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1. Introduction

Inter-fractional variation during the delivery of multi-fractional external beam radiation 

therapy (RT) is a major issue impacting the effectiveness of RT. The current standard 

of care to address the inter-fractional variations is to use image-guided RT (IGRT) to 

reposition the patient based on the pre-treatment daily images while delivering the same 

treatment plan (i.e., reference plan) for all fractions. It has been well documented that 

IGRT repositioning primarily addresses translational error only and cannot fully account 

for all the inter-fractional changes [1–6]. Adaptive radiation therapy (ART), particularly 

online adaptive re-planning (OLAR), is being developed to fully address the inter-fractional 

variations [7–12]. Major steps in OLAR include (1) acquiring a daily image, (2) delineating 

the targets and organs at risk (OAR) on the daily image, (3) creating a new treatment plan 

by adapting a reference plan to the daily anatomy, (4) performing quality assurance on the 

adapted plan, and (5)delivering the adaptive plan for the fraction. Recently, MRI-guided 

ART (MRgART) is being rapidly introduced into the clinics due to the advent of the MR-

Linac [13, 14]. With the superior soft tissue contrast, biological information, and real-time 

imaging available from MRI, MRgART is substantially improving RT delivery for many 

tumor sites [15–18] . However, the current process of MRgART, particularly OLAR, is 

complex, labor-intensive, and time-consuming. It has been reported by several early adopters 

of MRgART that the OLAR process can take up to 90 minutes [19–22] .

In our clinic, MRgART is performed using a 1.5 Tesla MRI-Linac (Unity, Elekta AB) [16, 

22] . The system offers two adaptive planning techniques to address the inter-fractional 

variations based on daily MRI: (i) Adapt-to-Position (ATP), in which an adaptive plan 

is generated and optimized using the original contours of the reference images with multi-

leaf collimators (MLC) shifted based on the co-registration of the daily MRI and the 

reference image, and ii) Adapt-to-Shape (ATS), in which a new plan is generated based 

on the anatomy of the day from the daily MRI. While ATP is a simple workflow like 

the conventional IGRT repositioning (shifting MLC in ATP instead of shifting patient in 
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IGRT), ATS is a full OLAR process that fully corrects for inter-fractional variations. Based 

on our experience, the times required for ATS workflow can be more than twice the ATP 

process [22] . Such prolonged time has been a major bottleneck issue preventing OLAR 

from routine practice. On the other hand, OLAR is not necessary for each treatment fraction. 

Omari et al. showed that approximately 1/3 of treatment fractions for pancreatic cancer 

did/would not require OLAR [23]. Thus, in clinical practice, it is desirable to determine 

when OLAR is necessary before substantial effort (e.g., re-contouring on daily image) is 

spent. Currently, whether to perform OLAR for a treatment fraction is determined either 

empirically prior to the fraction (e.g., based on the fractionation scheme or the specific 

tumor site) or by subjectively reviewing of anatomic change between the daily and reference 

images immediately after the daily image acquisition.

Several researchers proposed various ideas to determine the necessity of OLAR objectively 

and automatically. For instance, Brown et al. reported predictive factors that may be utilized 

to identify head and neck cancer patients likely requiring ART [24]. Lim et al. showed 

that Jacobian determinant histogram (JDH) obtained from deformable image registration 

(DIR) between reference (planning) and daily CTs can be used to determine the necessity 

of OLAR [25] . However, this method may not be applicable to MRI primarily due to the 

large variation in MR intensity that may mask the trends of organ deformation in JDH. Very 

recently, Parchur et al. proposed to use the change of structural similarity index measure 

(SSIM) between the reference and daily MRIs to predict OLAR necessity in MRgART. 

However, they reported that SSIM, a first order image feature, might be too simple to 

measure subtle anatomic changes, resulting in false positive prediction of OLAR necessity in 

at least 5% of the cases [26].

