-APC fit, one needs to know how RE
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models are estimated. Estimating an RE model in such software has two steps, which we

briefly describe below; Sections 4 and 5 will discuss in more detail how the RE machinery

uses the data, as it pertains to RE-APC models.

Step 1: The unknown variances (the error variance and all RE variances) are estimated by

maximizing the restricted likelihood (RL, also known as the residual likelihood).

Step 2: The estimates of the unknown variances are now taken as if known to be true and β
and u are estimated by maximizing the penalized likelihood, which for normally distributed

outcomes is identical to choosing β and u to minimize the following equation:

(y − W β − Zu)′(y − W β − Zu) + σe
2u′G−1u, (6)

where σe
2 is the estimated error variance and G the estimated RE covariance matrix. Solving

Equation (6) has the effect of replacing the matrix X′X in Equation (5) with:

W ′W W ′Z

Z′W Z′Z + σe
2G−1 (7)

and replacing X′y with [W ∣ Z]′y.

For the RE models considered in this paper, the bottom right block in Matrix (7),

Z′Z + σe
2G−1

, is invertible so that the estimate of (β, u) is uniquely determined, when taking

as known the estimates of the error variance σe2 and any unknowns in G. The second term

in (6), σe
2u′G−1u, is sometimes called a penalty, as in “penalized likelihood” or “penalized

regression”. For identified models, this term has the effect of increasing the residual sum of

squares (y − W β − Zu)′(y − W β − Zu) when u is not zero and thus constraining the estimates

of the RE’s, including linear and non-linear effects, by shrinking them toward zero (i.e., the

center of u’s distribution). As the statistical literature on RE models has noted, although

introducing the penalty σe
2u′G−1u creates a bias in the estimate of (β, u), that may be

desirable on balance because it can reduce the variance of the estimated u by enough to

reduce the mean squared error of the estimate of (β, u) (which is the sum bias2 + variance;

see, e.g., Gelman and Hill 2007).

The above description of the two-step estimation procedure offers important clues about why

statistical packages can provide estimates and inference results for the A, P, and C effects

without complaint in an RE specification. Some scholars mistakenly take it to mean that

the RE approach “overcomes” or “alleviates” the identification problem (see, e.g., Gauchat

2012; Jaacks et al. 2013; Schwadel 2010) without requiring researchers to make subjective

assumptions. However, as we will demonstrate and explain in the rest of the paper, this

optimistic view is unwarranted. Obtaining a set of estimates does not automatically mean

that the identification problem has been solved without additional assumptions or that the

resulting estimates are meaningful, useful, or reliable. In the next section, we demonstrate

the identification problem in RE-APC models and the implications of the RE specification

Luo and Hodges Page 6

Sociol Methodol. Author manuscript; available in PMC 2023 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for effects estimates using two empirical examples. We offer formal proofs and explanations

in Sections 4 and 5.

3. Empirical Examples: Implications of the RE Assumption for APC

Models

Although later sections give mathematical proofs and computational results about the

constraints in RE-APC models, such evidence may be highly technical and abstract even

for Sociological Methodology readers. Therefore, we begin with two empirical examples,

analyzing individual-level data from the General Social Survey (GSS) data to make a less

technical argument. We provide theoretical exposition in Sections 4 and 5.

Since the early 1970s, the GSS has collected data on a variety of topics including attitudes,

behaviors, and attributes; scholars have frequently used GSS data to document and explain

changes in American society. We chose two GSS measures, self-reported happiness level

and conservative-liberal views, for which temporal trends have been a frequent subject of

social science research and APC analysis (see, e.g., Davis 2004, 2013; Glass 1992; Hagerty

and Veenhoven 2003; Hout and Fischer 2014; Rodgers 1982; Smith 1990; Yang 2008).

Specifically, for every year or every other year since 1974, the GSS has asked participants

to report their happiness on a three-level scale: happy, pretty happy, and not too happy. For

simplicity and ease of interpretation, we grouped the categories “happy” and “pretty happy”,

which results in a binary outcome “happy” versus “not too happy”. To measure political

ideology, the GSS asked participants to describe their political views on a seven-point scale

with one being extremely liberal and seven extremely conservative.

For both examples, we selected GSS participants interviewed between 1974 and 2014

and aged between 18 to 74 to minimize the number of age–period combinations with

too few observations for the elders. The predictors in all of the analyses that follow are

the participant’s age, year of survey, and cohort membership. Because our goal is not to

provide a full understanding of the social determinants of happiness or conservative-liberal

views but merely to illustrate some methodological points about the RE assumption in

unidentified models, we do not include typical covariates such as gender, education, and

ethnicity. We omitted individuals with missing information on the outcome or predictors,

giving sample sizes of 54,674 and 46,591 for the happiness and conservative-liberal views

analyses, respectively. We analyzed these samples from the 1974–2014 GSS data using six

RE-APC models, each having one or two of the A, P, or C effects modeled as random. We

used five-year interval width for all A, P, and C groups to avoid additional complications of

multiple block constraints arising from unequal interval widths for these groups (Luo and

Hodges 2016). Tables 1A and 2A present the estimation results for the six RE-APC models.

Figures 1 and 2 illustrate the immediate implications of an RE specification for effect

estimates for the happiness and political views examples, respectively. For both examples,

not only do the A, P, and C effects estimates differ between these models, their overall

patterns differ markedly between models depending on whether an effect is modeled as

random or fixed. For example, the three RE models with a random C effect suggest that the

odds of being happy increased with age up to age 30, remained at the same level until about
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55, and began to rise again in older ages; and that Americans were less happy in the most

recent decade after few changes for about 15 years, with little difference between older and

younger cohorts. However, in the other three RE models with a fixed C effect, the age effects

on happiness show an inverted U shape with a plateau between the late 20s and early 50s;

happiness did not change over the years between 1974 and 2014; and younger cohorts were

less happy than older cohorts.

Similarly, the estimates of A, P, and C effects on political views differ across the six

models so that even the general patterns in these effect estimates depend on which effects

are modeled as RE’s. For example, the model with random A effects and fixed P and C

effects (Model 1) suggests a substantial growth in conservative political views from 1974

to 2014, with an inter-cohort decline and largely flat age pattern. In contrast, the RE-APC

model with a fixed A effect and random P and C effects (Model 4) indicates that American

people tended to be more conservative as they grew older and were more liberal in the

1980s, 1990s, and 2000s than in the 70s and 2010s; the baby boom cohorts, born between

mid-1940s and mid-1950s, were more liberal than older and younger cohorts. That is,

researchers interested in temporal trends in political ideology in the United States would

reach different substantive conclusions about changes in political views depending on the

essentially arbitrary choice of which effects to model as random effects.

The above empirical examples confirm O’Brien’s (2017) observation based on aggregated

data that the A, P, and C effects on tuberculosis rates change with the choice of which effect

is considered random. Such empirical evidence and the exposition in Section 2 suggest

that the RE approach must impose some type of constraints, albeit implicit, to identify

the otherwise unidentified APC models. However, two questions are yet to be answered:

exactly what constraints do the RE-APC models impose and how can such constraints be

accurately described? In the following sections, we address these questions by first showing

and proving the constraints implicit in APC models with one RE. Because the constraints in

APC models with two RE’s do not have a closed-form expression, we discuss this issue by

documenting the behavior of estimates from such models under various circumstances.

4. Constraints in APC Models with One Random Effect

We first present computational results that illustrate the mathematical results and provide

important clues about the constraints in 1-RE-APC models in which one of the three effects

is treated as random. Such results offer direct evidence for the assertation that using a

1-RE-APC model is equivalent to constraining the estimates of both the linear component

and the intercept of the random effect to be zero. We provide an intuitive explanation and a

mathematical proof of this assertion in Section 4.2.

4.1 Computational Results for 1-RE-APC Models

We describe a computation method and results for the model with A and P modeled as FE’s

and C modeled as an RE. As will become clear, modeling either A or P as the sole RE does

not differ in any material way.
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We derive for any 1-RE-APC design the linear combination of the data that estimates the C

effect’s intercept and its linear component. Specifically, as in previous equations, W and Z
are the design matrices for the FE’s and RE’s respectively, each with a · p rows and a + p − 1
columns. Define the combined design matrix as Q = (W ∣ Z). Then for a given ratio of the

error and RE variances, λ = σe2/σc2, the estimate of the vector of effects is

θ = Q′Q + λD −1Q′y = My for M = Q′Q + λD −1Q′, (8)

where D is a diagonal matrix with a + p − 1 diagonal entries of 0 corresponding to

the intercept, age FE’s, and period FE’s, followed by a + p − 1 diagonal entries of 1

corresponding to the cohort RE. The first a + p − 1 elements of θ  are thus the estimated

intercept, A effects, and P effects; the last a + p − 1 elements are the estimated C effects.

The level (or intercept), linear component, quadratic component, and higher order

components of the C effect are estimated using linear functions of θ . Specifically, the C

effect’s intercept is estimated as α′θ = α′My, where α′ = (0, …, 0, 1, …, 1)/(a + p − 1), where

α has a + p − 1 entries that are 0 followed by a + p − 1 entries that are 1. Similarly,

the C effect’s linear component is estimated as β′θ = β′My where β′ = 0, …, 0, β1  and

β1 = b′b −1b′ for b′ = (1, 2, …, a + p − 1) − (a + p − 1)(a + p)/2.

The logic of the computation is thus as follows: for any design, i.e., any specification of a
age groups and p period groups, and any value of the error-RE variance ratio λ, to verify that

the C effect’s intercept and linear components are estimated to be zero irrespective of the

data y, one can compute M and thus α′M and β′M to examine whether α′M = β′M = 0.

We thus computed α′M and β′M for designs with the number of A and P groups, i.e., a and

p, between three and 30 inclusive and for seven values of λ, 0.001, 0.01, 0.1, 1, 10, 100,

1000, covering the range of shrinkage of the random C effect from almost no shrinkage to

shrinkage nearly to zero respectively. For each combination of a, p, and λ, we set up the

combined design matrix Q, compute M, compute α′M and β′M, and save the entries in α′M
and β′M that are largest in absolute value. Appendix A gives details and R code.

Table 4 shows the computational results obtained by running this code on a Macintosh

laptop using R version 3.5.2, for each combination of a, p, and λ. The figures in the columns

are respectively a, p, λ, the largest absolute value of entries in α′M (for estimating the

intercept of the C effects), and the largest absolute value of entries in β′M (for estimating

the linear component of the C effects). All of the α′M are 2 ∙ 10−12 or smaller and all of the

β′M are 4 ∙ 10−13 or smaller, numbers that are numerically equivalent to zero2. Thus, for any

APC model included in this computation, the linear component and intercept of the C effect

are estimated to have magnitude at most very close to zero, regardless of the number of A

2Linear-algebra software does not do exact matrix inversions; it computes matrix inverses to within the machine’s accuracy. Results
such as those presented here are well known to be equivalent to zero. If one finds this unsatisfying, note that the estimated linear
component of the cohort effect will be smaller in absolute value than 4 · 10−13 · (a + p – 1) · ymax where ymax is the observation (y)
that is largest in absolute value. This is effectively zero relative to y. Running this code using other machines or other versions of R
may give results that differ slightly but are still all numerically equivalent to zero.
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and P groups and thus C groups, regardless of the magnitude of shrinkage, and regardless of

the data y.

These computational results show that for any dataset not only the linear component of the

random effect will be estimated to be effectively zero, as O’Brien (2017) suggested, but the

intercept (or average level) will also be estimated to be zero. It seems extremely unlikely that

a researcher would choose these constraints on the cohort effect, if they were understood and

explicit. The following section provides intuition and a mathematical proof that apart from

tiny errors arising from doing algebra by computer, these estimates are exactly zero.

4.2 Explaining the Constraints in 1-RE-APC Models: Some Intuition and a Mathematical
Proof

Why does assuming an effect to be random in a 1-RE-APC models imply that the estimated

linear component and intercept of the RE are necessarily zero? We now provide some

intuition and a mathematical proof for this conclusion. Although the explanation and proof

focus on the model in which C is the sole RE, an analogous proof for a model with A or P as

the sole RE follows immediately.

Intuition for the results in Section 4.1 is as follows. Assume the random C effect is

parameterized in the standard manner, with one level of the RE for each cohort. The

intuition (as well as the proof to be provided later) allow any parameterization of the fixed A

and P effects. W, Z, β, and u are as defined in Equation (3), and λ just above Equation (8).

The A, P, and C effects are estimated by solving the following problem: Choose the A and P

effects in β and the C effect in u to minimize the penalized residual sum of squares3:

L(β, u) = (y − W β − Zu)′(y − W β − Zu) + λu′u, (9)

where λ is the ratio of the error and RE variances, λ = σe2/σc2, and take λ > 0 as given.

We will show that for any (β, u) in which either or both of the C effect’s level (intercept)

and linear component are non-zero, L(β, u) can be made smaller by setting C’s level and

linear component to zero and adjusting β so that the model fit and thus the residuals

(y − W β − Zu) do not change. The latter is possible because the C effect’s level is redundant

with the FE intercept in β and the C effect’s linear component is redundant with the linear

components of A and P. Therefore, the C effect’s estimated level and linear component must

be zero; otherwise, L(β, u) could be made smaller by setting them to zero and adjusting β
accordingly.

Now we provide a formal proof of the above assertation. The steps in the proof are as

follows. First, reparameterize the A and P effects from β to β*, in which the elements of the

new parameter β* are the linear, quadratic, etc. components of the A and P effects. Second,

reparameterize the C effect from u to u*, in which the elements of the new parameter u* are

the level, the linear, quadratic, etc. components of the C effect. Third, given any (β*, u*) in

which the level or linear component of u* (or both) are non-zero, construct β** and u** so

3The penalized residual sum of squares is equivalent to the penalized likelihood for a model with normal errors and normally-
distributed random effects.
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that the residual sum of squares is identical using (β*, u*) and (β**, u**) but the penalty

λu**′u** is smaller than λu*′u*. This gives the desired result. We now describe each step

in detail.