It is known that high-order image features, such as wavelet features, can reveal more 

subtle, deep seated imaging properties than first-order features. It has been shown that 

wavelet features are useful for classification in a variety of applications [27–33].Wavelet 

decompositions are one of the most recent additions to the multiscale signal processing 

techniques where a set of cascaded filter banks are used to provide a complete image 

representation and perform decomposition according to both scale and orientation. Wavelet 

transform provides multiscale representation of the image that carries both spatial position 

and spatial frequency information at the same time. Coarse-scale wavelet coefficients 

represent low-resolution image components and fine-scale wavelet coefficients denote 

high resolution components [28–30] . Zhou et al. showed that MRI wavelet-transformed 

textures outperformed volumetric textures in radiomic prediction of pathological response 

to neoadjuvant chemotherapy for patients with locally advanced breast cancer [31]. Çinarer 

et al. showed that a deep learning algorithm with wavelet radiomic features is highly 

effective in grading gliomas with 96.15% accuracy [32]. Chaplot et al. used Daubechies 

wavelet transform to extract MRI features that can correctly classify cancer patients using a 

self-organizing map and support vector machines [33] .

In this study we developed a model based on multiscale wavelet features extracted from 

reference and daily MRIs to predict the necessity of OLAR automatically and objectively 

in MRgART. We used the MRI data collected on the Unity system for pancreatic cancer 

patients and built a machine learning classifier to identify appropriate multiscale texture 
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features that can distinguish ATP versus ATS planning. We developed the prediction model 

such that it can be executed immediately after the daily MRI acquisition without any 

segmentation, avoiding any unnecessary effort if OLAR is not needed.

2. Methods

A classifier based on multiscale wavelet features was developed to predict whether OLAR 

is needed for a daily fraction. The correlation (e.g., change) between the reference and 

daily MRIs (CRD) of a feature was calculated in a region of interest (ROI). A high CRD 

(strong correlation) would indicate small anatomic difference between the reference and 

daily images, implying that OLAR is not necessary, and that ATP would be sufficient for the 

fraction, while a low CRD (weak correlation) would indicate substantial anatomic difference 

(e.g., organ deformation) between the daily and reference images, thus, making OLAR 

(e.g., ATS) necessary for the fraction. Machine learning algorithms were used to identify 

appropriate features that can differentiate ATS and ATP groups. The major steps for the 

development of the classifier are shown in Figure 1 and will be described in the subsequent 

subsections.

2.1. Image Data

In this retrospective study, approved by the institutional Internal Review Board (IRB), a 

total of 119 daily MRI sets along with the reference images were acquired during routine 

MRgART on a Unity system for 24 pancreatic cancer patients treated in 5 fractions (one 

daily image missing for a patient). The collected daily and reference images were the motion 

average images calculated from 4D MRI that included a stack of image slices. The daily and 

reference MRI sets were used to build and test the prediction model for OLAR necessity. 

Each of the patients was treated with SBRT of 33-40 Gy in 5 fractions with a reference MRI 

taken before the treatment (fraction 0), resulting in one reference and five daily MRI sets 

for each patient. The patient demographic information followed natural distribution as there 

was no specific inclusion or exclusion criteria in patient selection. All MRIs were the motion 

average images derived from 4D MRI [22] using a software of our design [34].

For each case, a reference plan was generated on the reference MRI. Both ATP and ATS 

plans were created for each fraction (daily MRI set) using the ATS or ATP workflows with a 

MRgART treatment planning system (Monaco V5.4, Elekta, Stockholm, Sweden). Fractions 

were categorized into ATP and ATS groups based on commonly used dose volume criteria 

in our clinic (presented in Table 1 Supplementary material). Daily fraction whose ATS plan 

superior to the ATP plan was categorized as an ATS fraction, while a fraction with its ATP 

plan comparable to the ATS plan was labeled as an ATP fraction. These classifications of the 

119 datasets, including 33 ATP and 86 ATS sets constituted the ground truth for the model 

training and validation described below.

2.2. Image preprocessing and registration

All image and the plan data were analyzed using a software tool (MIM software Inc.). 

All MRIs were standardized (bias correction, and intensity normalization) to minimize the 

impact of MR intensity variations and allow robust extraction of quantitative data from 
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the images. The bias correction and denoising were performed in MIM to correct for the 

radiofrequency coil inhomogeneity using an intensity-based nonparametric bias correction 

method followed by a Gaussian filter to smooth the noisy pixels. The intensity normalization 

was done by linearly normalizing the image intensities to a maximum of 10240. More 

details of these preprocessing steps are reported previously by our group [35]. Each daily 

MRI was rigidly registered to the reference MRI followed by a local registration using a 

box-based alignment tool to minimize registration error (Figure 1 IDS transfer section). 