Step 1: Reparameterize the A and P effects from β to β*. For the A and P effects, use

the reparameterization and symbols given in Holford (1983). If we index the A groups as

i = 1, 2, …, a, then for observations in the ith A group in the reparameterized design matrix,

the column for the linear component has value i − 0.5a − 0.5; call this column AL. Similarly,

indexing periods as j = 1, 2, …, p, for observations in the jth P group in the reparameterized

design matrix, the column for the linear component has value j − 0.5p − 0.5; call this

column PL. For the non-linear components of the A and P effects (which this proof does

not use), use the transformations given in Holford (1983). Then the FE Wβ is replaced

by W ∗β∗ where W ∗ = W K for a known invertible matrix K and the new FE parameter

vector is β∗ = K−1β. Without loss of generality, specify the first three columns of W* to be

W ∗ (0) = 1n (an n-vector of 1’s), W ∗ (1) = AL, and W ∗ (2) = PL, with the remaining columns

of W* being the non-linear components of the A and P effects. The reparameterized FE

vector is β∗ = b0
∗, bLA

∗ , bLP
∗ , bC

∗ ′, respectively the intercept, linear component of the A effect,

linear component of the P effect, and the non-linear components of the two effects gathered

into the vector bC
∗ .

Step 2: Reparameterize the C effect from u to u*. Here, we deviate slightly from Holford

(1983) for reasons given below. Reparameterize as Zu = Z∗u∗, where Z∗ = ZΔ, u∗ = Δ′u,

and Δ is an orthogonal matrix (i.e., Δ’s inverse is its transpose so Δ′Δ = ΔΔ′ = I, the identity

matrix). The rows of Δ’ (which are also the columns of Δ) are the orthogonal polynomials

for c levels (Fisher and Yates 1963). The first column of Z∗ = ZΔ, is Z ∗ (0) = k1n, for

k = 1/ c. The second column of Z∗ is Z ∗ (1) = qCL, where (as in Holford 1983), the entry

in CL for the kth C group, k = 1, 2, …, c, is k − 0.5c − 0.5 and q = 1/ ∑(k − 0.5c − 0.5)2,

where the sum inside the square-root symbol is over cohorts k. The 3rd, 4th, etc. columns in

Δ are the quadratic, cubic, etc. orthogonal polynomials, so the 3rd, 4th, etc. columns of Z*

represent the quadratic, cubic, etc. components of the C effect. The reparameterized C effect

is u∗ = u0
∗, uL∗ , uC∗ ′, respectively the level (intercept) and linear component of the C effect and

the non-linear components of the C effect gathered into a vector uC∗ .

We have deviated slightly from Holford (1983) to retain a simple form for

the penalty in Equation (6). With the new parameterization, the penalty becomes

λu′u = λu ∗ ′Δ′Δu∗ = λu ∗ ′u∗ because Δ was chosen to be an orthogonal matrix. In the new

parameterization, the estimates β* and u minimize the penalized residual sum of squares

L β∗, u∗ = y − W ∗β∗ − Z∗u∗ ′ y − W ∗β∗ − Z∗u∗ + λu ∗ ′u∗ . (10)
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Step 3: Construct β** and u**. Suppose u0
∗ ≠ 0 or uL∗ ≠ 0 both. Because,

Z ∗ (0) = kW ∗ (0), therefore Z ∗ (0)u0
∗ = ku0

∗W ∗ (0). Also, from Holford (1983), CL = PL − PL,

so Z ∗ (1)uL∗ = q PL − AL uL∗ . Using these facts, set β** and u** as follows:

β ∗ ∗ = b0
∗ + ku0

∗, bLA
∗ − quL∗ , bLP

∗ + quL∗ , bC
∗ ′, (11)

u ∗ ∗ = 0, 0, uC∗ ′ . (12)

By construction,

y − W ∗β ∗ ∗ − Z∗u ∗ ∗ ′ y − W ∗β ∗ ∗ − Z∗u ∗ ∗ = y − W ∗β∗ − Z∗u∗ ′ y − W ∗β∗ − Z∗u∗ .

However,u ∗ ∗ ′u ∗ ∗ = u ∗ ′u∗ − u0
∗ 2 − uL

∗ 2 < u ∗ ′u∗. The result follows.

We have proved that 1-RE-APC models necessarily constrain the estimates of the RE’s

linear component and intercept to be zero. The following section discusses how 2-RE-APC

models are estimated. As we will show, 2-RE-APC models impose implicit constraints to

estimate A, P, and C effects as 1-RE-APC models do, but the form of its constraints differs

qualitatively from those implied by a 1-RE-APC model.

5. Constraints in APC Models with Two Random Effects

We now address the more complicated issue of 2-RE-APC models in which two of three

effects are modeled as RE’s. Unfortunately, unlike 1-RE models, 2-RE models do not permit

an explicit, closed-form restricted likelihood (Hodges 2013), which makes formal proofs

difficult. As the best available alternative, we use a particular example, though with little

sacrifice of generality: a design with a = 6 age groups, p = 5 periods, and c = 10 cohorts,

with P and C modeled as RE’s and an outcome measure y on a continuous scale, which we

model as normally distributed. After introducing some notation, we use simulated data to

show that the estimates of the linear components of the P and C effects are determined by

the magnitude of the non-linear components of the true P and C effects. We then present

more technical material explaining how and why this happens.

To simplify the discussion, in our example we assume the true data-generating process has

A and P effects that are exactly zero (i.e., no A or P effect), and that only the C effect is

non-zero. It is straightforward to produce and explain analogous results when the true A or P

effect is non-zero, or when the two RE’s are chosen differently.

To introduce some notation, let Wa be the design matrix for the fixed A effect, which

includes the intercept and is parameterized so the A effects sum to zero; let βa be the FE

parameter vector. Let Zp be the design matrix for the random P effect, with one column for

each of the p periods and using the identity parameterization (as in standard software) with

parameter up; and let Zc be the design matrix for the random C effect, with one column for

each of the c = a + p − 1 = 6 + 5 − 1 = 10 cohorts and also using the identity parameterization

with parameter uc. Assume the normally distributed errors have variance σe2 and that the

RE variances are σp2 and σc2 for P and C respectively. Then given estimates of the three
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variances, the estimated A, P, and C effects minimize the penalized residual sum of squares

(i.e., maximize the penalized log likelihood):

y − W aβa − Zpup − Zcuc ′ y − W aβa − Zpup − Zcuc + λpup′up + λcuc′uc, (13)

where λp = σe2/σp2 and λc = σe2/σc2.

To simplify the exposition, we reparameterize each of the three effects in Equation (13)

using orthogonal polynomials, with each transformation implemented using an orthogonal

matrix (i.e., a matrix with the property that its inverse is its transpose), so that the scales

of the three design matrices Wa, Zp, and Zc and the three parameter vectors βa, up, and

uc are unchanged and the three variances and the form of the penalty in Equation (13) are

also unchanged. In the following, we will assume that this reparameterization has been made

without changing the notation in Equation (13), so that the entries in βa are the intercept and

the linear, quadratic, etc. components of the A effect, while the entries in up are the level and

the linear, quadratic, etc. components of the P effect and analogously for uc and the C effect.