The obtained images were used subsequently for wavelet feature extraction through wavelet 

decompositions as described below.

2.3. Region of interest selection

To select the optimum ROI for the wavelet feature extraction, the 100%, 80% and 50% 

isodose surface (IDS) from the reference plan were converted into structures in MIM and 

subsequently transferred to the registered daily image. Typically, the 100% IDS covers the 

tumor volume while the region between 100 and 50% IDSs contains the dose limiting 

OAR(s) with high dose gradient. Image features extracted in the ROI spheres enclosed by 

the 100%-80%, 80%-50%, and 100%-50% IDSs in both reference and daily images were 

analyzed to determine optimal ROI where the significant features can be extracted to build a 

machine learning classification model as shown in Figure 1, IDS transfer subsection.

2.4. Wavelet decomposition

To detect patterns that are not visible in the native images, multi-resolution analysis was 

applied using 3D wavelet decomposition to texturize each of the ROIs. The image was 

decomposed into approximation (low frequency) components and detail (high frequency) 

components using wavelet and scaling functions to perform the multi-resolution analysis. 

As shown in Figure 1, Wavelet Analysis subsection, first, the image was convolved in the 

x-direction by a low pass filter and then down sampling it to produce the approximation 

sub-band denoted by ‘L’, then convolved by a high pass filter to produce the detail sub-band 

denoted by ‘H’, following Equation 1 below.

3DW T = Lx ⊕ Hx ⊗ Ly ⊕ Hy ⊗ Lz ⊕ Hz

= LxLyLz ⊕ LxLyHz ⊕ LxHyHz ⊕ LxHyLz ⊕ HxLyLz

⊕ HxHyLz ⊕ HxLyHz ⊕ HxHyHz
Equaion (1)

The approximation and details sub-bands were then convolved in the same manner in the 

y-direction to produce the approximation detail denoted ‘LL’ and 3 detail sub-ands, the 

vertical detail ‘LH’, horizontal detail ‘HL’, and the diagonal detail ‘HH’. The process was 

repeated in the same manner in the z-direction to produce the subsequent sub-bands (‘LLL’, 

‘HLL’,‘LHL’,‘HHL’,‘LLH’,‘HLH’,‘LHH’,‘HHH’). For instance, an ‘LHH’ means that the 

low-pass (scaling) filter with down sampling was applied to the rows of the image, followed 

by the high pass (wavelet) filter with down sampling applied to the columns then a high 

pass filter applied to the 3rd dimension. The second decomposition level was achieved 

by considering the approximation sub-band (LL) as the original image and convolving it 

again with high pass and low pass filters in the same manner and so on [32]. For this 
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analysis, four decomposition levels were selected as the best trade-off between weakening 

tree structure and increased computation cost. A total of 438 wavelet features was extracted 

from the different decomposition levels in each ROI on the daily and the reference images. 

The relative net change of the wavelet feature value on the daily image (average over the 

entire ROI) from the corresponding value on the reference MRI were calculated to determine 

appropriate features that exhibit different CRD between the ATP and ATs groups.

2.5. Dimensionality reduction

To eliminate redundant features, spearman correlation was applied (r<0.9). Inter-class 

correlation (ICC), coefficient of variance (COV), and t-test (p<0.05) were used to determine 

significant features that exhibited feature change between the ATS and ATP groups. To 

further reduce the number of features to be used to build the classification model, the 

identified significant features were fed into a self-organized artificial neural network feature 

map to select features with least overlap between the ATS and ATP groups. The self-

organized map (SOM) consisted of several nodes whose weight was the position in the 

input space and the classification was performed by finding the node that was the closest in 

distance to the input space vector. A maximally Stable Extremal Regions (MSER) algorithm 

was also applied to establish correspondence points between the daily and the reference 

images and to determine the final significant features with low redundancy and high quality 

MSER for ATS and ATP, respectively (Figure 1, Dimensionality red. subsection)

2.6. Model building with machine learning

The classification model was built and tested using daily MRIs of either ATS or 

ATP fractions. Combinations of 2-3 of the significant wavelet features found after the 

dimensionality reduction process were used to build multivariate Bayesian classifier models 

with a leave one out cross-validation method. The 119 daily MRI datasets were divided 

into 89 sets for training and cross validation and 30 sets (10 ATP and 20 ATS fractions) 

for independent testing. For a multivariate normal Bayesian classification to change from 

probabilities to discriminants, the strategy is to maximize the class conditional probability 

or to minimize the distance to the centroid of each of the training classes (i.e., minimum 

Mahalonobis distance). The generated model was saved, and the independent validation set 

was used to test the model by calculating the minimum Mahalonobis distance of the new 

data set to the centroid of the training class as shown in Figure 1, classifier subsection.