Now consider a true data-generating mechanism having βa and up that are zero vectors (i.e.,

the true A and P effects are zero), and true C effects of the form uc = (0, 1, m, 0, …, 0)′ for

m—the quadratic component of the true C effect—between 0 and 1 inclusive.4 Recalling

that we have reparameterized the cohort effect, the true C effects described by uc are, in

order, the true level (intercept, set to 0), the true linear component, set to 1, the true quadratic

component, set to m, and then true higher-order components, all set to 0. Setting m = 0

means that the true C effect is purely linear; as m grows from 0, C’s true linear component

remains unchanged while its true non-linear component, to be exact, its quadratic component

grows in magnitude. For each value of m, we generated 100 datasets by adding i. i. d. errors

with true standard deviation 0.01 to this mean, and then we fit an APC model with a fixed

A effect and random P and C effects using the lmer function in the lme4 package in R.

Appendix C provides the R code we used to generate and analyze these simulated datasets.

Table 5 shows, for each m between 0 and 1, the number of simulated datasets out of 100

for which the lmer function estimated a linear component of the P effect that was not
shrunk to 0 (or close enough to be effectively 0). Although all datasets used in Table 5

had no true P effect and had C effects with the same true linear component, the estimated

linear component of the P and C effects changed radically depending on the true non-linear
component of the C effect, which is determined by m. Specifically, when m = 0 so the C

effect was purely linear, for all 100 simulated datasets lmer gave a zero estimate for σc2 and

a positive estimate for σp2, so the estimated C effect was shrunk to zero and the true C effect

was attributed entirely (and erroneously) to A and P, although in fact the true A and P effects

were zero.

As m grows—that is, as the true non-linear component of C grows in magnitude while

the true linear component is held constant—the estimation machinery eventually stops

4We use this range because using m < 0 gives the same results as using |m| and because, as Table 5 shows, for m > 0.7, the results do
not change.
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attributing all of C’s true linear component to A and P. For example, for m = 0.30, six

of the 100 datasets gave a positive estimate of σc2 and a zero estimate of σp2, so that the P

effect’s estimated linear component was shrunk to zero (correctly) and C effect’s estimated

linear component was not. For m = 0.70 and larger, for all 100 datasets lmer gave a positive

estimate for σc2 and a zero estimate for σp2, so the true C effect was correctly attributed to

C instead of to A and P. For m between 0.30 and 0.65, the percentage of datasets that

erroneously failed to shrink the P effect’s linear component to 0 varied but, oddly, not in a

steady trend with increasing m, as one might expect. Rather, as m increased this percentage

went up (as expected), then back down (unexpectedly), before rising finally to 100%.

We have used simulated data for a particular APC design and true data-generating

mechanism to show that the estimates of the linear components of the P and C effects are

determined by the magnitude of the true non-linear components of the C effect. We will now

explain why this happens, not with the conclusiveness of a mathematical proof but in enough

detail to make it clear that the phenomena above could be produced straight-forwardly for

any choice of two RE’s and without assuming that two of the true effects are exactly zero.

To explain the example above, we reiterate how a RE model, in particular our 2-RE-APC

model, is estimated. The conventional analysis has two steps. In Step 1, the variances σe2, σp2,

and σc2 are estimated by maximizing the restricted likelihood; in Step 2, the variance ratios λp
and λc are computed from the estimated variances and the A, P, and C effects are estimated

by minimizing the penalized residual sum of squares (13) taking λp and λc as given. That

is, the specific constraints on the P and C effects imposed by the 2-RE specification are

determined by the data in Step 1 and then imposed in Step 2. Although the 2-RE-APC model

does not have an explicit, closed-form restricted likelihood, the following discussion uses

insights from simpler models that do have closed-form restricted likelihoods (Hodges 2013).

Specifically, in Step 1, the restricted likelihood is computed by regressing out from y
the fixed A effect (Searle, Casella, and McCulloch 1992), so that the residuals from the

regression of y on A supply all of the information about σe2, σp2, and σc2 and thus about the

ratios λp and λc. (This is why the restricted likelihood is sometimes called the “residual

likelihood”.)

This observation allows us to see how the results of Step 1 are strongly affected by the

fact that the linear components of the A, P, and C effects are not identified. The column

in Zc representing the linear component of the C effect, as is well known, is exactly equal

to a particular linear combination of the columns in Wa and Zp representing the linear

components of the A and P effects respectively. Thus, in computing the restricted likelihood

in Step 1, when the regression of y on A is removed from the data y, the residual of y, which

contains the residual of the true linear component of C, can be exactly and entirely attributed

to the linear component of the P effect or to the linear component of the C effect (or to any

convex combination of them). That is, the information about the two RE variances σp2 and σc2

that is provided to the restricted likelihood by the true C effect’s linear component is entirely
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ambiguous, and that ambiguity is resolved by information in the true non-linear components

of the P and C effects.

To understand how the true non-linear component of the C effect produced the phenomena

in Table 5, recall that while the linear components of the A, P, and C effects are not

identified, their non-linear components are identified. In particular, the column in Zc

representing the quadratic component of the C effect is linearly independent of Wa and

Zp though it is not uncorrelated with the columns of those design matrices. Thus in our

example with p = 6, p = 5, if the column in Zc representing the quadratic component of

the C effect is regressed on Wa and Zp, about 40% of its squared variation is attributed

to the fixed A effect and thus lost to the restricted likelihood. Another 6% of the squared

variation lies in the column space of Zp (which is orthogonal to the column space of Wa);

the information in y that lies in this space is again ambiguous as to whether it arose from the

P or C effect and thus as to whether it provides information about σp2 or σc2. The remaining

54% of the squared variation in Zc is unambiguously attributed to the C effect5 and provides

information only about σc2. Thus, in computing Table 5, as m increased, i.e., as the true C

effect’s non-linear component increased in magnitude, the restricted likelihood received an

increasingly large “signal” that σc2 > 0, and eventually this resolved the ambiguity of the true

cohort effect’s linear component, so that it was correctly attributed to the cohort effect and

the estimated period effect was correctly shrunk to zero.

This explanation leaves two puzzles. First, when m = 0, i.e., when all of the information

about σp2 and σc2 arises from the true C effect’s linear component and that variation could

arise entirely from either P or C, why does the P effect “win” for all 100 datasets? And

second, why doesn’t Table 5 show a nice smooth trend in m?

To understand these two puzzles, we examined the profiled restricted likelihood6, a function

of σp2 and σc2 that has the same local maxima as the restricted likelihood. For m = 0—where

the true C effect is exactly linear—the restricted likelihood has two local maxima, one with

σp2 zero and σc2 positive and the other with σp2 positive and σc2 zero. For simulated datasets

that we examined, the second local maximum is higher by about 20 natural-log units—a

large difference—and thus the global maximum, so the P effect “wins”. This leaves us

with another puzzle: why does the P effect win? We are unable to answer this question

definitively but we conjecture that the P effect wins because it has fewer levels than the C

effect (p vs. p + a – 1). Because p < p + a – 1 in all APC designs, this conjecture cannot

be tested for models in which C is an RE. We have examined some examples in which A

and P were modeled as RE’s and they support the conjecture but examples cannot prove a

conjecture.

5Higher order (cubic, etc.) components of the true C effect, if any, can be partitioned similarly into pieces that Step 1 attributes to
the A effect, to the C effect, and ambiguously to either the P or C effect. Appendix B gives the R code that we used to calculate the
fractions given here.
6For any pair of values for σp2 and σc2 it is easy to derive the value of σe2 that maximizes the restricted likelihood given that pair (σp2,

σc2). This maximizing value of σe2 is a function of (σp2, σc2); substituting it into the restricted likelihood gives the profiled restricted

likelihood as a function of (σp2, σc2).
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As m grows from 0, the local maximum with σp2 zero and σc2 positive grows higher and the

other local maximum, at which σp2 is positive and σc2 is zero, becomes lower and shifts its

location. As a result, for example, for m = 0.45 the latter local maximum occurs for σp2 and

σc2 with roughly equal values, for which the estimated linear component of the C effect is

still shrunk near zero. For these intermediate values of m, lmer’s code for maximizing the

restricted likelihood sometimes finds one local maximum and sometimes finds the other,

although the local maxima differ in their values by several log units, so lmer does not

necessarily find the global maximum of the restricted likelihood. Thus, the estimates of the

variances and the degree of shrinkage imposed on the P and C effects—i.e., the constraint

imposed by using the 2-RE-APC model—are determined arbitrarily by the selection of

starting values for the numerical maximizer used to maximize the restricted likelihood. As

it happens, it is effectively impossible to set starting values for the numerical routine lmer

uses to maximize the restricted likelihood, so for intermediate values of m in Table 5, the

solution provided by lmer was a haphazard selection from the two local maxima and indeed,

because it is impossible to set starting values in lmer’s numerical optimizer, lmer could

not be used to detect the restricted likelihood’s two local maxima even if one knew they

existed. SAS’s MIXED procedure does allow a user to set starting values for numerically

maximizing the restricted likelihood but it uses default starting values of 1 for each variance

so an unsuspecting user who relied on these defaults would again be given estimates selected

haphazardly by these default starting values.

For m = 1—where the true C effect has strong linear and quadratic components—the

restricted likelihood has, as far as we can detect, a single maximum with σp2 zero and σc2

positive, so the estimated C effect is hardly shrunk at all while the estimated P effect is

shrunk to zero, both of which are correct.

In short, all datasets simulated and analyzed for Table 5 had C effects with the same

true linear component and yet the estimate of that linear component changed radically

depending on the true non-linear component of the C effect. What is worse is that the

estimate of C’s linear component produced by standard software for any given dataset could

differ radically depending on the software’s choice of starting values for the numerical

routine that maximizes the restricted likelihood. Based on the foregoing, we submit that the

two-RE analysis is indefensible, and that the problem arises, as always, because the linear

components of the three effects are not identified.

6. Conclusions and Discussion

In this paper, we proved and illustrated the constraints implicit in random effects age-period-

cohort (RE-APC) models. We have shown that such models have greater rank deficiency

than fixed-effects (FE) models and documented and illustrated the critical role of the RE

assumption in effect estimation using computational and empirical examples. We provided

computational results and a mathematical proof to support our conclusion that the RE

mechanism serves to supply the critical yet implicit constraints to identify these otherwise

unidentified models. It is not surprising, then, that the largely arbitrary implicit constraints
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do not just shrink the magnitude of the effects modeled as random, as many researchers

believe; rather, these constraints dictate estimation results and substantive conclusions.

It is interesting, but not noted in previous literature, that the specific constraints implicit in

the RE specification are not the same for RE-APC models with one RE (1-RE-APC model)

and with two RE’s (2-RE-APC model). Specifically, for 1-RE-APC models, O’Brien (2017)

noted that the estimated linear trend in the RE effect appears to be zero in data analyses. We

have carried forward this observation with computational results and a mathematical proof

that using the 1-RE-APC has the effect of forcing to zero the estimated linear component

and intercept (or level) of the effect modeled as random. For example, researchers should

be aware that when the C effects are modeled as random in an APC analysis, this choice

pre-determines that both the linear component and the level of the random C intercepts

will be estimated as zero. Such an assumption usually lacks theoretical justification; this is

especially concerning when the assumption is implicit in the most obscure part of the model

specification.

For 2-RE-APC models, Bell and Jones (2018) made the important observation that even

for the same data, changing the number of A, P, and thus C groups changes the estimation

results markedly, which should not occur with identified models. We advanced this literature

by showing that the constraints implicit in a 2-RE-APC model also depend on the size of

the true non-linear components of the RE’s. That is, even when two researchers analyze

their data using the same number of levels for each effect, the estimated linear trend in an

effect modeled as random may differ if the non-linear components of that effect differ in

magnitude.

The identification problem in RE-APC models ought not be confused with a violation of

assumptions in a statistical model. Indeed, one assumption in a standard linear regression

model is that the observations are independently distributed. RE models are often used

when the independence assumption is violated. For APC models, it has been argued that

this impendence assumption is violated in that individuals are nested within time periods

and birth cohorts (see, e.g., Yang and Land 2006). If this were simply a violation of the

independence assumption and RE-APC models were identifiable without constraints, then

estimation results of RE-APC models with different RE choices should be similar to each

other and to those from an FE-APC model. To the contrary, we and others have shown

that estimates of the A, P, and C effects depend strongly on which effect is considered

random and on the size of the non-linear component of each effect that is modeled as

random. That is, although it is not unreasonable to assume a hierarchical structure in APC

data, researchers should be aware that the RE specification largely pre-determines certain

components of the estimated A, P, and C effects.

The debate surrounding APC models is decades old. Many methods have been proposed,

some relying on technical assumptions (see, e.g., Robertson and Boyle 1998; Yang et al.

2008) and others based on social theory (Fosse and Winship forthcoming; Mason and

Fienberg 1985; O’Brien 2000) or hypothesized mechanisms or proxy variables through

which causal factors affect the outcome measures (Heckman and Robb 1985; Winship and

Harding 2008). In the end, what researchers can hope to accomplish depends on what they

Luo and Hodges Page 17

Sociol Methodol. Author manuscript; available in PMC 2023 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intend the statistical method to do (Luo 2013b). In many demographic and social sciences

applications, statistical models are useful for summarizing information in the data in a

concise way. Our investigation of the dramatically different estimates from RE-APC models

strongly suggests that researchers should not only stop using RE models as an attempt to

recover the “true” A, P, and C effects without a strong theoretical account but also should

prioritize critically examining the conceptual framework that motivates the undertaking to

estimate effects that have such particular forms.
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Appendix A: R code for the computational results for 1-RE-APC models

For all APC designs with a (number of age groups) and p (number of periods) in given

ranges (selected by the user) and for all variance ratios λ = σe2/σc2 with λ in 0.001 to 1000 (or

log10λ in −3 to 3), show that the intercept and linear component of the fitted cohort effect is

necessarily 0 for all datasets y. A dataset y is a column vector of length a × p, sorted first by

age group and then by period within age group (i.e., the period index varies fastest)

# Specify ranges to consider for a, p, and log10λ

# number of age groups

a <- 3:30

na <- length(a)

# number of periods

p <- 3:30

np <- length(p)

# number of lambda values, i.e., variance ratios

lam <- 10^(−3:3)

nl <- length(lam)

# Set up the matrix apmax to hold results. In apmax,

# columns 1, 2, and 3 are the number of age groups, number of periods, and λ, respectively.

# Columns 4 and 5 are, for the cohort intercept and linear component estimates, respectively,
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# the maximum of the absolute values of the coefficients of the data y.

apmax <- matrix(NA,na*np*nl,5)