3. Results

Based on the Spearman correlation analysis, a total of 123 out of 438 features from different 

wavelet decomposition levels were found to be non-redundant (r<0.9). Comparing the data 

extracted from different ROI indicates that the max significant feature differences between 

the ATP and ATS were observed in the shell enclosed by the 100%-50% IDS. Consequently, 

this ROI typically representing the high dose gradient region, was selected for remaining 

analysis. Among the 123 features selected, 82 showed high ICCs for ATP and lower ICCs 

for ATS. Based on the box plots of the ICC for the ATP and ATS fractions shown in Figure 

2 (right), a cutoff correlation coefficient of 0.6 for ICC was found to be appropriate to 

determine the candidate features for building the classifier. Sixty-seven of these features had 
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a COV greater than 9% for ATS and lower than 5% for ATP. Figure 2 (left) shows box 

plots of the COV for ATP and ATS fractions. A large COV indicates a substantial image 

(anatomic) changes between the reference and daily images, implying the necessity of ATS 

for the fraction. In addition, 38 of the 67 features passed the t-test with p value <0.05.

Figure 3 shows example box plots of two features (HLL2 mean, and HHL2 ClusterTend) 

exhibiting significant t-test p-values between the ATP and ATS groups.

The SOM analysis resulted in 25 features that showed the least overlap between the two 

groups. The MSER process yielded 12 final reproducible features with high MSER (> 0.8) 

for ATP and low MSER (<0.6) for ATS. These final features were used to build the classifier 

using 2-3 features combination at a time. As shown in Figure 4, the best performing model 

was a three-feature combination (HLL2 mean, HHL1 Homogenity, HHL2 ClusterTend), 

which can predict OLAR necessity with a cross validated AUC of 0.98. The model with a 

two-feature combination (HLL2 mean, HHL2 ClusterTend) can achieve AUC of 0.97. The 

execution of the model to predict OLAR necessarily took up to 38 seconds using a hardware 

of Intel® Core™i7-6700 CPU @3.4GHz 32GB RAM x64-based processor.

4. Discussion

Ideally, OLAR (e.g., ATS) should be performed for every fraction during MRgART if 

OLAR (ATS) required no or minimal additional time and effort compared to the current 

IGRT repositioning (e.g., ATP). With current available technology OLAR process is labor 

intensive and time-consuming. Thus, being able to determine its necessity would avoid the 

unnecessary effort in the current practice of MRgART. To achieve this, we have developed a 

model using MRI wavelet features to accurately predict whether OLAR is needed for a given 

daily MRI set during MRgART. The obtained model can be implemented in the following 

process immediately after a daily MRI set is acquired: (1) rigidly registering the daily MRI 

with the reference MRI, (2) populating 100% and 50% IDSs from the reference to daily 

MRI, (3) extracting the three wavelet features (HLL2 mean, HHL1 Homogenity, HHL2 

ClusterTend) from the ROI enclosed by the 100%-50% IDSs on the daily MRI, (4) feeding 

the extracted features to the developed model, (5) calculating the minimum Mahalonobis 

distance to the centroid of each trained class to determine if OLAR is needed.

As a next step, we are implementing the developed model as a workflow in MIM. In 

our clinical practice, the daily MRI is automatically transferred to MIM for registration 

and re-contouring if necessary. There is no additional image transferring time for this 

implementation. The model prediction time of 38 seconds includes the preprocessing, the 

extraction of three significant features from daily and reference images, and the execution 

of the pre-trained model. The model performance should not depend on dose prescription 

and/or adaptive dose constraints as online adaptation is justified as long as the adaptive plan 

is superior to the non-adaptive plan (e.g., ATP, IGRT).