# Loop 1, over number of age groups

for(i in 1:na){

# Loop 2, over number of periods

for(j in 1:np){

# design matrix columns for age, then period

   Xa <- contr.sum(n=a[i]) %x% as.matrix(rep(1,p[j]))

   Xp <- as.matrix(rep(1,a[i])) %x% contr.sum(n=p[j])

# column bind with a column of 1s to give the fixed effect design matrix W

   W <- cbind(matrix(1,a[i]*p[j],1),Xa,Xp)

# design matrix for cohort random effect

   Z <- matrix(0,a[i]*p[j],a[i]+p[j]-1)

   for(it in 1:a[i]){for(jt in 1:p[j]){

      Z[(it-1)*p[j]+jt,a[i] + jt - it] <- 1 }}

# column bind Z with W to give Q; compute Q’Q

   Q <- cbind(W,Z)

   QpQ <- t(Q) %*% Q

# Set up the penalty matrix D for cohort

   D <- diag(c(rep(0,a[i]+p[j]-1),rep(1,a[i]+p[j]-1)))

# set up alf and bet, which give the intercept and linear cohort estimates respectively
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   alf <- as.matrix(c(rep(0,a[i]+p[j]-1),rep(1/(a[i]+p[j]-1),(a[i]+p[j]-1))))

   bet <- as.matrix( c(rep(0,a[i]+p[j]-1),(1:(a[i]+p[j]-1)) -

         mean(1:(a[i]+p[j]-1))) )

   bet <- bet/sum(bet^2)

# Loop 3, over lambda (variance ratios)

for(k in 1:nl){

# For the given lambda, compute M, where the vector My contains the estimates of the

intercept,

# age, period, and cohort effects in that order.

M <- solve.qr(qr(QpQ + lam[k]*D)) %*% t(Q)

# Compute alf’M and bet’M; for each, save the maximum of the absolute values. These are

# hypothesized to be zero, and are, which implies the intercept and linear components are

zero.

ndx <- ((i-1)*np + j-1)*nl + k

apmax[ ndx,c(1,2,3)] <- c(a[i],p[j],lam[k])

apmax[ndx,4] <- max(abs( t(alf) %*% M ))

apmax[ndx,5] <- max(abs( t(bet) %*% M ))

# end Loop 3

}

# end Loop 2

}

# end Loop 1

}

Appendix B: R code for computing the fraction for a 2-RE-APC model with

fixed age and random period and cohort effects.

The matrix with which we began this construction is given below; it is the design matrix

for an APC model with all three effects modeled as random, so each effect has the identity

parameterization. The first column is the fixed intercept; columns 12–17, 18–22, and 2–11
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are the columns in the design matrix for the age (a = 6), period (p = 5), and cohort (c = 10)

effects, respectively. Beginning with this, we construct design matrices for the 2-RE-APC

model.

LLYdm <- read.csv(file=“LLYdm”, header=FALSE, colClasses=“numeric”)

Nt <- as.matrix(LLYdm[,1])

Xa <- LLYdm[,12:17]

Zp <- LLYdm[,18:22]

Zc <- LLYdm[,2:11]

# Construct orthogonal components of age, period, and cohort design matrices.

# Apply an orthogonal transformation to each effect to get design-matrix columns

# corresponding to the intercept (level), linear component, quadratic component, etc.

Ga <- matrix(poly(1:6,5),6,5)

Ga <- cbind(as.matrix(rep(1/sqrt(6),6)),Ga)

Gp <- matrix(poly(1:5,4),5,4)

Gp <- cbind(as.matrix(rep(1/sqrt(5),5)),Gp)

Gc <- matrix(poly(1:10,9),10,9)

Gc <- cbind(as.matrix(rep(1/sqrt(10),10)),Gc)

Xa <- as.matrix(Xa) %*% Ga

Zp <- as.matrix(Zp) %*% Gp

Zc <- as.matrix(Zc) %*% Gc

# Regress the cohort effect’s quadratic design-matrix column (Zc[,3]) on the age and

# period effects, which have also been re-parameterized to linear, quadratic, cubic, etc.

# components.

cquad <- lm(Zc[,3] ~ Xa + Zp).

# The fitted coefficients are given below. For this APC design,

# the fitted coefficients for the intercept is non-zero −0.145;

# for the age effect, the only non-zero coefficient is for the quadratic component (Xa3);

# for the period effect, the only non-zero coefficient is for the quadratic component(Zp3).

cquad$coef
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[The output from this command follows]

> (Intercept)

> −1.450647e-01

> Xa1 Xa2 Xa3 Xa4 Xa5 Xa6

> NA −9.121651e-17 2.659080e-01 −1.674049e-17 6.582039e-17 5.209998e-17

> Zp1 Zp2 Zp3 Zp4 Zp5

> NA 2.214129e-17 1.628347e-01 −6.798700e-17 −9.064933e-17

# The intercept piece of the cohort quadratic effect is the estimated intercept multiplied

# by a column of 30 1’s, which is then squared and summed; the age piece is the squared

# length of column 3 of Xa multiplied by its coefficient, 2.659080e-01; the period piece

# is the squared length of column 3 of Zp multiplied by its coefficient 1.628347e-01;

# the part “left in the cohort effect” is the residual sum of squares from the regression

# above. That is, the cohort quadratic component’s original squared length, 2.469697, is

# divided up as:

# intercept 0.631313, age 0.3535353, pd 0.1590908, left in cohort 1.325758, or somewhat

# more than half (54%)

# When the truth is that there are no age or period effects, the squared length in the

# cohort’s quadratic component is m^2 2.469697.

# In computing the restricted likelihood (RL):

# m^2 (0.631313 + 0.3535353) is taken up by the fixed effects (i.e., is not available to the

# RL). Thus R2 for the regression of the cohort quadratic component on the fixed age

# effect and intercept is R2 = (0.631313 + 0.3535353)/2.469697 = 0.399, which rounds to

# 0.40. m^2 0.1590908 lies in the column space of the period effect, so it could arise

# from either period or cohort; 0.1590908/2.469697 is 6%. m^2 1.325758 is in the part

# of cohort’s column space that’s orthogonal to the age and period column spaces, so this

# is attributed only to cohort and 1.325758 / 2.469697 is 54%.

The matrix in the file LLYdm
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Intercept C A P

1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

Appendix C: R code for generating datasets in Table 5 for 2-RE-APC models

with fixed age effect and random period and cohort effects.

The code below produced Table 5 on the second author’s Macintosh laptop, but the reader

may not get identical results even using the same random-number seed we used, because

random number generators sometimes differ between machines or operating systems.

However, using this code, the reader will get the same results with repeated runs because this

code specifies the seed for the random number generator.

The matrix with which we began this construction is given in Appendix B; it is the design

matrix for an APC model with all three effects modeled as random, so each effect has the
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identity parameterization. The first column is the fixed intercept; columns 12–17, 18–22,

and 2–11 are the columns in the design matrix for the age (a = 6), period (p = 5), and

cohort (c = 10) effects, respectively. Beginning with this, we construct design matrices for

the 2-RE-APC model.

LLYdm <- read.csv(file=“LLYdm”, header=FALSE, colClasses=“numeric”)

Nt <- as.matrix(LLYdm[,1])

Xa <- LLYdm[,12:17]

Zp <- LLYdm[,18:22]

Zc <- LLYdm[,2:11]

# Construct orthogonal components of age, period, and cohort design matrices.

# Apply an orthogonal transformation to each effect to get design-matrix columns

# corresponding to the intercept (level), linear component, quadratic component, etc.

Ga <- matrix(poly(1:6,5) ,6,5)

Ga <- cbind(as.matrix(rep(1/sqrt(6),6)),Ga)

Gp <- matrix(poly(1:5,4) ,5,4)

Gp <- cbind(as.matrix(rep(1/sqrt(5),5)),Gp)

Gc <- matrix(poly(1:10,9), 10,9)

Gc <- cbind(as.matrix(rep(1/sqrt(10),10)),Gc)

Xa <- as.matrix(Xa) %*% Ga

Zp <- as.matrix(Zp) %*% Gp

Zc <- as.matrix(Zc) %*% Gc

# Construct factors for use in fitting models using lmer

age <- rep(1:6,rep(5,6))

pd <- rep(1:5,6)

Z <- data.matrix(LLYdm[,2:11])

chrt <- Z %*% matrix(1:10,10,1)

age <- as.factor(age)

contrasts(age) <- contr.sum(6)

pd <- as.factor(pd)

chrt <- as.factor(chrt)

# Run the simulation that produced Table 5.
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set.seed(5)    # This sets the seed in rnorm’s random number generator so the

            # simulation can be re-run and give identical results.

m <- 0 + (0:20)*0.05

# Save estimates of standard deviations (sigmas): Column 1 is m, Column 2 is the SD of

# the cohort random effect, Column 3 is the SD of the period random effect, and Column

# 4 is the error SD

sdests <- matrix(NA,100*length(m),4)

# Save linear component estimates; Column 1 is m, Column 2 is the estimated linear

# component of the age effect, Column 3 is the estimated linear component of the period

# effect, and Column 4 is the estimated linear component of the cohort effect

linests <- matrix(NA,100*length(m),4)

# The outer loop is over m, the inner loop is over replicate datasets for given m

for(i in 1:length(m)){

for(j in 1:100){

# Simulate the j-th dataset for a given value of m

y <- Zc[,2] + m[i]*Zc[,3] + rnorm(30,sd=0.01)

# fit the random-effects models

fit1 <- lmer(y ~ age + (1|pd) + (1|chrt))

# Save the estimated SDs

sdests[(i-1)*100+j,1] <- m[i]

sdests[(i-1)*100+j,2] <- sqrt(c(summary(fit1)$varcor$chrt))

sdests[(i-1)*100+j,3] <- sqrt(c(summary(fit1)$varcor$pd))

sdests[(i-1)*100+j,4] <- sigma(fit1)

# Save estimated linear component; first m, then the age, period, and cohort effects
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linests[(i-1)*100+j,1] <- m[i]

# linear component of the age effect

fage <- c(summary(fit1)$coef[2:6,1],-sum(summary(fit1)$coef[2:6,1]))

x <- 1:6

linests[(i-1)*100+j,2] <- lm(fage ~ x)$coef[2]

# linear component of the period effect

xt <- 1:5

linests[(i-1)*100+j,3] <- lm(data.matrix(ranef(fit1)$pd) ~ xt)$coef[2]

# linear component of the cohort effect

xt <- 1:10

linests[(i-1)*100+j,4] <- lm(data.matrix(ranef(fit1)$chrt) ~ xt)$coef[2]

}

}

# Count how many datasets had the linear component of the period effect shrunk really

# small.

tmp <- linests[,3] < 1e-2

table(linests[,1],tmp)
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Figure 1.
Sensitivity of the Estimates to RE Choice in Six RE-APC Models for the GSS Happiness

Data.
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Figure 2.
Sensitivity of the Estimates to RE Choice in Six RE-APC Models for the GSS Conservative-

Liberal Political Views Data.
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Table 1.

Design Matrix of an FE-APC Model.

Intercept
Age Period Cohort

α1 α2 β1 β2 γ1 γ2 γ3 γ4

1 1 0 1 0 0 0 1 0

1 1 0 0 1 0 0 0 1

1 1 0 −1 −1 −1 −1 −1 −1

1 0 1 1 0 0 1 0 0

1 0 1 0 1 0 0 1 0

1 0 1 −1 −1 0 0 0 1

1 −1 −1 1 0 1 0 0 0

1 −1 −1 0 1 0 1 0 0

1 −1 −1 −1 −1 0 0 1 0
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Table 2.

Design Matrix of a 1-RE-APC Model.

Fixed Effects Random Effects

Intercept
Age Period Cohort

α1 α2 β1 β2 γ1 γ2 γ3 γ4 γ5

1 1 0 1 0 0 0 1 0 0

1 1 0 0 1 0 0 0 1 0

1 1 0 −1 −1 0 0 0 0 1

1 0 1 1 0 0 1 0 0 0

1 0 1 0 1 0 0 1 0 0

1 0 1 −1 −1 0 0 0 1 0

1 −1 −1 1 0 1 0 0 0 0

1 −1 −1 0 1 0 1 0 0 0

1 −1 −1 −1 −1 0 0 1 0 0
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Table 3.

Design Matrix of a 2-RE-APC Model.

Fixed Effects Random Effects

Intercept
Age Period Cohort

α1 α2 β1 β2 γ1 γ2 γ3 γ4 γ5

1 1 0 1 0 0 0 1 0 0

1 1 0 0 1 0 0 0 1 0

1 1 0 0 0 0 0 0 0 1

1 0 1 1 0 0 1 0 0 0

1 0 1 0 1 0 0 1 0 0

1 0 1 0 0 0 0 0 1 0

1 −1 −1 1 0 1 0 0 0 0

1 −1 −1 0 1 0 1 0 0 0

1 −1 −1 0 0 0 0 1 0 0
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Table 4.

Computational Results: Estimates of the Linear Component and Random Intercept in Largest Absolute Value.

Design a p λ Linear Component Random Intercept

1 3 3 0.001 0.000 0.000

2 3 3 0.010 0.000 0.000

3 3 3 0.100 0.000 0.000

4 3 3 1 0.000 0.000

5 3 3 10 0.000 0.000

6 3 3 100 0.000 0.000

7 3 3 1000 0.000 0.000

8 3 4 0.001 0.000 0.000

9 3 4 0.010 0.000 0.000

… …

195 3 30 100

196 3 30 1000

197 4 3 0.001 0.000 0.000

198 4 3 0.010 0.000 0.000

199 4 3 0.100 0.000 0.000

200 4 3 1 0.000 0.000

201 4 3 10 0.000 0.000

202 4 3 100 0.000 0.000

203 4 3 1000 0.000 0.000

204 4 4 0.001 0.000 0.000

205 4 4 0.010 0.000 0.000

… …

5488 30 30 1000 0.000 0.000

Note: a denotes the number of age groups in an APC design; p denotes the number of periods; λ denotes the error and RE variance ratio as defined
in Equation (8).
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Table 5.

Number of Datasets out of 100 for which the Estimated Period Linear Component Is Shrunk Effectively to

Zero.

m # of datasets with zero period linear component

0 0

0.05 0

0.1 0

0.15 0

0.2 0

0.25 0

0.3 6

0.35 40

0.4 80

0.45 46

0.5 37

0.55 6

0.6 2

0.65 90

0.7 100

0.75 100

0.8 100

0.85 100

0.9 100

0.95 100

1 100

Note: m denotes the quadratic component of the true C effects in the data-generating mechanims.
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Table 1A.