Due to the large inherited MR intensity variation, the image preprocessing is essential to 

minimize effect of the intensity variation for the quantitative image feature exaction. In 

addition, the accuracy of the image registration is important for accurate and consistent 
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model prediction. The rigid registration with the box-based alignment in MIM is similar 

to the common IGRT process (e.g., ATP) where the images are often rigidly registered 

with local adjustment to minimize registration error in high-dose region (e.g., PTV or PTV 

plus a few cm expansion). In this quantitative analysis, we used the relative net change 

of the image feature values, rather than the absolute values, further reducing the impact 

of registration uncertainties. We believe that the minimized registration error should not 

significantly affect the model prediction.

Compared to the SSIM model previously reported [24], the current model based on wavelet 

features is more accurate (AUC of 0.98), particularly, with improved prediction for daily 

MRIs with minimal anatomic difference (e.g., unobvious organ deformation) from the 

reference MRI. This is because the wavelet-based multiscale texture features can encode 

many invisible patterns that may not be possible with the first-order texture features, 

such as SSIM. Using the machine learning algorithm, the appropriate wavelet features can 

be determined to represent the underlying residual structural characteristics relate to the 

dosimetric properties of the daily RT plans. Because the quality of the ATS plan is generally 

better or equivalent to that of the ATP plan for a given daily MRI set, the current classifier 

was built using a conservative approach such that the ATS is indicated if the difference 

between ATS and ATP is minimal. In addition, the model was biased toward the ATS given 

the fact that the number of ATP plans used in the model training set was smaller than that 

of the ATS plans. With these conservative considerations, the misclassifications (2%) by the 

model, which occurs for the fractions with minimal differences between ATP and ATS plans, 

would not cause any clinically meaning impact.

To further test the reliability and applicability of the model, and to explore whether the 

obtained model can be translated to other clinics, we validated the model with 40 additional 

independent datasets. This independent validation showed that the model was able to 

successfully classify all the cases into the appropriate class except for one ATP case being 

judged as ATS. A close examination of the misclassification case indicated that the ATP and 

ATS plans were comparable, hence, difficult for discrimination.

Furthermore, the success of the independent test implies that the developed classifier may be 

used in other institutions using the same MRgRT system and the similar MRI sequences. For 

the institutions using different system or sequence, the method presented in this work may 

be applied to identify appropriate wavelet features and to build the corresponding model.

The newly developed classifier can be implemented into a robust automated tool for clinical 

decision making during MRgART workflow. The previously developed SSIM model can 

be included in the tool as a secondary, independent check of the primary prediction by 

the wavelet model. Such a primary-secondary two-tier prediction process would increase 

clinician’s confidence in the fully automated decision-making process. The automated 

process should be very fast as no user intervention is needed. If OLAR is determined to 

be necessary, the remaining OLAR steps can be immediately started. Otherwise, the simple 

repositioning workflow can proceed. As a next step, we will develop a graphical user 

interface to fully automate the process.
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5. Conclusion

A machine learning classifier based on changes of wavelet features between the daily 

MRI of a treatment fraction and the reference image was developed to predict if OLAR 

is beneficial for the fraction during MRgART. The obtained wavelet-based multiscale 

features can reveal underlying residual anatomic changes between reference and daily 

MRIs, resulting in accurate model prediction with an AUC of 98%. The use of the wavelet 

prediction model can be fully automated and incorporated into MRgART workflow to 

quickly and objectively determine if OLAR (e.g., ATS) is needed immediately after the daily 

MRI is acquired.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Major steps from data acquisition to classifier development and testing showing data 

acquisition, IDS transfer, wavelet analysis, dimensionality reduction and classifier building 

to automatically determine the necessity of online adaptive replanning using multiscale 

wavelet-based features
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Figure 2. 
Box plots of ICC (right) and COV (left) for the ATP and ATS groups. The boxplots show 

the median and interquartile range for each group, and the diamond shape in the middle 

represents the mean of the group
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Figure 3. 
Box plots showing median and interquartile ranges for two features, HHL2 ClusteTend 

(right) and HLL2 mean (left), for the ATS and ATP groups with a diamond shape in 

the middle showing mean of each group and a t-test p-value on top showing significant 

difference.
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Figure 4. 
AUC of the ROC of Bayesian classifier based on combined 2 (left) and 3 (right) features to 

determine the necessity of OLAR.
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