Age, Period, and Cohort Effects Estimates on Happiness from Six RE-APC Models, the GSS 1974–2014.

Group Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Age Effects

1 −0.051 −0.259 −0.392 −0.385 −0.307 −0.052

2 −0.035 −0.082 −0.218 −0.210 −0.205 −0.049

3 0.050 0.056 −0.050 −0.043 −0.047 0.034

4 0.063 0.082 −0.004 0.001 −0.003 0.049

5 0.035 0.053 0.001 0.004 0.000 0.027

6 −0.006 0.004 −0.023 −0.022 −0.024 −0.006

7 −0.031 −0.025 −0.020 −0.022 −0.024 −0.026

8 0.000 0.033 0.065 0.062 0.056 0.008

9 −0.030 −0.011 0.058 0.054 0.047 −0.019

10 −0.006 0.033 0.143 0.137 0.125 0.004

11 0.014 0.070 0.220 0.212 0.195 0.022

12 −0.001 0.048 0.220 0.212 0.192 0.009

Period Effects

1 −0.015 0.001 0.136 0.110 0.130 0.001

2 0.002 0.003 0.120 0.101 0.115 0.003

3 −0.039 −0.001 0.036 0.029 0.033 −0.004

4 −0.055 −0.004 −0.021 −0.019 −0.022 −0.008

5 −0.031 −0.002 −0.035 −0.030 −0.034 −0.004

6 0.011 0.000 −0.027 −0.021 −0.026 0.001

7 0.070 0.004 −0.006 −0.002 −0.004 0.008

8 0.034 0.001 −0.077 −0.060 −0.073 0.002

9 0.022 −0.001 −0.127 −0.105 −0.122 0.001

Cohort Effects

1 0.177 0.113 −0.015 −0.015 −0.016 0.150

2 0.325 0.267 −0.002 0.005 0.004 0.308

3 0.344 0.280 0.014 0.024 0.024 0.317

4 0.277 0.211 0.011 0.020 0.021 0.242

5 0.220 0.156 0.006 0.013 0.015 0.185

6 0.216 0.162 0.025 0.034 0.035 0.185

7 0.148 0.108 0.011 0.017 0.017 0.126

8 0.120 0.087 0.016 0.022 0.022 0.105

9 0.100 0.071 0.027 0.031 0.032 0.091

10 −0.036 −0.062 −0.035 −0.037 −0.038 −0.043

11 −0.104 −0.121 −0.056 −0.060 −0.063 −0.108

12 −0.132 −0.141 −0.047 −0.054 −0.056 −0.133

13 −0.162 −0.165 −0.040 −0.049 −0.050 −0.159

14 −0.079 −0.068 0.034 0.030 0.031 −0.067

15 −0.149 −0.122 0.013 0.006 0.006 −0.123

16 −0.152 −0.112 0.023 0.018 0.020 −0.111

17 −0.312 −0.260 −0.023 −0.034 −0.034 −0.264

18 −0.160 −0.098 0.034 0.032 0.034 −0.117
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Group Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

19 −0.379 −0.280 −0.002 −0.007 −0.008 −0.345

20 −0.262 −0.029 0.007 0.008 0.006 −0.240

Note: Model 1: random A effect and fixed P and C effects; Model 2: random P effect and fixed A and C effects; Model 3: random C effect and
fixed A and P effects; Model 4: fixed A effect and random P and C effects; Model 5: fixed P effect and random A and C effects; Model 6: fixed C
effects and random A and P effects; in all models, fixed effects were estimated using the sum-to-zero constraint.
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Table 2A.

Age, Period, and Cohort Effects Estimates on Conservative-Liberal Political Views from Six RE-APC Models,

the GSS 1974–2014.

Group Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Age Effects

1 −0.015 −0.331 −0.296 −0.299 −0.267 −0.020

2 −0.056 −0.308 −0.291 −0.294 −0.279 −0.064

3 0.004 −0.173 −0.162 −0.165 −0.155 −0.002

4 0.007 −0.116 −0.110 −0.111 −0.104 0.003

5 0.039 −0.022 −0.019 −0.020 −0.017 0.037

6 0.042 0.034 0.035 0.034 0.034 0.042

7 0.007 0.041 0.041 0.041 0.038 0.008

8 0.013 0.101 0.097 0.097 0.092 0.016

9 0.023 0.166 0.158 0.158 0.149 0.027

10 −0.012 0.167 0.154 0.156 0.144 −0.007

11 −0.021 0.202 0.184 0.188 0.172 −0.015

12 −0.031 0.236 0.209 0.214 0.194 −0.024

Period Effects

1 −0.276 −0.039 −0.092 −0.050 −0.099 −0.252

2 −0.188 −0.028 −0.044 −0.037 −0.049 −0.180

3 −0.057 0.038 0.041 0.031 0.037 −0.053

4 −0.050 0.001 0.002 −0.001 0.000 −0.048

5 0.041 0.034 0.045 0.035 0.044 0.039

6 0.099 0.036 0.053 0.040 0.055 0.093

7 0.135 0.023 0.039 0.028 0.043 0.127

8 0.148 −0.009 0.003 −0.002 0.008 0.139

9 0.148 −0.055 −0.046 −0.043 −0.039 0.136

Cohort Effects

1 0.288 −0.219 −0.016 −0.021 −0.014 0.256

2 0.405 −0.034 0.007 −0.003 0.015 0.385

3 0.318 −0.063 −0.016 −0.022 −0.007 0.303

4 0.292 −0.040 −0.010 −0.015 0.001 0.279

5 0.257 −0.027 −0.006 −0.010 0.005 0.247

6 0.291 0.057 0.055 0.054 0.065 0.283

7 0.270 0.086 0.075 0.075 0.083 0.264

8 0.174 0.039 0.037 0.037 0.043 0.170

9 0.103 0.019 0.018 0.018 0.023 0.101

10 −0.028 −0.062 −0.057 −0.056 −0.055 −0.029

11 −0.162 −0.144 −0.136 −0.134 −0.136 −0.160

12 −0.113 −0.042 −0.048 −0.044 −0.050 −0.110

13 −0.102 0.025 0.009 0.014 0.004 −0.096

14 −0.066 0.113 0.083 0.089 0.077 −0.058

15 −0.222 0.009 −0.010 −0.005 −0.019 −0.211

16 −0.261 0.023 0.000 0.005 −0.010 −0.248

17 −0.326 0.013 −0.009 −0.006 −0.020 −0.311
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Group Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

18 −0.367 0.026 0.000 0.001 −0.012 −0.350

19 −0.415 0.040 0.005 0.004 −0.006 −0.397

20 −0.335 0.181 0.020 0.019 0.015 −0.319

Note: Model 1: random A effect and fixed P and C effects; Model 2: random P effect and fixed A and C effects; Model 3: random C effect and
fixed A and P effects; Model 4: fixed A effect and random P and C effects; Model 5: fixed P effect and random A and C effects; Model 6: fixed C
effects and random A and P effects; in all models, fixed effects were estimated using the sum-to-zero constraint.
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